Physical activity in the prevention and treatment of diseases of affluence – the key role of AMP-activated protein kinase (AMPK)
Ewa Grochowska 1 , Robert Jarzyna 1Abstract
In developed countries, we can observe an increasing number of people with obesity, type 2 diabetes, dyslipidemia, hypertension and arteriosclerosis. The main reason for this phenomenon is the abnormal energy balance due to sedentary lifestyles. Cardiovascular diseases are the leading cause of death in many countries around the world, nowadays. In this paper, the impact of physical activity on the effectiveness of treatment and prevention of metabolic diseases and cancer is considered. Exercise is one of the factors activating 5’AMP-activated protein kinase (AMPK). This enzyme is crucial in maintaining the energy balance of the cell and the entire organism, and its activation results in excluding the anabolic and switching on the catabolic processes. It is believed that the activation of AMPK is responsible for most of the positive effects resulting from physical exercise. Although there are pharmacological methods of activation of this enzyme, they seem to be not as effective as physical exercise. Therefore, physical activity should be the most important form of prevention and treatment of metabolic diseases.
References
- 1. Amati F., Dubé J.J., Coen P.M., Stefanovic-Racic M., Toledo F.G.,Goodpaster B.H.: Physical inactivity and obesity underlie the insulinresistance of aging. Diabetes Care, 2009; 32: 1547-1549
Google Scholar - 2. Ashrafian H.: Cancer’s sweet tooth: the Janus effect of glucosemetabolism in tumorigenesis. Lancet, 2006; 367: 618-621
Google Scholar - 3. Assifi M.M., Suchankova G., Constant S., Prentki M., Saha A.K.,Ruderman N.B.: AMP-activated protein kinase and coordination ofhepatic fatty acid metabolism of starved/carbohydrate-refed rats.Am. J. Physiol. Endocrinol. Metab., 2005; 289: E794-E800
Google Scholar - 4. Augustin R.: The protein family of glucose transport facilitators:it’s not only about glucose after all. IUBMB Life, 2010; 62:315-333
Google Scholar - 5. Balducci S., Zanuso S., Nicolucci A., Fernando F., Cavallo S., CardelliP., Fallucca S., Alessi E., Letizia C., Jimenez A., Fallucca F., PuglieseG.: Anti-inflammatory effect of exercise training in subjects withtype 2 diabetes and the metabolic syndrome is dependent on exercisemodalities and independent of weight loss. Nutr. Metab. Cardiovasc.Dis., 2010; 20: 608-617
Google Scholar - 6. Bergeron R., Previs S.F., Cline G.W., Perret P., Russell R.R 3rd., YoungL.H., Shulman G.I.: Effect of 5- aminoimidazole-4-carboxamide-1-β-D-ribofuranoside infusion on in vivo glucose and lipid metabolismin lean and obese Zucker rats. Diabetes, 2001; 50: 1076-1082
Google Scholar - 7. Booth F.W., Laye M.J., Roberts M.D.: Lifetime sedentary living acceleratessome aspects of secondary aging. J. Appl. Physiol., 2011;111: 1497-1504
Google Scholar - 8. Booth F.W., Lees S.J.: Fundamental questions about genes, inactivity,and chronic diseases. Physiol. Genomics, 2007; 28: 146-157
Google Scholar - 9. Brownlee M.: Biochemistry and molecular cell biology of diabeticcomplications. Nature, 2001; 414: 813-820
Google Scholar - 10. Brownlee M.: The pathobiology of diabetic complications: a unifyingmechanism. Diabetes, 2005; 54: 1615-1625
