Relaxin-3 and relaxin family peptide receptors – from structure to functions of a newly discovered mammalian brain system

COMMENTARY ON THE LAW

Relaxin-3 and relaxin family peptide receptors – from structure to functions of a newly discovered mammalian brain system

Alan Kania 1 , Marian H. Lewandowski 1 , Anna Błasiak 1

1. Zakład Neurofizjologii i Chronobiologii, Uniwersytet Jagielloński

Published: 2014-06-24
DOI: 10.5604/17322693.1110163
GICID: 01.3001.0003.1259
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 851-864

 

Abstract

Relaxin-3, a member of the relaxin peptide family, was discovered in 2001 as a homologue of relaxin – a well-known reproductive hormone. However, it is the brain which turned out to be a major expression site of this newly discovered peptide. Both its molecular structure and expression pattern were shown to be very conserved among vertebrates. Extensive research carried out since the discovery of relaxin-3 contributed to the significant progress in our knowledge regarding this neuropeptide. The endogenous relaxin-3 receptor (RXFP3) was identified and the anatomy of the yet uncharacterized mammalian brain system was described, with nucleus incertus as the main center of relaxin-3 expression. Not only its diffusive projections throughout the whole brain, which reach various brain structures such as the hippocampus, septum, intergeniculate leaflet or amygdala, but also functional studies of the relaxin-3/RXFP3 signaling system, allowed this brain network to be classified as one of the ascending nonspecific brain systems. Thus far, research depicts the connection of relaxin-3 with phenomena such as feeding behavior, spatial memory, sleep/wake cycle or modulation of pituitary gland hormone secretion. Responsiveness of relaxin-3 neurons to stress factors and the strong orexigenic effect exerted by this peptide suggest its participation in modulation of feeding by stress, in particular of the chronic type. The discovery of relaxin-3 opened a new research field which will contribute to our better understanding of the neurobiological basis of feeding disorders.

