Selected biological markers in various vascular lesions of the head and neck
Zuzanna Gronkiewicz 1 , Antoni Krzeski 1 , Wojciech Kukwa 1Abstract
Vascular anomalies are divided according to the contemporary system of classification into two groups: tumors and malformations. However, there is no consensus on juvenile angiofibroma’s place in that system. The general characteristics of selected markers of angiogenesis and tissue remodeling are presented in the series in the context of current knowledge in the field of pathophysiology of vascular lesions. The mentioned markers are currently the subjects of multidirectional studies in oncology, as they take part in the process of neoangiogenesis and proliferation of tumors. Nevertheless, they have not been widely examined in vascular lesions. The indirect goal of that series is to indicate the possible research direction on vascular lesions to determine their molecular profile, to create a more specific system of classification, and above all to develop new diagnostic and treatment methods.
References
- 1. Adams D.M., Lucky A.W.: Cervicofacial vascular anomalies. I. Hemangiomasand other benign vascular tumors. Semin. Pediatr. Surg.,2006; 15: 124-132
Google Scholar - 2. Adekola K., Rosen S.T., Shanmugam M.: Glucose transporters incancer metabolism. Curr. Opin. Oncol., 2012; 24: 650-654
Google Scholar - 3. Athanasiou M., Mavrothalassitis G., Sun-Hoffman L., Blair D.G.: FLI- 1 is a suppressor of erythroid differentiation in human hematopoieticcells. Leukemia, 2000; 14: 439-445
Google Scholar - 4. Augustin R.: The protein family of glucose transport facilitators: It’snot only about glucose after all. IUBMB Life, 2010; 62: 315-333
Google Scholar - 5. Barbara N.P., Wrana J.L., Letarte M.: Endoglin is an accessory proteinthat interacts with the signaling receptor complex of multiplemembers of the transforming growth factor-β superfamily. J. Biol.Chem., 1999; 274: 584-594
Google Scholar - 6. Basset P., Bellocq J.P., Lefebvre O., Noël A., Chenard M.P., Wolf C.,Anglard P., Rio M.C.: Stromelysin-3: a paradigm for stroma-derivedfactors implicated in carcinoma progression. Crit. Rev. Oncol. Hematol.,1997; 26: 43-53
Google Scholar - 7. Basset P., Wolf C., Chambon P.: Expression of the stromelysin-3 genein fibroblastic cells of invasive carcinomas of the breast and otherhuman tissues: a review. Breast Cancer Res. Treat., 1993; 24: 185-193
Google Scholar - 8. Beham A., Beham-Schmid C., Regauer S., Auböck L., StammbergerH.: Nasopharyngeal angiofibroma: true neoplasm or vascular malformation?Adv. Anat. Pathol., 2000; 7: 36-46
Google Scholar - 9. Beham A., Regauer S., Beham-Schmid C., Kainz J., Stammberger H.:Expression of CD34-antigen in nasopharyngeal angiofibromas. Int. J.Pediatr. Otorhinolaryngol., 1998; 44: 245-250
Google Scholar - 10. Ben-David Y., Giddens E.B., Letwin K., Bernstein A.: Erythroleukemiainduction by Friend murine leukemia virus: insertional activationof a new member of the ets gene family, Fli-1, closely linked to c-ets-1.Genes Dev., 1991; 5: 908-918
Google Scholar - 11. Białas M., Papla B., Bulanda A.: Immunohistochemical investigationof selected endothelial markers in pulmonary epithelioid haemangioendothelioma.Pol. J. Pathol., 2011; 62: 236-240
Google Scholar - 12. Bobik A.: Transforming growth factor-βs and vascular disorders.Arterioscler. Thromb. Vasc. Biol., 2006; 26: 1712-1720