Google Scholar - 11. Bruce C.R., Anderson M.J., Carey A.L., Newman D.G., Bonen A.,Kriketos A.D., Cooney G.J., Hawley J.A.: Muscle oxidative capacityis a better predictor of insulin sensitivity than lipid status. J. Clin.Endocrinol. Metab., 2003; 88: 5444-5451
Google Scholar - 12. Bruce C.R., Brolin C., Turner N., Cleasby M.E., van der Leij F.R.,Cooney G.J., Kraegen E.W.: Overexpression of carnitine palmitoyltransferaseI in skeletal muscle in vivo increases fatty acid oxidationand reduces triacylglycerol esterification. Am. J. Physiol. Endocrinol.Metab., 2007; 292: E1231-E1237
Google Scholar - 13. Burkitt D.P.: Some diseases characteristic of modern Westerncivilization. Br. Med. J., 1973; 1: 274-278
Google Scholar - 14. Buse J.B., Ginsberg H.N., Bakris G.L., Clark N.G., Costa F., EckelR., Fonseca V., Gerstein H.C., Grundy S., Nesto R.W., Pignone M.P.,Plutzky J., Porte D., Redberg R., Stitzel K.F., Stone N.J.: Primaryprevention of cardiovascular diseases in people with diabetesmellitus: a scientific statement from the American Heart Associationand the American Diabetes Association. Diabetes Care,2007; 30: 162-172
Google Scholar - 15. Calle M.C., Fernandez M.L.: Effects of resistance training on theinflammatory response. Nutr. Res. Pract., 2010; 4: 259-269
Google Scholar - 16. Colberg S.R., Sigal R.J., Fernhall B., Regensteiner J.G., BlissmerB.J., Rubin R.R., Chasan-Taber L., Albright A.L., Braun B.: Exercise andtype 2 diabetes: the American College of Sports Medicine and theAmerican Diabetes Association: joint position statement. DiabetesCare, 2010; 33: e147-e167
Google Scholar - 17. Cornier M.A., Dabelea D., Hernandez T.L., Lindstrom R.C., SteigA.J., Stob N.R., Van Pelt R.E., Wang H., Eckel R.H.: The metabolic syndrome.Endocr. Rev., 2008; 29: 777-822
Google Scholar - 18. Dai C., Gu W.: p53 post-translational modification: deregulatedin tumorigenesis. Trends Mol. Med., 2010; 16: 528-36
Google Scholar - 19. Drenth J.P., Van Uum S.H., Van Deuren M., Pesman G.J., Van derVen-Jongekrijg J., Van der Meer J.W.: Endurance run increases circulatingIL-6 and IL-1ra but downregulates ex vivo TNF-α and IL-1β production. J. Appl. Physiol., 1995; 79: 1497-1503
Google Scholar - 20. Eaton S.B., Konner M.J., Cordain L.: Diet-dependent acid load,Paleolithic nutrition, and evolutionary health promotion. Am. J.Clin. Nutr., 2010; 91: 295-297
Google Scholar - 21. Eriksson K.F., Lindgärde F.: Prevention of type 2 (non-insulin-dependent)diabetes mellitus by diet and physical exercise. The 6-yearMalmö feasibility study. Diabetologia 1991; 34: 891-898
Google Scholar - 22. Febbraio M.A., Pedersen B.K.: Contraction-induced myokineproduction and release: is skeletal muscle an endocrine organ? Exerc.Sport Sci. Rev., 2005; 33: 114-119
Google Scholar - 23. Fingar D.C., Blenis J.: Target of rapamycin (TOR): an integratorof nutrient and growth factor signals and coordinator of cell growthand cell cycle progression. Oncogene, 2004; 23: 3151-3171
Google Scholar - 24. Foretz M., Ancellin N., Andreelli F., Saintillan Y., Grondin P.,Kahn A., Thorens B., Vaulont S., Viollet B.: Short-term overexpressionof a constitutively active form of AMP-activated protein kinasein the liver leads to mild hypoglycemia and fatty liver. Diabetes,2005; 54: 1331-1339
Google Scholar - 25. Główny Urząd Statystyczny, Podstawowe informacje o sytuacjidemograficznej Polski w 2011 roku. http://www.stat.gov.pl/cps/rde/xbcr/gus/l_podst_inf__o__syt_demograficznej_2011.pdf (10.03.2014)