References

  • 1. Banerjee A., Shen P.J., Gundlach A.L.: Relaxin-3 neurons in nucleusincertus of the rat: effect on activity of psychological stress and thelight-dark cycle. FENS Abstr. 3, A117.2., 2006
    Google Scholar
  • 2. Banerjee A., Shen P.J., Ma S., Bathgate R.A., Gundlach A.L.: Swimstress excitation of nucleus incertus and rapid induction of relaxin-3expression via CRF1 activation. Neuropharmacology, 2010; 58: 145-155
    Google Scholar
  • 3. Bathgate R.A., Halls M.L., van der Westhuizen E.T., Callander G.E.,Kocan M., Summers R.J.: Relaxin family peptides and their receptors.Physiol. Rev., 2013; 93: 40-80
    Google Scholar
  • 4. Bathgate R.A., Samuel C.S., Burazin T.C., Layfield S., Claasz A.A.,Reytomas I.G., Dawson N.F., Zhao C., Bond C., Summers R.J., ParryL.J., Wade J.D., Tregear G.W.: Human relaxin gene 3 (H3) and theequivalent mouse relaxin (M3) gene. Novel members of the relaxinpeptide family. J. Biol. Chem., 2002; 277: 1148-1157
    Google Scholar
  • 5. Bathgate R.A., Scott D.J., Chung S.: Searching the human genomedatabase for novel relaxin- and insulin-like peptides. Lett. Pept.Sci., 2001; 129-132
    Google Scholar
  • 6. Bennett R.G., Heimann D.G., Hamel F.G.: Degradation of relaxinfamily peptides by insulin-degrading enzyme. Ann. N. Y. Acad. Sci.,2009; 1160: 38-41
    Google Scholar
  • 7. Blasiak A., Blasiak T., Lewandowski M.H., Hossain M.A., Wade J.D.,Gundlach A.L.: Relaxin-3 innervation of the intergeniculate leafletof the rat thalamus – neuronal tract-tracing and in vitro electrophysiologicalstudies. Eur. J. Neurosci., 2013; 37: 1284-1294
    Google Scholar
  • 8. Boels K., Hermans-Borgmeyer I., Schaller H.C.: Identification ofa mouse orthologue of the G-protein-coupled receptor SALPR andits expression in adult mouse brain and during development. BrainRes. Dev. Brain Res., 2004; 152: 265-268
    Google Scholar
  • 9. Burazin T.C., Bathgate R.A., Macris M., Layfield S., Gundlach A.L.,Tregear G.W.: Restricted, but abundant, expression of the novel ratgene-3 (R3) relaxin in the dorsal tegmental region of brain. J. Neurochem.,2002; 82: 1553-1557
    Google Scholar
  • 10. Chen J., Kuei C., Sutton S.W., Bonaventure P., Nepomuceno D.,Eriste E., Sillard R., Lovenberg T.W., Liu C.: Pharmacological characterizationof relaxin-3/INSL7 receptors GPCR135 and GPCR142from different mammalian species. J. Pharmacol. Exp. Ther., 2005;312: 83-95
    Google Scholar
  • 11. Donizetti A., Fiengo M., Minucci S., Aniello F.: Duplicated zebrafishrelaxin-3 gene shows a different expression pattern from thatof the co-orthologue gene. Dev. Growth Differ., 2009; 51: 715-722
    Google Scholar
  • 12. Donizetti A., Grossi M., Pariante P., D’Aniello E., Izzo G., MinucciS., Aniello F.: Two neuron clusters in the stem of postembryoniczebrafish brain specifically express relaxin-3 gene: first evidence ofnucleus incertus in fish. Dev. Dyn., 2008; 237: 3864-3869
    Google Scholar
  • 13. English J.D., Sweatt J.D.: Activation of p42 mitogen-activatedprotein kinase in hippocampal long term potentiation. J. Biol. Chem.,1996; 271: 24329-24332
    Google Scholar
  • 14. Ganella D.E., Callander G.E., Ma S., Bye C.R., Gundlach A.L., BathgateR.A.: Modulation of feeding by chronic rAAV expression ofa relaxin-3 peptide agonist in rat hypothalamus. Gene Ther., 2013;20: 703-716
    Google Scholar
  • 15. Ghattas M.H., Mehanna E.T., Mesbah N.M., Abo-Elmatty D.M.:Relaxin-3 is associated with metabolic syndrome and its componenttraits in women. Clin. Biochem., 2013; 46: 45-48
    Google Scholar
  • 16. Goto M., Swanson L.W., Canteras N.S.: Connections of the nucleusincertus. J. Comp. Neurol., 2001; 438: 86-122