Google Scholar - 13. Boulay A., Masson R., Chenard M.P., El Fahime M., Cassard L.,Bellocq J.P., Sautes-Fridman C., Basset P., Rio M.C.: High cancercell death in syngeneic tumors developed in host mice deficientfor the stromelysin-3 matrix metalloproteinase. Cancer Res., 2001;61: 2189-2193
Google Scholar - 14. Bradshaw A.D., Francki A., Motamed K., Howe C., Sage E.H.: Primarymesenchymal cells isolated from SPARC-null mice exhibit altered morphologyand rates of proliferation. Mol. Biol. Cell, 1999; 10: 1569-1579
Google Scholar - 15. Brown J.G., Folpe A.L., Rao P., Lazar A.J., Paner G.P., Gupta R., ParakhR., Cheville J.C., Amin M.B.: Primary vascular tumors and tumor-likelesions of the kidney: a clinicopathologic analysis of 25 cases. Am. J.Surg. Pathol., 2010; 34: 942-949
Google Scholar - 16. Brown T.J., Shaw P.A., Karp X., Huynh M.H., Begley H., RinguetteM.J.: Activation of SPARC expression in reactive stroma associatedwith human epithelial ovarian cancer. Gynecol. Oncol., 1999; 75: 25-33
Google Scholar - 17. Buckmiller L.M., Richter G.T., Suen J.Y.: Diagnosis and managementof hemangiomas and vascular malformations of the head and neck.Oral Dis., 2010; 16: 405-418
Google Scholar - 18. Campana D., Capurso G., Partelli S., Nori F., Panzuto F., TamburrinoD., Cacciari G., Delle Fave G., Falconi M., Tomassetti P.: Radiolabelledsomatostatin analogue treatment in gastroenteropancreaticneuroendocrine tumours: factors associated with response and suggestionsfor therapeutic sequence. Eur. J. Nucl. Med. Mol. Imaging,2013; 40: 1197-1205
Google Scholar - 19. Chien C.Y., Su C.Y., Hwang C.F., Chuang H.C., Chen C.M., HuangC.C.: High expressions of CD105 and VEGF in early oral cancer predictpotential cervical metastasis. J. Surg. Oncol., 2006; 94: 413-417
Google Scholar - 20. Chlenski A., Liu S., Baker L.J., Yang Q., Tian Y., Salwen H.R., CohnS.L.: Neuroblastoma angiogenesis is inhibited with a folded syntheticmolecule corresponding to the epidermal growth factor-like moduleof the follistatin domain of SPARC. Cancer Res., 2004; 64: 7420-7425
Google Scholar - 21. Costello B., Li C., Duff S., Butterworth D., Khan A., Perkins M.,Owens S., Al-Mowallad A.F., O’Dwyer S., Kumar S.: Perfusion of 99Tcm–labeled CD105 Mab into kidneys from patients with renal carcinomasuggests that CD105 is a promising vascular target. Int. J. Cancer, 2004;109: 436-441
Google Scholar - 22. Dallas N.A., Samuel S., Xia L., Fan F., Gray M.J., Lim S.J., Ellis L.M.:Endoglin (CD105): a marker of tumor vasculature and potential targetfor therapy. Clin. Cancer Res., 2008; 14: 1931-1937
Google Scholar - 23. Dasgupta P.: Somatostatin analogues: multiple roles in cellularproliferation, neoplasia, and angiogenesis. Pharmacol. Ther., 2004;102: 61-85
Google Scholar - 24. Delebecq T.J., Porte H., Zerimech F., Copin M.C., Gouyer V., DacquembronneE., Balduyck M., Wurtz A., Huet G.: Overexpression level ofstromelysin 3 is related to the lymph node involvement in non-smallcell lung cancer. Clin. Cancer Res., 2000; 6: 1086-1092
Google Scholar - 25. Demirci E., Ocak M., Kabasakal L., Araman A., Ozsoy Y., Kanmaz B.:Comparison of Ga-68 DOTA-TATE and Ga-68 DOTA-LAN PET/CT imagingin the same patient group with neuroendocrine tumours: preliminaryresults. Nucl. Med. Commun., 2013; 34: 727-732
Google Scholar - 26. Ding S., Li C., Lin S., Yang Y., Liu D., Han Y., Zhang Y., Li L., Zhou L.,Kumar S.: Comparative evaluation of microvessel density determinedby CD34 or CD105 in benign and malignant gastric lesions. Hum. Pathol.,2006; 37: 861-866