Google Scholar - 26. Glund S., Deshmukh A., Long Y.C., Moller T., Koistinen H.A.,Caidahl K., Zierath J.R., Krook A.: Interleukin-6 directly increasesglucose metabolism in resting human skeletal muscle. Diabetes,2007; 56: 1630-1637
Google Scholar - 27. Glund S., Treebak J.T., Long Y.C., Barres R., Viollet B., WojtaszewskiJ.F., Zierath J.R.: Role of adenosine 5’-monophosphate-activatedprotein kinase in interleukin-6 release from isolated mouse skeletalmuscle. Endocrinology, 2009; 150: 600-606
Google Scholar - 28. Godin G., Desharnais R., Valois P., Lepage L., Jobin J., Bradet R.:Differences in perceived barriers to exercise between high and lowintenders: observations among different populations. Am. J. HealthPromotion, 1994; 8: 279-284
Google Scholar - 29. Goodpaster B.H., Wolfe R.R., Kelley D.E.: Effects of obesity onsubstrate utilization during exercise. Obes. Res., 2002; 10: 575-584
Google Scholar - 30. Goodyear L.J.: The exercise pill – too good to be true? N. Engl. J.Med., 2008; 359: 1842-1844
Google Scholar - 31. Grundy S.M., Garber A., Goldberg R., Havas S., Holman R., LamendolaC., Howard W.J., Savage P., Sowers J., Vega G.L.: PreventionConference VI: diabetes and cardiovascular disease: writing groupIV: lifestyle and medical management of risk factors. Circulation,2002; 105: e153-e158
Google Scholar - 32. Gwinn D.M., Shackelford D.B., Egan D.F., Mihaylova M.M., MeryA., Vasquez D.S., Turk B.E., Shaw R.J.: AMPK phosphorylation of raptormediates a metabolic checkpoint. Mol. Cell, 2008; 30: 214-226
Google Scholar - 33. Hanahan D., Weinberg R.A.: Hallmarks of cancer: the next generation.Cell, 2011; 144: 646-674
Google Scholar - 34. Hardie D.G.: AMP-activated protein kinase: a master switch inglucose and lipid metabolism. Rev. Endocr. Metab. Disord., 2004;5: 119-125
Google Scholar - 35. Hardie D.G.: AMPK: a key regulator of energy balance in thesingle cell and the whole organism. Int. J. Obes., 2008; 32: S7-S12
Google Scholar - 36. Hardie D.G.: New roles for the LKB1–>AMPK pathway. Curr. Opin.Cell Biol., 2005; 17: 167-173
Google Scholar - 37. Hardie D.G.: The AMP-activated protein kinase pathway- newplayers upstream and downstream. J. Cell Sci., 2004; 117: 5479-5487
Google Scholar - 38. Hardie D.G.: AMP-activated protein kinase: a cellular energy sensorwith a key role in metabolic disorders and in cancer. Biochem.Soc. Trans., 2011; 39: 1-13
Google Scholar - 39. Hawley J.A., Gibala M.J.: What’s new since Hippocrates? Preventingtype 2 diabetes by physical exercise and diet. Diabetologia,2012; 55: 535-539
Google Scholar - 40. Hawley J.A., Holloszy J.O.: Exercise: it’s the real thing! Nutr.Rev., 2009; 67: 172-178
Google Scholar - 41. Hawley J.A., Lessard S.J.: Exercise training-induced improvementsin insulin action. Acta. Physiol., 2008; 192: 127-135
Google Scholar - 42. Hayes M., Chustek M., Heshka S., Wang Z., Pietrobelli A., HeymsfieldS.B.: Low physical activity levels of modern Homo sapiensamong free-ranging mammals. Int. J. Obes., 2005; 29: 151-156
Google Scholar - 43. Hayflick L.: Mortality and immortality at the cellular level, a review.Biochemistry (Mosc), 1997; 62: 1180-1190
Google Scholar - 44. Hopps E., Canino B., Caimi G.: Effects of exercise on inflammationmarkers in type 2 diabetic subjects. Acta Diabetol., 2011; 48: 183-189
Google Scholar - 45. Ingram D.K.: Age-related decline in physical activity: generalizationto nonhumans. Med. Sci. Sports Exerc., 2000; 32: 1623-1629