    Google Scholar
  • 17. Halls M.L., van der Westhuizen E.T., Bathgate R.A., SummersR.J.: Relaxin family peptide receptors–former orphans reunite withtheir parent ligands to activate multiple signalling pathways. Br. J.Pharmacol., 2007; 150: 677-691
    Google Scholar
  • 18. Hida T., Takahashi E., Shikata K., Hirohashi T., Sawai T., Seiki T.,Tanaka H., Kawai T., Ito O., Arai T., Yokoi A., Hirakawa T., Ogura H.,Nagasu T., Miyamoto N., Kuromitsu J.: Chronic intracerebroventricularadministration of relaxin-3 increases body weight in rats. J.Recept. Signal Transduct. Res., 2006; 26: 147-158
    Google Scholar
  • 19. Kong R.C., Shilling P.J., Lobb D.K., Gooley P.R., Bathgate R.A.:Membrane receptors: structure and function of the relaxin familypeptide receptors. Mol. Cell. Endocrinol., 2010; 320: 1-15
    Google Scholar
  • 20. Kuei C., Sutton S.W., Bonaventure P., Pudiak C., Shelton J., Zhu J.,Nepomuceno D., Wu J., Chen J., Kamme F., Seierstad M., Hack M.D.,Bathgate R.A., Hossain M.A., Wade J.D., Atack J, Lovenberg T.W., LiuC.: R3(BΔ23-27)R/I5 chimeric peptide, a selective antagonist forGPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and invivo characterization. J. Biol. Chem., 2007; 282: 25425-25435
    Google Scholar
  • 21. Lein E.S., Hawrylycz M.J., Ao N., Ayres M., Bensinger A., BernardA., Boe A.F., Boguski M.S., Brockway K.S., Byrnes E.J., Chen L., ChenL., Chen T.M., Chin M.C., Chong J. i wsp.: Genome-wide atlas of geneexpression in the adult mouse brain. Nature, 2007; 445: 168-176
    Google Scholar
  • 22. Lenglos C., Mitra A., Guèvremont G., Timofeeva E.: Sex differencesin the effects of chronic stress and food restriction on bodyweight gain and brain expression of CRF and relaxin-3 in rats. GenesBrain Behav., 2013; 12: 370-387
    Google Scholar
  • 23. Liu C., Chen J., Sutton S. W., Roland B., Kuei C., Farmer N., SillardR., Lovenberg T. W.: Identification of relaxin-3/INSL7 as a ligand forGPCR142. J. Biol. Chem., 2003; 278: 50765-50770
    Google Scholar
  • 24. Liu C., Eriste E., Sutton S.W., Chen J., Roland B., Kuei C., FarmerN., Jörnvall H., Sillard R., Lovenberg T.W.: Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupledreceptor GPCR135. J. Biol. Chem., 2003; 278: 50754-50764
    Google Scholar
  • 25. Liu C., Kuei C., Sutton S., Chen J., Bonaventure P., Wu J., NepomucenoD., Kamme F., Tran D.T., Zhu J., Wilkinson T., Bathgate R.,Eriste E., Sillard R., Lovenberg T.W.: INSL5 is a high affinity specificagonist for GPCR142 (GPR100). J. Biol. Chem., 2005; 280: 292-300
    Google Scholar
  • 26. Ma S., Blasiak A., Olucha-Bordonau F.E., Verberne A.J., GundlachA.L.: Heterogeneous responses of nucleus incertus neurons to corticotrophin-releasingfactor and coherent activity with hippocampaltheta rhythm in the rat. J. Physiol., 2013; 591: 3981-4001
    Google Scholar
  • 27. Ma S., Bonaventure P., Ferraro T., Shen P.J., Burazin T.C., BathgateR.A., Liu C., Tregear G.W., Sutton S.W., Gundlach A.L.: Relaxin-3 inGABA projection neurons of nucleus incertus suggests widespreadinfluence on forebrain circuits via G-protein-coupled receptor-135in the rat. Neuroscience, 2007; 144: 165-190
    Google Scholar
  • 28. Ma S., Olucha-Bordonau F.E., Hossain M.A., Lin F., Kuei C., Liu C.,Wade J.D., Sutton S.W., Núñez A., Gundlach A.L.: Modulation of hippocampaltheta oscillations and spatial memory by relaxin-3 neuronsof the nucleus incertus. Learn. Mem., 2009; 16: 730-742
    Google Scholar