Google Scholar - 27. Duerr S., Wendler O., Aigner T., Karosi S., Schick B.: Metalloproteinasesin juvenile angiofibroma – a collagen rich tumor. Hum. Pathol.,2008; 39: 259-268 28 Eckert A.W., Lautner M.H., Schutze A., Taubert H., Schubert J., BilkenrothU.: Coexpression of hypoxia-inducible factor-1α and glucosetransporter-1 is associated with poor prognosis in oral squamous cellcarcinoma patients. Histopathology, 2011; 58: 1136-1147
Google Scholar - 28. patients. Childs Nerv. Syst., 2006; 22: 685-691
Google Scholar - 29. Enjolras O.: Classification and management of the various superficialvascular anomalies: hemangiomas and vascular malformations.J. Dermatol., 1997; 24: 701-710
Google Scholar - 30. Folpe A.L., Chand E.M., Goldblum J.R., Weiss S.W.: Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms frompotential mimics. Am. J. Surg. Pathol., 2001; 25: 1061-1066
Google Scholar - 31. Folpe A.L., Hill C.E., Parham D.M., O’Shea P.A., Weiss S.W.: Immunohistochemicaldetection of FLI-1 protein expression: a study of 132round cell tumors with emphasis on CD99-positive mimics of Ewing’ssarcoma/primitive neuroectodermal tumor. Am. J. Surg. Pathol.,2000; 24: 1657-1662
Google Scholar - 32. Fonsatti E., Jekunen A.P., Kairemo K.J., Coral S., Snellman M., NicotraM.R., Natali P.G., Altomonte M., Maio M.: Endoglin is a suitabletarget for efficient imaging of solid tumors: in vivo evidence in a caninemammary carcinoma model. Clin. Cancer Res., 2000; 6: 2037-2043
Google Scholar - 33. Funk S.E., Sage E.H.: Differential effects of SPARC and cationicSPARC peptides on DNA synthesis by endothelial cells and fibroblasts.J. Cell. Physiol., 1993; 154: 53-63
Google Scholar - 34. Gallot D., Marceau G., Laurichesse-Delmas H., Vanlieferinghen P.,Dechelotte P.J., Lemery D., Sapin V.: The changes in angiogenic gene expression in recurrent multiple chorioangiomas. Fetal Diagn. Ther.,2007; 22: 161-168
Google Scholar - 35. Gilles C., Bassuk J.A., Pulyaeva H., Sage E.H., Foidart J.M., ThompsonE.W.: SPARC/osteonectin induces matrix metalloproteinase 2 activationin human breast cancer cell lines. Cancer Res., 1998; 58: 5529-5536
Google Scholar - 36. Grabellus F., Nagarajah J., Bockisch A., Schmid K.W., Sheu S.Y.: Glucosetransporter 1 expression, tumor proliferation, and iodine/glucoseuptake in thyroid cancer with emphasis on poorly differentiated thyroidcarcinoma. Clin. Nucl. Med., 2012; 37: 121-127
Google Scholar - 37. Greene A.K., Kim S., Rogers G.F., Fishman S.J., Olsen B.R., MullikenJ.B.: Risk of vascular anomalies with Down syndrome. Pediatrics,2008; 121: e135-e140
Google Scholar - 38. Hajdu I., Szentirmai E., Obal F.Jr., Krueger J.M.: Different brainstructures mediate drinking and sleep suppression elicited by the somatostatinanalog, octreotide, in rats. Brain Res., 2003; 994: 115-123
Google Scholar - 39. Hofland L.J., Lamberts S.W.: The pathophysiological consequencesof somatostatin receptor internalization and resistance. Endocr.Rev., 2003; 24: 28-47
Google Scholar - 40. Howard J.C., Berger L., Bani M.R., Hawley R.G., Ben-David Y.: Activationof the erythropoietin gene in the majority of F-MuLV-inducederythroleukemias results in growth factor independence and enhancedtumorigenicity. Oncogene, 1996; 12: 1405-1415
Google Scholar - 41. Hoyer D., Bell G.I., Berelowitz M., Epelbaum J., Feniuk W., HumphreyP.P., O’Carroll A.M., Patel Y.C., Schonbrunn A., Taylor J.E., ReisineT.: Classification and nomenclature of somatostatin receptors. TrendsPharmacol. Sci., 1995; 16: 86-88
Google Scholar - 42. Iacobuzio-Donahue C.A., Argani P., Hempen P.M., Jones J., KernS.E.: The desmoplastic response to infiltrating breast carcinoma: geneexpression at the site of primary invasion and implications for comparisonsbetween tumor types. Cancer Res., 2002; 62: 5351-5357