Google Scholar - 46. Inoki K., Zhu T., Guan K.L.: TSC2 mediates cellular energy responseto control cell growth and survival. Cell, 2003; 115: 577-590
Google Scholar - 47. Iyer A., Fairlie D.P., Prins J.B., Hammock B.D., Brown L.: Inflammatorylipid mediators in adipocyte function and obesity. Nat. Rev.Endocrinol., 2010; 6: 71-82
Google Scholar - 48. Jackson A.S., Sui X., Hébert J.R., Church T.S., Blair S.N.: Role oflifestyle and aging on the longitudinal change in cardiorespiratoryfitness. Arch. Intern. Med., 2009; 169: 1781-1787
Google Scholar - 49. Jones R.G., Plas D.R., Kubek S., Buzzai M., Mu J., Xu Y., BirnbaumM.J., Thompson C.B.: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell, 2005; 18: 283-293
Google Scholar - 50. Kadoglou N.P., Iliadis F., Angelopoulou N., Perrea D., AmpatzidisG., Liapis C.D., Alevizos M.: The anti-inflammatory effects of exercisetraining in patients with type 2 diabetes mellitus. Eur. J. Cardiovasc.Prev. Rehabil., 2007; 14: 837-843
Google Scholar - 51. Kahn B.B., Alquier T., Carling D., Hardie D.G.: AMP-activatedprotein kinase: ancient energy gauge provides clues to modern understandingof metabolism. Cell Metab., 2005; 1: 15-25
Google Scholar - 52. Kajitani N., Shikata K., Nakamura A., Nakatou T., Hiramatsu M.,Makino H.: Microinflammation is a common risk factor for progressionof nephropathy and atherosclerosis in Japanese type 2 diabetesmellitus. Diab. Res. Clin. Pract., 2010; 88: 171-176
Google Scholar - 53. Kasch F.W., Boyer J.L., Schmidt P.K., Wells R.H., Wallace J.P., VerityL.S., Guy H., Schneider D.: Ageing of the cardiovascular systemduring 33 years of aerobic exercise. Age Ageing, 1999; 28: 531-536
Google Scholar - 54. Katzel L.I., Sorkin J.D., Fleg J.L.: A comparison of longitudinalchanges in aerobic fitness in older endurance athletes and sedentarymen. J. Am. Geriatr. Soc., 2001; 49: 1657-1664
Google Scholar - 55. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., LachinJ.M., Walker E.A., Nathan D.M., Diabetes Prevention Program ResearchGroup: Reduction in the incidence of type 2 diabetes with lifestyleintervention or metformin. N. Engl. J. Med., 2002; 346: 393-403
Google Scholar - 56. Kola B., Boscaro M., Rutter G.A., Grossman A.B., Korbonits M.: Expandingrole of AMPK in endocrinology. Trends Endocrinol. Metab.,2006; 17: 205-215
Google Scholar - 57. Lee W.J., Kim M., Park H.S., Kim H.S., Jeon M.J., Oh K.S., KohE.H., Won J.C., Kim M.S., Oh G.T., Yoon M., Lee K.U., Park J.Y.: AMPKactivation increases fatty acid oxidation in skeletal muscle by activatingPPARα and PGC-1. Biochem. Biophys. Res. Commun., 2006;340: 291-295
Google Scholar - 58. Libby G., Donnelly L.A., Donnan P.T., Alessi D.R., Morris A.D., EvansJ.M.: New users of metformin are at low risk of incident cancer:a cohort study among people with type 2 diabetes. Diabetes Care,2009; 32: 1620-1625
Google Scholar - 59. Libby P., Ridker P.M., Hansson G.K.: Progress and challenges intranslating the biology of atherosclerosis. Nature, 2011; 473: 317-325
Google Scholar - 60. Little J.P., Gillen J.B., Percival M.E., Safdar A., Tarnopolsky M.A.,Punthakee Z., Jung M.E., Gibala M.J.: Low-volume high-intensityinterval training reduces hyperglycemia and increases muscle mitochondrialcapacity in patients with type 2 diabetes. J. Appl. Physiol.,2011; 111: 1554-1160
Google Scholar - 61. Motoshima H., Goldstein B.J., Igata M., Araki E.: AMPK and cellproliferation – AMPK as a therapeutic target for atherosclerosis andcancer. J. Physiol., 2006; 574: 63-71