  • 29. Ma S., Sang Q., Lanciego J.L., Gundlach A.L.: Localization of relaxin-3in brain of Macaca fascicularis: identification of a nucleusincertus in primate. J. Comp. Neurol., 2009; 517: 856-872
    Google Scholar
  • 30. Ma S., Shen P.J., Sang Q., Lanciego J.L., Gundlach A.L.: Distributionof relaxin-3 mRNA and immunoreactivity and RXFP3-bindingsites in the brain of the macaque, Macaca fascicularis. Ann. N. Y.Acad. Sci., 2009; 1160: 256-258
    Google Scholar
  • 31. McGowan B.M., Stanley S.A., Donovan J., Thompson E.L., PattersonM., Semjonous N.M., Gardiner J.V, Murphy K.G., Ghatei M.A.,Bloom S.R.: Relaxin-3 stimulates the hypothalamic-pituitary-gonadalaxis. Am. J. Physiol. Endocrinol. Metab., 2008; 295: E278-E286
    Google Scholar
  • 32. McGowan B.M., Stanley S.A, Smith K.L., Minnion J.S., DonovanJ., Thompson E.L., Patterson M., Connolly M.M., Abbott C.R., SmallC.J., Gardiner J.V, Ghatei M.A., Bloom S.R.: Effects of acute and chronicrelaxin-3 on food intake and energy expenditure in rats. Regul.Pept., 2006; 136: 72-77
    Google Scholar
  • 33. McGowan B.M., Stanley S.A, Smith K.L., White N.E., ConnollyM.M., Thompson E.L., Gardiner J.V, Murphy K.G., Ghatei M.A., BloomS.R.: Central relaxin-3 administration causes hyperphagia in maleWistar rats. Endocrinology, 2005; 146: 3295-3300
    Google Scholar
  • 34. McGowan B.M., Stanley S.A, White N.E., Spangeus A., PattersonM., Thompson E.L., Smith K.L., Donovan J., Gardiner J.V, Ghatei M.A.,Bloom S.R.: Hypothalamic mapping of orexigenic action and Fos–like immunoreactivity following relaxin-3 administration in maleWistar rats. Am. J. Physiol. Endocrinol. Metab., 2007; 292: E913-E919
    Google Scholar
  • 35. Miyamoto Y., Watanabe Y., Tanaka M.: Developmental expressionand serotonergic regulation of relaxin 3/INSL7 in the nucleusincertus of rat brain. Regul. Pept., 2008; 145: 54-59
    Google Scholar
  • 36. Morikawa Y., Ueyama E., Senba E.: Fasting-induced activationof mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus.J. Neuroendocrinol., 2004; 16: 105-112
    Google Scholar
  • 37. Munro J., Skrobot O., Sanyoura M., Kay V., Susce M.T., GlaserP.E., de Leon J., Blakemore A.I., Arranz M.J.: Relaxin polymorphismsassociated with metabolic disturbance in patients treated with antipsychotics.J. Psychopharmacol., 2012; 26: 374-379
    Google Scholar
  • 38. Núñez A., Cervera-Ferri A., Olucha-Bordonau F., Ruiz-Torner A.,Teruel V.: Nucleus incertus contribution to hippocampal theta rhythmgeneration. Eur. J. Neurosci., 2006; 23: 2731-2738
    Google Scholar
  • 39. Olson B.R., Drutarosky M.D., Chow M.S., Hruby V.J., StrickerE.M., Verbalis J.G.: Oxytocin and an oxytocin agonist administeredcentrally decrease food intake in rats. Peptides, 1991; 12: 113-118
    Google Scholar
  • 40. Olson B.R., Drutarosky M.D., Stricker E.M., Verbalis J.G.: Brainoxytocin receptor antagonism blunts the effects of anorexigenictreatments in rats: evidence for central oxytocin inhibition of foodintake. Endocrinology, 1991; 129: 785-791
    Google Scholar
  • 41. Otsubo H., Onaka T., Suzuki H., Katoh A., Ohbuchi T., TodorokiM., Kobayashi M., Fujihara H., Yokoyama T., Matsumoto T., UetaY.: Centrally administered relaxin-3 induces Fos expression in the osmosensitive areas in rat brain and facilitates water intake. Peptides,2010; 31: 1124-1130
    Google Scholar
  • 42. Rajkumar R., See L.K., Dawe G.S.: Acute antipsychotic treatmentsinduce distinct c-Fos expression patterns in appetite-related neuronalstructures of the rat brain. Brain Res., 2013; 1508: 34-43
    Google Scholar
  • 43. Rosengren K.J., Lin F., Bathgate R.A., Tregear G.W., Daly N.L.,Wade J.D., Craik D.J.: Solution structure and novel insights into thedeterminants of the receptor specificity of human relaxin-3. J. Biol.Chem., 2006; 281: 5845-5851