Google Scholar - 43. Ikuta Y., Nakatsura T., Kageshita T., Fukushima S., Ito S., WakamatsuK., Baba H., Nishimura Y.: Highly sensitive detection of melanomaat an early stage based on the increased serum secreted protein acidicand rich in cysteine and glypican-3 levels. Clin. Cancer Res., 2005;11: 8079-8088
Google Scholar - 44. Itinteang T., Vishvanath A., Day D.J., Tan S.T.: Mesenchymal stemcells in infantile haemangioma. J. Clin. Pathol., 2011; 64: 232-236
Google Scholar - 45. Koblinski J.E., Kaplan-Singer B.R., VanOsdol S.J., Wu M., EngbringJ.A., Wang S., Goldsmith C.M., Piper J.T., Vostal J.G., Harms J.F., WelchD.R., Kleinman H.K.: Endogenous osteonectin/SPARC/BM-40 expressioninhibits MDA-MB-231 breast cancer cell metastasis. Cancer Res.,2005; 65: 7370-7377
Google Scholar - 46. Kryvenko O.N., Epstein J.I.: Testicular hemangioma: a series of 8cases. Am. J. Surg. Pathol., 2013; 37: 860-866
Google Scholar - 47. Kukwa W., Andrysiak R., Kukwa A., Hubalewska-Dydejczyk A., GronkiewiczZ., Wojtowicz P., Krolicki L., Wierzchowski W., Grochowski T.,Czarnecka A.M.: 99mTC-octreotide scintigraphy and somatostatin receptorsubtype expression in juvenile nasopharyngeal angiofibromas.Head Neck, 2011; 33: 1739-1746
Google Scholar - 48. Lastres P., Letamendia A., Zhang H., Rius C., Almendro N., Raab U.,López L.A., Langa C., Fabra A., Letarte M., Bernabéu C.: Endoglin modulatescellular responses to TGF-β1. J. Cell. Biol., 1996; 133: 1109-1121
Google Scholar - 49. Lebrin F., Deckers M., Bertolino P., Ten Dijke P.: TGF-β receptorfunction in the endothelium. Cardiovasc. Res., 2005; 65: 599-608
Google Scholar - 50. Ledda M.F., Adris S., Bravo A.I., Kairiyama C., Bover L., ChernajovskyY., Mordoh J., Podhajcer O.L.: Suppression of SPARC expressionby antisense RNA abrogates the tumorigenicity of human melanomacells. Nat. Med., 1997; 3: 171-176
Google Scholar - 51. Liang J., Yi Z., Lianq P.: The nature of juvenile nasopharyngeal angiofibroma.Otolaryngol. Head Neck Surg., 2000; 123: 475-481
Google Scholar - 52. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja.Postępy Hig. Med. Dośw., 2008; 62: 328-336
Google Scholar - 53. Lund V.J., Stammberger H., Nicolai P., Castelnuovo P., Beal T., BehamA., Bernal-Sprekelsen M., Braun H., Cappabianca P., Carrau R., CavalloL., Clarici G., Draf W., Esposito F., Fernandez-Miranda J. i wsp.: Europeanposition paper on endoscopic management of tumours of the nose, paranasalsinuses and skull base. Rhinol. Suppl., 2010; 48 (Suppl. 22): 1-143
Google Scholar - 54. Macheda M.L., Rogers S., Best J.D.: Molecular and cellular regulationof glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol.,2005; 202: 654-662
Google Scholar - 55. Mager A.M., Grapin-Botton A., Ladjali K., Meyer D., Wolff C.M., StieglerP., Bonnin M.A., Remy P.: The avian fli gene is specifically expressedduring embryogenesis in a subset of neural crest cells giving riseto mesenchyme. Int. J. Dev. Biol., 1998; 42: 561-572
Google Scholar - 56. Mai H.M., Zheng J.W., Wang Y.A., Yang X.J., Zhou Q., Qin Z.P., LiK.L.: CD133 selected stem cells from proliferating infantile hemangiomaand establishment of an in vivo mice model of hemangioma. Chin.Med. J., 2013; 126: 88-94
Google Scholar - 57. McClung H.M., Thomas S.L., Osenkowski P., Toth M., Menon P.,Raz A., Fridman R., Rempel S.A.: SPARC upregulates MT1-MMP expression,MMP-2 activation, and the secretion and cleavage of galectin-3 inU87MG glioma cells. Neurosci. Lett., 2007; 419: 172-177