Google Scholar - 62. Musi N., Fujii N., Hirshman M.F., Ekberg I., Froberg S., LjungqvistO., Thorell A., Goodyear L.J.: AMP-activated protein kinase (AMPK) isactivated in muscle of subjects with type 2 diabetes during exercise.Diabetes, 2001; 50: 921-927
Google Scholar - 63. Narkar V.A., Downes M., Yu R.T., Embler E., Wang Y.X., BanayoE., Mihaylova M.M., Nelson M.C., Zou Y., Juguilon H., Kang H., ShawR.J., Evans R.M.: AMPK and PPARδ agonists are exercise mimetics.Cell, 2008; 134: 405-415
Google Scholar - 64. Neumann D., Woods A., Carling D., Wallimann T., SchlattnerU.: Mammalian AMP-activated protein kinase: functional, heterotrimericcomplexes by co-expression of subunits in Escherichia coli.Protein Expr. Purif., 2003; 30: 230-237
Google Scholar - 65. Nieto-Vazquez I., Fernandez-Veledo S., de Alvaro C., Lorenzo M.:Dual role of interleukin-6 in regulating insulin sensitivity in murineskeletal muscle. Diabetes, 2008; 57: 3211-3221
Google Scholar - 66. Oakhill J.S., Scott J.W., Kemp B.E.: AMPK functions as an adenylatecharge-regulated protein kinase. Trends Endocrinol. Metabolism,2012; 23: 125-132
Google Scholar - 67. Oberbach A., Tonjes A., Kloting N., Fasshauer M., Kratzsch J.,Busse M.W., Paschke R., Stumwoll M., Bluher M.: Effect of a 4 weekphysical training program on plasma concentrations of inflammatorymarkers in patients with abnormal glucose tolerance. Eur. J.Endocrinol., 2006; 154: 577-585
Google Scholar - 68. Paceli R.B., Cal R.N., Dos Santos C.H., Cordeiro J.A., Neiva C.M.,Nagamine K.K., Cury P.M.: The influence of physical activity in theprogression of experimental lung cancer in mice. Pathol. Res. Pract.,2012; 208: 377-381
Google Scholar - 69. Pan X.R., Li G.W., Hu Y.H.,Wang J.X., Yang W.Y., An Z.X., HuZ.X., Lin J., Xiao J.Z., Cao H.B.Liu P.A., Jiang X.G., Jiang Y.Y., WangJ.P., Zheng H., Zhang H., Bennett P.H., Howard B.V. : Effects of dietand exercise in preventing NIDDM in people with impaired glucosetolerance. The Da Qing IGT and diabetes study. Diabetes Care,1997; 20: 537-544
Google Scholar - 70. Pearson T.A., Mensah G.A., Alexander R.W., Anderson J.L., CannonR.O. 3rd, Criqui M., Fadl Y.Y., Fortmann S.P., Hong Y., Myers G.L.,Rifai N., Smith S.C. Jr, Taubert K., Tracy R.P., Vinicor F.: AHA/CDCscientific statement. Markers of inflammation and cardiovasculardisease. Application to clinical and public health practice. A statementfor healthcare professionals from the Centers for Disease Controland Prevention and the American Heart Association. Circulation,2003; 107: 499-511
Google Scholar - 71. Pedersen B.K., Febbraio M.A.: Point: interleukin-6 does havea beneficial role in insulin sensitivity and glucose homeostasis. J.Appl. Physiol., 2007; 102: 814-816
Google Scholar - 72. Perrier S., Darakhshan F., Hajduch E.: IL-1 receptor antagonistin metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett., 2006; 580:6289-6294
Google Scholar - 73. Petersen A.M., Pedersen B.K.: The role of IL-6 in mediating theanti-inflammatory effects of exercise. J. Physiol. Pharmacol., 2006;57, Suppl. 10: 43-51
Google Scholar - 74. Prestes J., Shiguemoto G., Botero J.P., Frollini A., Dias R., Leite R.,Pereira G., Magosso R., Baldissera V., Cavaglieri C., Perez S.: Effects ofresistance training on resistin, leptin, cytokines, and muscle force inelderly post-menopausal women. J. Sports Sci., 2009; 27: 1607-1615
