DNA methylation in obesity
Małgorzata Pokrywka 1 , Beata Kieć-Wilk 2 , Anna Polus 3 , Iwona Wybrańska 4Abstract
The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes), have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA) synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.
References
- 1. Almén M.S., Jacobsson J.A., Moschonis G., Benedict C., ChrousosG.P., Fredriksson R., Schiöth H.B.: Genome wide analysis reveals associationof a FTO gene variant with epigenetic changes. Genomics,2012; 99: 132-137
Google Scholar - 2. Arita K., Ariyoshi M., Tochio H., Nakamura Y., Shirakawa M.:Recognition of hemi-methylated DNA by the SRA protein UHRF1 bya base-flipping mechanism. Nature, 2008; 455: 818-821
Google Scholar - 3. Austin R.C., Lentz S.R., Werstuck G.H.: Role of hyperhomocysteinemiain endothelial dysfunction and atherothrombotic disease.Cell Death Differ., 2004; 11: S56-S64
Google Scholar - 4. Bell C.G., Finer S., Lindgren C.M., Wilson G.A., Rakyan V.K., TeschendorffA.E., Akan P., Stupka E., Down T.A., Prokopenko I., MorisonI.M., Mill J., Pidsley R., International Type 2 Diabetes 1q Consortium,Deloukas P. i wsp.: Integrated genetic and epigenetic analysis identifieshaplotype-specific methylation in the FTO type 2 diabetes andobesity susceptibility locus. PLoS One, 2010; 5: e14040
Google Scholar - 5. Berthoud H.R., Morrison C.: The brain, appetite, and obesity.Annu. Rev. Psychol., 2008; 59: 55-92
Google Scholar - 6. Bestor T.H.: The DNA methyltransferases of mammals. Hum. Mol.Genet., 2000; 9: 2395-2402
Google Scholar - 7. Bhutani N., Burns D.M., Blau H.M.: DNA demethylation dynamics.Cell, 2011; 146: 866-872
Google Scholar - 8. Bird A.: DNA methylation patterns and epigenetic memory. GenesDev., 2002; 16: 6-21
Google Scholar - 9. Branco M.R., Ficz G., Reik W.: Uncovering the role of 5 hydroxymethylcytosinein the epigenome. Nat. Rev. Genet., 2011; 13: 7-13
Google Scholar - 10. Campión J., Milagro F.I., Martínez J.A.: Individuality and epigeneticsin obesity. Obes. Rev., 2009; 10: 383-392
Google Scholar - 11. Chen C., Visootsak J., Dills S., Graham J.M.Jr.: Prader-Willi syndrome:an update and review for the primary pediatrician. Clin.Pediatr. Phila., 2007; 46: 580-591
Google Scholar - 12. Chen T., Li E.: Structure and function of eukaryotic DNA methyltransferases.Curr. Top Dev. Biol., 2004; 60: 55-89
Google Scholar - 13. Chen Z., Riggs A.D.: DNA methylation and demethylation inmammals. J. Biol. Chem., 2011; 286: 18347-18353
Google Scholar - 14. Cheng X., Roberts R.J.: AdoMet-dependent methylation, DNAmethyltransferase and base flipping. Nucleic Acids Res., 2001; 29:3784-3795
Google Scholar - 15. Cortellino S., Xu J., Sannai M., Moore R., Caretti E., Cigliano A.,Le Coz M., Devarajan K., Wessels A., Soprano D., Abramowitz L.K.,Bartolomei M.S., Rambow F, Bassi M.R, Bruno T. i wsp.: ThymineDNA glycosylase is essential for active DNA demethylation by linkeddeamination-base excision repair. Cell, 2011; 146: 67-79
Google Scholar - 16. Deaton A.M, Bird A.: CpG islands and the regulation of transcription.Genes Dev., 2011; 25: 1010-1022
Google Scholar - 17. Dina C., Meyre D., Gallina S., Durand E., Körner A., Jacobson P.,Carlsson L.M., Kiess W., Vatin V., Lecoeur C., Delplanque J., Vaillant E.,Pattou F., Ruiz J., Weill J. i wsp.: Variation in FTO contributes to childhoodobesity and severe adult obesity. Nat. Genet., 2007; 39: 724-726