Google Scholar - 58. Medina R.A., Owen G.I.: Glucose transporters: expression, regulationand cancer. Biol. Res., 2002; 35: 9-26
Google Scholar - 59. Mercado-Pimentel M.E., Hubbard A.D., Runyan R.B.: Endoglin andAlk5 regulate epithelial-mesenchymal transformation during cardiacvalve formation. Dev. Biol., 2007; 304: 420-432
Google Scholar - 60. Muller D., Wolf C., Abecassis J., Millon R., Engelmann A., BronnerG., Rouyer N., Rio M.C., Eber M., Methlin G., Chambon P., Basset P.: Increasedstromelysin 3 gene expression is associated with increasedlocal invasiveness in head and neck squamous cell carcinomas. CancerRes., 1993; 53: 165-169
Google Scholar - 61. Mulliken J.B., Glowacki J.: Classification of pediatric vascular lesions.Plast. Reconstr. Surg., 1982; 70: 120-121
Google Scholar - 62. Müssig K., Oksüz M.O., Pfannenberg C., Adam P., Zustin J., BeckertS., Petersenn S.: Somatostatin receptor expression in an epitheloidhemangioma causing oncogenic osteomalacia. J. Clin. Endocrinol. Metab.,2009; 94: 4123-4124
Google Scholar - 63. Ngan B.Y., Forte V., Campisi P.: Molecular angiogenic signalingin angiofibromas after embolization: implications for therapy. Arch.Otolaryngol. Head Neck Surg., 2008; 134: 1170-1176
Google Scholar - 64. Nguyen Q.D., De Wever O., Bruyneel E., Hendrix A., Xie W.Z., LombetA., Leibl M., Mareel M., Gieseler F., Bracke M., Gespach C.: Commutatorsof PAR-1 signaling in cancer cell invasion reveal an essential roleof the Rho-Rho kinase axis and tumor microenvironment. Oncogene,2005; 24: 8240-8251
Google Scholar - 65. Nicolai P., Schreiber A., Bolzoni Villaret A.: Juvenile angiofibroma:evolution of management. Int. J. Pediatr., 2012; 2012: 412545
Google Scholar - 66. Nonogaki S., Campos H.G., Butugan O., Soares F.A., Mangone F.R.,Torloni H., Brentani M.M.: Markers of vascular differentiation, proliferationand tissue remodeling in juvenile nasopharyngeal angiofibromas.Exp. Ther. Med., 2010; 1: 921-926
Google Scholar - 67. Nozaki M., Sakurai E., Raisler B.J., Baffi J.Z., Witta J., Ogura Y., BrekkenR.A., Sage E.H., Ambati B.K., Ambati J.: Loss of SPARC-mediatedVEGFR-1 suppression after injury reveals a novel antiangiogenic activityof VEGF-A. J. Clin. Invest., 2006; 116: 422-429
Google Scholar - 68. Paran D., Elkayam O., Mayo A., Paran H., Amit M., Yaron M., Caspi D.:A pilot study of a long acting somatostatin analogue for the treatmentof refractory rheumatoid arthritis. Ann. Rheum. Dis., 2001; 60: 888-891
Google Scholar - 69. Parker B.S., Argani P., Cook B.P., Liangfeng H., Chartrand S.D., ZhangM., Saha S., Bardelli A., Jiang Y., St. Martin T.B., Nacht M., Teicher B.A.,Klinger K.W., Sukumar S., Madden S.L.: Alterations in vascular geneexpression in invasive breast carcinoma. Cancer Res., 2004; 64: 7857-7866
Google Scholar - 70. Pavlov K.A., Dubova E.A., Shchyogolev A.I., Mishnyov O.D.: Expressionof growth factors in endotheliocytes in vascular malformations.Bull. Exp. Biol. Med., 2009; 147: 366-370
Google Scholar - 71. Pawlikowski M., Ed. Somatostatin Analogs in Diagnostics and Therapy.Physiology of Somatostatin. Austin, Texas, USA, Landes Bioscience,2007
Google Scholar - 72. Pereira R., Quang C.T., Lesault I., Dolznig H., Beug H., GhysdaelJ.: FLI-1 inhibits differentiation and induces proliferation of primaryerythroblasts. Oncogene, 1999; 18: 1597-1608