Google Scholar - 75. Ribeiro F., Alves A.J., Duarte J.A., Oliveira J.: Is exercise trainingan effective therapy targeting endothelial dysfunction and vascularwall inflammation? Int. J. Cardiol., 2010; 141: 214-221
Google Scholar - 76. Rittweger J., di Prampero P.E., Maffulli N., Narici M.V.: Sprint andendurance power and ageing: an analysis of master athletic worldrecords. Proc. Biol. Sci., 2009; 276: 683-689
Google Scholar - 77. Ruderman N.B., Park H., Kaushik V.K., Dean D., Constant S.,Prentki M., Saha A.K.: AMPK as a metabolic switch in rat muscle,liver and adipose tissue after exercise. Acta Physiol. Scand., 2003;178: 435-442
Google Scholar - 78. Ryan A.S., Hurlbut D.E., Lott M.E., Ivey F.M., Fleg J., Hurley B.F.,Goldberg A.P.: Insulin action after resistive training in insulin resistantolder men and women. J. Am. Geriatr. Soc., 2001; 49: 247-253
Google Scholar - 79. Sakamoto K., Holman G.D.: Emerging role for AS160/TBC1D4and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol.Metab., 2008; 295: E29-E37
Google Scholar - 80. Sallam N., Khazaei M., Laher I.: Effect of moderate-intensity exercise on plasma C-reactive protein and aortic endothelial functionin type 2 diabetic mice. Mediators Inflamm., 2010; 2010: 149678
Google Scholar - 81. Saltiel A.R., Kahn C.R.: Insulin signalling and the regulation ofglucose and lipid metabolism. Nature, 2001; 414: 799-806
Google Scholar - 82. Sanders M.J., Grondin P.O., Hegarty B.D., Snowden M.A., CarlingD.: Investigating the mechanism for AMP activation of the AMP–activated protein kinase cascade. Biochem J., 2007; 403: 139-148
Google Scholar - 83. Santa Mina D., Alibhai S.M., Matthew A.G., Guglietti C.L., SteeleJ., Trachtenberg J., Ritvo P.G.: Exercise in clinical cancer care: a callto action and program development description. Curr. Oncol., 2012;19: e136-e144
Google Scholar - 84. Santos M.J., Fonseca J.E.: Metabolic syndrome, inflammationand atherosclerosis – the role of adipokines in health and in systemicinflammatory rheumatic disease. Acta Reumatol. Port., 2009;34: 590-598
Google Scholar - 85. Schmelzle T., Hall M.N.: TOR, a central controller of cell growth.Cell, 2000; 103: 253-262
Google Scholar - 86. Segal K.R., Edano A., Abalos A., Albu J., Blando L., Tomas M.B.,Pi-Sunyer F.X.: Effect of exercise training on insulin sensitivity andglucose metabolism in lean, obese, and diabetic men. J. Appl. Physiol.,1991; 71: 2402-2411
Google Scholar - 87. Shaw R.J., Lamia K.A., Vasquez D., Koo S.H., Bardeesy N., DepinhoR.A., Montminy M., Cantley L.C.: The kinase LKB1 mediates glucosehomeostasis in liver and therapeutic effects of metformin. Science,2005; 310: 1642-1646
Google Scholar - 88. Shephard R.J., Kavanagh T., Mertens D.J., Qureshi S., Clark M.:Personal health benefits of Masters athletics competition. Br. J.Sports Med., 1995; 29: 35-40
Google Scholar - 89. Sigal R.J., Kenny G.P., Wasserman D.H., Castaneda-Sceppa C.:Physical activity/exercise and type 2 diabetes. Diabetes Care, 2004;27: 2518-2539
Google Scholar - 90. Smith A.C., Bruce C.R., Dyck D.J.: AMP kinase activation withAICAR further increases fatty acid oxidation and blunts triacylglycerolhydrolysis in contracting rat soleus muscle. J. Physiol., 2005;565: 547-553
Google Scholar - 91. Smith J.K.: Exercise and cardiovascular disease. Cardiovasc. Haematol.Disord. Drug Targets, 2010; 10: 269-272