Google Scholar - 18. Dolinoy D.C.: The agouti mouse model: an epigenetic biosensorfor nutritional and environmental alterations on the fetal epigenome.Nutr. Rev., 2008; 66: S7-S11
Google Scholar - 19. Dolinoy D.C., Huang D., Jirtle R.L.: Maternal nutrient supplementationcounteracts bisphenol A-induced DNA hypomethylation inearly development. Proc. Natl. Acad. Sci. USA, 2007; 104: 13056-13061
Google Scholar - 20. Dolinoy D.C., Weidman J.R., Waterland R.A., Jirtle R.L.: Maternalgenistein alters coat color and protects Avy mouse offspring fromobesity by modifying the fetal epigenome. Environ. Health Perspect.,2006; 114: 567-572
Google Scholar - 21. Fawcett K.A., Barroso I.: The genetics of obesity: FTO leads theway. Trends Genet., 2010, 26: 226-274
Google Scholar - 22. Finkelstein J.D.: Methionine metabolism in mammals. J. Nutr.Biochem., 1990; 1: 228-237
Google Scholar - 23. Frayling T.M., Timpson N.J., Weedon M.N., Zeggini E., FreathyR.M., Lindgren C.M., Perry J.R., Elliott K.S., Lango H., RaynerN.W., Shields B., Harries L.W., Barrett J.C., Ellard S., Groves C.J. i wsp.:A common variant in the FTO gene is associated with body mass indexand predisposes to childhood and adult obesity. Science, 2007;316: 889-894
Google Scholar - 24. Gąsiorowska D., Korzeniowska K., Jabłecka A.: Homocysteina.Farmacja współczesna, 2008; 1: 169-175
Google Scholar - 25. Gehring M., Reik W., Henikoff S.: DNA demethylation by DNArepair. Trends Genet., 2009; 25: 82-90
Google Scholar - 26. Germann M.W., Johnson C.N., Spring A.M.: Recognition of damagedDNA: Structure and Dynamic Markers. Med. Res. Rev., 2012;32: 659-683
Google Scholar - 27. Goldberg A.D., Allis C.D., Bernstein E.: Epigenetics: a landscapetakes shape. Cell, 2007; 128: 635-638
Google Scholar - 28. Gopalakrishnan S., Van Emburgh B.O., Robertson K.D.: DNAmethylation in development and human disease. Mutat. Res., 2008;647: 30-38
Google Scholar - 29. Gu T.P., Guo F, Yang H., Wu H.P., Xu G.F., Liu W., Xie Z.G., Shi L.,He X., Jin S., Iqbal K., Shi Y.G., Deng Z., Szabó P.E., Pfeifer G.P., Li J.,Xu G.L.: The role of Tet3 DNA dioxygenase in epigenetic reprogrammingby oocytes. Nature, 2011; 477: 606-610
Google Scholar - 30. Guibert S., Forné T., Weber M.: Global profiling of DNA methylationerasure in mouse primordial germ cells. Genome Res., 2012;22: 633-641
Google Scholar - 31. Guo J., Su Y., Zhong C., Ming G.L., Song H.: Hydroxylation of 5methylcytosine by TET1 promotes active DNA demethylation in theadult brain. Cell, 2011; 145: 423-434
Google Scholar - 32. Han Z., Niu T., Chang J., Lei X., Zhao M., Wang Q., Cheng W., WangJ., Feng Y., Chai J.: Crystal structure of the FTO protein reveals basisfor its substrate specificity. Nature. 2010; 464: 1205-1209
Google Scholar - 33. Hattori N., Abe T., Hattori N., Suzuki M., Matsuyama T., YoshidaS., Li E., Shiota K.: Preference of DNA methyltransferases for CpG islands in mouse embryonic stem cells. Genome Res., 2004; 14:1733-1740
Google Scholar - 34. He Y.F., Li B.Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., ChenZ., Li L., Sun Y., Li X., Dai Q., Song C.X., Zhang K., He C., Hu G.L.: Tetmediatedformation of 5-carboxylcytosine and its excision by TDGin mammalian DNA. Science, 2011; 333: 1303-1307