Google Scholar - 73. Podhajcer O.L., Benedetti L.G., Girotti M.R., Prada F., Salvatierra E.,Llera A.S.: The role of the matricellular protein SPARC in the dynamicinteraction between the tumor and the host. Cancer Metastasis Rev.,2008; 27: 691-705
Google Scholar - 74. Porter P.L., Sage E.H., Lane T.F., Funk S.E., Gown A.M.: Distributionof SPARC in normal and neoplastic human tissue. J. Histochem. Cytochem.,1995; 43: 791-800
Google Scholar - 75. Prada F., Benedetti L.G., Bravo A.I., Alvarez M.J., Carbone C., PodhajcerO.L.: SPARC endogenous level, rather than fibroblast-producedSPARC or stroma reorganization induced by SPARC, is responsiblefor melanoma cell growth. J. Invest. Dermatol., 2007; 127: 2618-2628
Google Scholar - 76. Renkonen S., Heikkilä P., Haglund C., Mäkitie A.A., Hagström J.:Tenascin-C, GLUT-1, and syndecan-2 expression in juvenile nasopharyngealangiofibroma: correlations to vessel density and tumor stage.Head Neck, 2013; 35: 1036-1042
Google Scholar - 77. Reubi J.C., Schaer J.C., Waser B., Mengod G.: Expression and localizationof somatostatin receptor SSTR1, SSTR2, and SSTR3 messengerRNAs in primary human tumors using in situ hybridization. CancerRes., 1994; 54: 3455-3459
Google Scholar - 78. Rio M.C.: From a unique cell to metastasis is a long way to go: cluesto stromelysin-3 participation. Biochimie, 2005; 87: 299-306
Google Scholar - 79. Rosenblatt S., Bassuk J.A., Alpers C.E., Sage E.H., Timpl R., PreissnerK.T.: Differential modulation of cell adhesion by interaction betweenadhesive and counter-adhesive proteins: characterization ofthe binding of vitronectin to osteonectin (BM40, SPARC). Biochem.J., 1997; 324: 311-319
Google Scholar - 80. Rumpler G., Becker B., Hafner C., McClelland M., Stolz W., LandthalerM., Schmitt R., Bosserhoff A., Vogt T.: Identification of differentiallyexpressed genes in models of melanoma progression by cDNA arrayanalysis: SPARC, MIF and a novel cathepsin protease characterize aggressivephenotypes. Exp. Dermatol., 2003; 12: 761-771
Google Scholar - 81. Sage E.H.: Regulation of interactions between cells and extracellularmatrix: a command performance on several stages. J. Clin. Invest.,2001; 107: 781-783
Google Scholar - 82. Said N., Socha M.J., Olearczyk J.J., Elmarakby A.A., Imig J.D., MotamedK.: Normalization of the ovarian cancer microenvironmentby SPARC. Mol. Cancer Res., 2007; 5: 1015-1030
Google Scholar - 83. Shi Q., Bao S., Maxwell J.A., Reese E.D., Friedman H.S., Bigner D.D.,Wang X.F., Rich J.N.: Secreted protein acidic, rich in cysteine (SPARC),mediates cellular survival of gliomas through AKT activation. J. Biol.Chem., 2004; 279: 52200-52209
Google Scholar - 84. Sosa M.S., Girotti M.R., Salvatierra E., Prada F., de Olmo J.A., GallangoS.J., Albar J.P., Podhajcer O.L., Llera A.S.: Proteomic analysis identifiedN-cadherin, clusterin, and HSP27 as mediators of SPARC (secretedprotein, acidic and rich in cysteines) activity in melanoma cells. Proteomics,2007; 7: 4123-4134
Google Scholar - 85. Sure U., Freman S., Bozinov O., Benes L., Siegel A.M., BertalanffyH.: Biological activity of adult cavernous malformations: a study of 56patients. J. Neurosurg., 2005; 102: 342-347
Google Scholar - 86. Thewes M., Worret W.I., Engst R., Ring J.: Stromelysin-3 (ST-3):immunohistochemical characterization of the matrix metalloproteinase(MMP)-11 in benign and malignant skin tumours and other skindisorders. Clin. Exp. Dermatol., 1999; 24: 122-126
Google Scholar - 87. Tirakotai W., Fremann S., Soerensen N., Roggendorf W., SiegelA.M., Mennel H.D., Zhu Y., Bertalanffy H., Sure U.: Biological activityof paediatric cerebral cavernomas: an immunohistochemical study of