Google Scholar - 92. Sriwijitkamol A., Coletta D.K., Wajcberg E., Balbontin G.B., ReynaS.M., Barrientes J., Eagan P.A., Jenkinson C.P., Cersosimo E., DeFronzoR.A., Sakamoto K., Musi N.: Effect of acute exercise on AMPK signalingin skeletal muscle of subjects with type 2 diabetes: a time-courseand dose-response study. Diabetes, 2007; 56: 836-848
Google Scholar - 93. Steinberg G.R., Kemp B.E.: AMPK in health and disease. Physiol.Rev., 2009; 89: 1025-1078
Google Scholar - 94. Stewart L.K., Flynn M.G., Campbell W.W., Craig B.A., RobinsonJ.P., Timmerman K.L., McFarlin B.K., Coen P.M., Talbert E.: The influenceof exercise training on inflammatory cytokines and C-reactiveprotein. Med. Sci. Sports Exerc., 2007; 39: 1714-1719
Google Scholar - 95. Storlien L., Oakes N.D., Kelley D.E.: Metabolic flexibility. Proc.Nutr. Soc., 2004; 63: 363-368
Google Scholar - 96. Tanaka H., Seals D.R.: Dynamic exercise performance in mastersathletes: insight into the effects of primary human aging onphysiological functional capacity. J. Appl. Physiol. 2003; 95: 2152-2162
Google Scholar - 97. Thomsen S.B., Rathcke C.N., Zerahn B., Vestergaard H.: Increasedlevels of the calcification marker matrix Gla protein and the inflammatorymarkers YKL-40 and CRP in patients with type 2 diabetes andischemic heart disease. Cardiovasc. Diabetol., 2010; 9: 86
Google Scholar - 98. Treebak J.T., Birk J.B., Rose A.J., Kiens B., Richter E.A., WojtaszewskiJ.F.: AS160 phosphorylation is associated with activation ofα2β2γ1- but not α2β2γ3-AMPK trimeric complex in skeletal muscleduring exercise in humans. Am. J. Physiol. Endocrinol. Metab., 2007;292: E715-E722
Google Scholar - 99. Treebak J.T., Taylor E.B., Witczak C.A., An D., Toyoda T., KohH.J., Xie J., Feener E.P., Hirshman M.F., Goodyear L.J.: Identificationof a novel phosphorylation site on TBC1D4 regulated by AMP-activatedprotein kinase in skeletal muscle. Am. J. Physiol. Cell Physiol.,2010; 298: C377-C385
Google Scholar - 100. Tuomilehto J., Lindstrom J., Eriksson J.G., Valle T.T., HamalainenH., IIanne-Parikka P., Keinanen-Kiukaanniemi S., Laakso M., LouherantaA., Rastas M., Salminen V., Uusitupa M: Prevention of type 2 diabetesmellitus by changes in lifestyle among subjects with impairedglucose tolerance. N. Engl. J. Med., 2001; 344: 1343-1350
Google Scholar - 101. Viollet B., Lantier L., Devin-Leclerc J., Hébrard S., Amouyal C.,Mounier R., Foretz M., Andreelli F.: Targeting the AMPK pathway forthe treatment of Type 2 diabetes. Front. Biosci., 2009; 14: 3380-3400
Google Scholar - 102. Warden S.J., Fuchs R.K.: Are “exercise pills” the answer to thegrowing problem of physical inactivity? Br. J. Sports Med., 2008;42: 862-863
Google Scholar - 103. Woods A., Cheung P.C., Smith F.C., Davison M.D., Scott J., BeriR.K., Carling D.: Characterization of AMP-activated protein kinasebeta and gamma subunits. Assembly of heterotrimeric complex invitro. J. Biol. Chem., 1996; 271: 10282-10290
Google Scholar - 104. World Antidoping Agency prohibited list http://www.wadaama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/2014/WADA-Prohibited-List-2014-EN.pdf(10.03.2014)
Google Scholar - 105. World Health Organization, The top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en/index2.html(21.12.2013)
Google Scholar - 106. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., WuM., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., GoodyearL.J., Moller D.E.: Role of AMP-activated protein kinase in mechanismof metformin action. J. Clin. Invest., 2001; 108: 1167-1174
Google Scholar