Google Scholar - 35. Hendrich B., Hardeland U., Ng H.H., Jiricny J., Bird A.: The thymineglycosylase MBD4 can bind to the product of deamination atmethylated CpG sites. Nature, 1999; 401: 301-304
Google Scholar - 36. Hermann A., Gowher H., Jeltsch A.: Biochemistry and biologyof mammalian DNA methyltransferases. Cell. Mol. Life Sci., 2004;61: 2571-2587
Google Scholar - 37. Hermann A., Goyal R., Jeltsch A.: The Dnmt1 DNA-(cytosineC5)-methyltransferasemethylates DNA processively with high preferencefor hemimethylated target sites. J. Biol. Chem., 2004; 279:48350-48359
Google Scholar - 38. Herrera B.M., Keildson S., Lindgren C.M.: Genetics and epigeneticsof obesity. Maturitas, 2011; 69: 41-49
Google Scholar - 39. Hu J.L., Zhou B.O., Zhang R.R., Zhang K.L., Zhou J.Q., Xu G.L.: TheN-terminus of histone H3 is required for de novo DNA methylationin chromatin. Proc. Natl. Acad. Sci. USA, 2009; 106: 22187-22192
Google Scholar - 40. Iqbal K., Jin S.G., Pfeifer G.P., Szabó P.E.: Reprogramming of thepaternal genome upon fertilization involves genome-wide oxidationof 5 methylcytosine. Proc. Natl. Acad. Sci. USA, 2011; 108: 3642-3647
Google Scholar - 41. Jair K.W., Bachman K.E., Suzuki H., Ting A.H., Rhee I., Yen R.W.,Baylin S.B., Schuebel K.E.: De novo CpG island methylation in humancancer cells. Cancer Res., 2006; 66: 682-692
Google Scholar - 42. Jeltsch A.: Molecular enzymology of mammalian DNA methyltransferases.Curr. Top. Microbiol. Immunol., 2006; 301: 203-225
Google Scholar - 43. Jia D., Jurkowska R.Z., Zhang X., Jeltsch A., Cheng X.: Structureof Dnmt3a bound to Dnmt3L suggests a model for de novo DNAmethylation. Nature, 2007; 449: 248-251
Google Scholar - 44. Jones P.A.: Functions of DNA methylation: islands, start sites,gene bodies and beyond. Nat. Rev. Genet., 2012; 13: 484-492
Google Scholar - 45. Karlin S., Burge C.: Dinucleotide relative abundance extremes:A genomic signature. Trends Genet., 1995; 11: 283-290
Google Scholar - 46. Kelly T., Yang W., Chen C.S., Reynolds K., He J.: Global burdenof obesity in 2005 and projections to 2030. Int. J. Obesity, 2008; 32:1431-1437
Google Scholar - 47. Klose R.J., Bird A.P.: Genomic DNA methylation: the mark andits mediators. Trends Biochem. Sci., 2006; 31: 89-97
Google Scholar - 48. Kral J.G., Biron S., Simard S., Hould F.S., Lebel S., Marceau S.,Marceau P.: Large maternal weight loss from obesity surgery preventstransmission of obesity to children who were followed for 2to 18 years. Pediatrics, 2006; 118: 1644-1649
Google Scholar - 49. Larder R., Cheung M.K., Tung Y.C., Yeo G.S., Coll A.P.: Where togo with FTO? Trends. Endocrinol. Metab. 2011; 22: 53-59
Google Scholar - 50. Lei H., Oh S.P., Okano M., Jüttermann R., Goss K.A., Jaenisch R.,Li E.: De novo DNA cytosine methyltransferase activities in mouseembryonic stem cells. Development, 1996; 122: 3195-3205
Google Scholar - 51. Li E., Bestor T.H., Jaenisch R.: Targeted mutation of the DNAmethyltransferase gene results in embryonic lethality. Cell, 1992;69: 915-926
Google Scholar - 52. Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., TontiFilippiniJ., Nery J.R., Lee L., Ye Z., Ngo Q.M., Edsall L., AntosiewiczBourgetJ., Stewart R., Ruotti V., Millar A.H., Thomson J.A., Ren B.,Ecker J.R.: Human DNA methylomes at base resolution show widespreadepigenomic differences. Nature, 2009; 462: 315-322