Google Scholar - 88. Tsujie M., Uneda S., Tsai H., Seon B.K.: Effective anti-angiogenictherapy of established tumors in mice by naked anti-human endoglin(CD105) antibody: differences in growth rate and therapeutic responsebetween tumors growing at different sites. Int. J. Oncol., 2006; 29:1087-1094
Google Scholar - 89. Vikkula M., Boon L.M., Mulliken J.B.: Molecular genetics of vascularmalformations. Matrix Biol., 2001; 20: 327-335
Google Scholar - 90. Wang Y., Qi F., Gu J.: Endothelial cell culture of intramuscular venousmalformation and its invasive behavior related to matrix metalloproteinase-9.Plast. Reconstr. Surg., 2009; 123: 1419-1430
Google Scholar - 91. Watkins G., Douglas-Jones A., Bryce R., Mansel R.E., Jiang W.G.: Increasedlevels of SPARC (osteonectin) in human breast cancer tissuesand its association with clinical outcomes. Prostaglandins Leukot. Essent.Fatty Acids, 2005; 72: 267-272
Google Scholar - 92. Watson D.K., Smyth F.E., Thompson D.M., Cheng J.Q., Testa J.R., PapasT.S., Seth A.: The ERGB/Fli-1 gene: isolation and characterizationof a new member of the family of human ETS transcription factors.Cell Growth Differ., 1992; 3: 705-713
Google Scholar - 93. Wendler O., Schäfer R., Schick B.: Mast cells and T-lymphocytes injuvenile angiofibromas. Eur. Arch. Otorhinolaryngol., 2007; 264: 769-775
Google Scholar - 94. Winter P.F., Lapke J., Winek R.: Subcutaneous cavernous hemangiomavisualized on an indium-111-octreotide scan. J. Nucl. Med., 1996;37: 1516-1517
Google Scholar - 95. Wolf C., Chenard M.P., Durand de Grossouvre P., Bellocq J.P., ChambonP., Basset P.: Breast-cancer-associated stromelysin-3 gene is expressedin basal cell carcinoma and during cutaneous wound healing. J.Invest. Dermatol., 1992; 99: 870-872
Google Scholar - 96. Yamashita K., Tanaka Y., Mimori K., Inoue H., Mori M.: Differentialexpression of MMP and uPA systems and prognostic relevance oftheir expression in esophageal squamous cell carcinoma. Int. J. Cancer,2004; 110: 201-207
Google Scholar - 97. Yang E., Kang H.J., Koh K.H., Rhee H., Kim N.K., Kim H.: Frequentinactivation of SPARC by promoter hypermethylation in colon cancers.Int. J. Cancer, 2007; 121: 567-575
Google Scholar - 98. Yi H., Fujimura Y., Ouchida M., Prasad D.D., Rao V.N., Reddy E.S.:Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteinsinvolved in human solid tumors and leukemias. Oncogene, 1997; 14:1259-1268
Google Scholar - 99. Yu Y., Fuhr J., Boye E., Gyorffy S., Soker S., Atala A., Mulliken J.B.,Bischoff J.: Mesenchymal stem cells and adipogenesis in hemangiomainvolution. Stem Cells, 2006; 24: 1605-1612
Google Scholar - 100. Zhang L., Eddy A., Teng Y.T., Fritzler M., Kluppel M., Melet F.,Bernstein A.: An immunological renal disease in transgenic mice thatoverexpress Fli-1, a member of the ets family of transcription factorgenes. Mol. Cell. Biol., 1995; 15: 6961-6970
Google Scholar - 101. Zhang M., Sun X., Yu H., Hu L., Wang D.: Biological distinctionsbetween juvenile nasopharyngeal angiofibroma and vascular malformation:an immunohistochemical study. Acta Histochem., 2011;113: 626-630
Google Scholar - 102. Zhang W., Liu Y., Chen X., Bergmeier S.C.: Novel inhibitors of basalglucose transport as potential anticancer agents. Bioorg. Med. Chem.Lett., 2010; 20: 2191-2194
Google Scholar - 103. Zou Y., Xiao X., Li Y., Zhou T.: Somatostatin analogues inhibit cancercell proliferation in an SSTR2-dependent manner via both cytostaticand cytotoxic pathways. Oncol. Rep., 2009; 21: 379-386
Google Scholar