Google Scholar - 53. Maiti A., Drohat A.C.: Thymine DNA glycosylase can rapidlyexcise 5 formylcytosine and 5 carboxylcytosine: potential implicationsfor active demethylation of CpG sites. J. Biol. Chem., 2011;286: 35334-35338
Google Scholar - 54. Mato J.M., Alvarez L., Ortiz P., Pajares M.A.: S-adenosylmethioninesynthesis: molecular mechanisms and clinical implications.Pharmacol. Ther., 1997; 73: 265-280
Google Scholar - 55. Münzel M., Globisch D., Carell T.: 5-Hydroxymethylcytosine,the sixth base of the genome. Angew. Chem. Int. Ed. Engl., 2011;50: 6460-6468
Google Scholar - 56. Okano M., Li E.: Genetic analyses of DNA methyltransferasegenes in mouse model system. J. Nutr., 2002; 132: 2462S-2465S
Google Scholar - 57. Olszewska M., Kurpisz M.: Metylacja i jej rola regulacyjna wobecrodzicielskiego piętna genomowego. Postępy Hig. Med. Dośw.,2010; 64: 642-649
Google Scholar - 58. Ooi S.K., Qiu C., Bernstein E., Li K., Jia D., Yang Z., ErdjumentBromageH., Tempst P., Lin S.P., Allis C.D., Cheng X., Bestor T.H.:DNMT3L connects unmethylated lysine 4 of histone H3 to de novomethylation of DNA. Nature, 2007; 448: 714-717
Google Scholar - 59. Pennings S., Allan J., Davey C.S.: DNA methylation, nucleosomeformation and positioning. Brief. Funct. Genomic. Proteomic., 2005;3: 351-361
Google Scholar - 60. Portela A., Esteller M.: Epigenetic modifications and humandisease. Nat. Biotechnol., 2010; 28: 1057-1068
Google Scholar - 61. Qiu A., Jansen M., Sakaris A., Min S.H., Chattopadhyay S., Tsai E.,Sandoval C., Zhao R., Akabas M.H., Goldman I.D.: Identification of anintestinal folate transporter and the molecular basis for hereditaryfolate malabsorption. Cell, 2006; 127: 917-928
Google Scholar - 62. Rakyan V.K., Blewitt M.E., Druker R., Preis J.I., Whitelaw E.: Metastableepialleles in mammals. Trends Genet., 2002; 18: 348-351
Google Scholar - 63. Rivera R.M., Ross J.W. Epigenetics in fertilization and preimplantationembryo development. Prog. Biophys. Mol. Biol., 2013;113: 423-32
Google Scholar - 64. Rubin B.S., Murray M.K., Damassa D.A., King J.C., Soto A.M.:Perinatal exposure to low doses of bisphenol A affects body weight,patterns of estrous cyclicity, and plasma LH levels. Environ. HealthPerspect., 2001; 109: 675-680
Google Scholar - 65. Sasaki H., Matsui Y.: Epigenetic events in mammalian germcelldevelopment: reprogramming and beyond. Nat. Rev. Genet.,2008; 9: 129-140
Google Scholar - 66. Saxonov S., Berg P., Brutlag DL.: A genome-wide analysis ofCpG dinucleotides in the human genome distinguishes two distinctclasses of promoters. Proc. Natl. Acad. Sci. USA, 2006; 103: 1412-1417
Google Scholar - 67. Schär P., Fritsch O.: DNA repair and the control of DNA methylation.Prog. Drug Res., 2011; 67: 51-68
Google Scholar - 68. Scuteri A., Sanna S., Chen W.M., Uda M., Albai G., Strait J., NajjarS., Nagaraja R., Orrú M., Usala G., Dei M., Lai S., Maschio A., BusoneroF., Mulas A. i wsp.: Genome-wide association scan shows geneticvariants in the FTO gene are associated with obesity-related traits.PLoS Genet., 2007; 3: e115
Google Scholar - 69. Smith Z.D., Meissner A.: DNA methylation: roles in mammaliandevelopment. Nat. Rev. Genet., 2013; 14: 204-220
Google Scholar - 70. Stanger O.: Physiology of folic acid in health and disease. Curr.Drug Metab., 2002; 3: 211-223
Google Scholar - 71. Suetake I., Shinozaki F., Miyagawa J., Takeshima H., Tajima S.:DNMT3L stimulates the DNA methylation activity of Dnmt3a andDnmt3b through a direct interaction. J. Biol. Chem., 2004; 279: 27816-27823
Google Scholar - 72. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H.,Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A.: Conversionof 5 methylcytosine to 5 hydroxymethylcytosine in mammalianDNA by MLL partner TET1. Science, 2009; 324: 930-935
Google Scholar - 73. Vucetic Z., Carlin J.L., Totoki K., Reyes T.M.: Epigenetic dysregulationof the dopamine system in diet-induced obesity. J. Neurochem.,2012; 120: 891-898
Google Scholar - 74. Vucetic Z., Kimmel J., Reyes T.M.: Chronic high-fat diet drivespostnatal epigenetic regulation of μ-opioid receptor in the brain.Neuropsychopharmacology, 2011; 36: 1199-1206
Google Scholar - 75. Vucetic Z., Reyes T.M.: Central dopaminergic circuitry controllingfood intake and reward: implcations for the regulation of obesity.Wiley Interdiscip. Rev. Syst. Biol. Med., 2010; 2: 577-593
Google Scholar - 76. Waterland R.A., Travisano M., Tahiliani K.G., Rached M.T., MirzaS.: Methyl donor supplementation prevents transgenerational amplificationof obesity. Int. J. Obes., 2008; 32: 1373-1379
Google Scholar - 77. Weber M., Hellmann I., Stadler M.B., Ramos L., Pääbo S., RebhanM., Schübeler D.: Distribution, silencing potential and evolutionaryimpact of promoter DNA methylation in the human genome. Nat.Genet., 2007; 39: 457-466
Google Scholar - 78. Weinhold B.: Epigenetics: the science of change. Environ. HealthPerspect., 2006; 114: 160-167
Google Scholar - 79. Wossidlo, M., Nakamura T., Lepikhov K., Marques C.J., ZakhartchenkoV., Boiani M., Arand J., Nakano T., Reik W., Walter J.: 5-Hydroxymethylcytosinein the mammalian zygote is linked with epigeneticreprogramming. Nat. Commun., 2011; 2: 241
Google Scholar - 80. Wu S.C., Zhang Y.: Active DNA demethylation: many roads leadto Rome. Nat. Rev. Mol. Cell Biol., 2010; 11: 607-620
Google Scholar - 81. Xu Y., Wu F., Tan L., Xiong L., Deng J., Barbera A.J., Zheng L., ZhangH., Huang S., Min J., Nicholson T., Chen T., Xu G., Shi Y., Zhang K., Shi Y.G.:Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1hydroxylase in mouse embryonic stem cells. Mol. Cell, 2011; 42: 451-464
Google Scholar - 82. Yeo G.S., O’Rahilly S.: Uncovering the biology of FTO. Mol.Metab., 2012; 1: 32-36
Google Scholar - 83. Yoder J.A., Walsh C.P., Bestor T.H.: Cytosine methylation and theecology of intragenomic parasites. Trends Genet., 1997; 13: 335-340
Google Scholar - 84. Youngson N.A., Morris M.J.: What obesity research tells us aboutepigenetic mechanisms. Philos. Trans. R. Soc. Lond. B. Biol. Sci.2013; 368: 20110337
Google Scholar - 85. Zhu J.K.: Active DNA demethylation mediated by DNA glycosylases.Annu. Rev. Genet., 2009; 43: 143-166
Google Scholar - 86. Ziller M.J., Müller F., Liao J., Zhang Y., Gu H., Bock C., Boyle P.,Epstein C.B., Bernstein B.E., Lengauer T., Gnirke A., Meissner A.:Genomic distribution and inter-sample variation of non-CpG methylationacross human cell types. PLoS Genet., 2011; 7: e1002389
Google Scholar