    Google Scholar
  • 44. Ryan P.J., Büchler E., Shabanpoor F., Hossain M.A., Wade J.D.,Lawrence A.J., Gundlach A.L.: Central relaxin-3 receptor (RXFP3)activation decreases anxiety- and depressive-like behaviours in therat. Behav. Brain Res., 2013; 244: 142-151
    Google Scholar
  • 45. Ryan P.J., Ma S., Olucha-Bordonau F.E., Gundlach A.L.: Nucleusincertus – an emerging modulatory role in arousal, stress and memory.Neurosci. Biobehav. Rev., 2011; 35: 1326-1341
    Google Scholar
  • 46. Saper C.B., Scammell T.E., Lu J.: Hypothalamic regulation of sleepand circadian rhythms. Nature, 2005; 437: 1257-1263
    Google Scholar
  • 47. Scott D.J., Fu P., Shen P.J., Gundlach A., Layfield S., Riesewijk A.,Tomiyama H., Hutson J.M., Tregear G.W., Bathgate R.A.: Characterizationof the rat INSL3 receptor. Ann. N. Y. Acad. Sci., 2005; 1041: 13-16
    Google Scholar
  • 48. Shen C., Tsimberg Y., Salvadore C., Meller E.: Activation of Erkand JNK MAPK pathways by acute swim stress in rat brain regions.BMC Neurosci., 2004; 5: 36
    Google Scholar
  • 49. Silvertown J.D., Neschadim A., Liu H.N., Shannon P., Walia J.S.,Kao J.C., Robertson J., Summerlee A.J., Medin J.A.: Relaxin-3 andreceptors in the human and rhesus brain and reproductive tissues.Regul. Pept., 2010; 159: 44-53
    Google Scholar
  • 50. Smith C.M, Hosken I.T., Sutton S.W., Lawrence A.J., GundlachA.L.: Relaxin-3 null mutation mice display a circadian hypoactivityphenotype. Genes Brain Behav., 2012; 11: 94-104
    Google Scholar
  • 51. Smith C.M., Lawrence A.J., Sutton S.W., Gundlach A.L.: Behavioralphenotyping of mixed background (129S5:B6) relaxin-3 knockoutmice. Ann. N. Y. Acad. Sci., 2009; 1160: 236-241
    Google Scholar
  • 52. Smith C.M., Ryan P.J., Hosken I.T., Ma S., Gundlach A.L.: Relaxin-3systems in the brain – the first 10 years. J. Chem. Neuroanat.,2011; 42: 262-275
    Google Scholar
  • 53. Smith C.M., Shen P.J., Banerjee A., Bonaventure P., Ma S., BathgateR.A., Sutton S.W., Gundlach A.L.: Distribution of relaxin-3 andRXFP3 within arousal, stress, affective, and cognitive circuits ofmouse brain. J. Comp. Neurol., 2010; 518: 4016-4045
    Google Scholar
  • 54. Sudo S., Kumagai J., Nishi S., Layfield S.L., Ferraro T., BathgateR.A., Hsueh A.J.: H3 relaxin is a specific ligand for LGR7 and activatesthe receptor by interacting with both the ectodomain and theexoloop 2. J. Biol. Chem., 2003; 278: 7855-7862
    Google Scholar
  • 55. Sutton S.W., Bonaventure P., Kuei C., Nepomuceno D., Wu J., ZhuJ., Lovenberg T.W., Liu C.: G-protein-coupled receptor (GPCR)-142does not contribute to relaxin-3 binding in the mouse brain: furthersupport that relaxin-3 is the physiological ligand for GPCR135.Neuroendocrinology, 2005; 82: 139-150
    Google Scholar
  • 56. Sutton S.W., Bonaventure P., Kuei C., Roland B., Chen J., NepomucenoD., Lovenberg T.W., Liu C.: Distribution of G-protein-coupledreceptor (GPCR)135 binding sites and receptor mRNA in the rat brainsuggests a role for relaxin-3 in neuroendocrine and sensory processing.Neuroendocrinology, 2004; 80: 298-307
    Google Scholar
  • 57. Sutton S.W., Shelton J., Smith C., Williams J., Yun S., Motley T.,Kuei C., Bonaventure P., Gundlach A., Liu C., Lovenberg T.W.: Metabolicand neuroendocrine responses to RXFP3 modulation in thecentral nervous system. Ann. N. Y. Acad. Sci., 2009; 1160: 242-249
    Google Scholar
  • 58. Tanaka M., Iijima N., Miyamoto Y., Fukusumi S., Itoh Y., Ozawa H.,Ibata Y.: Neurons expressing relaxin 3/INSL 7 in the nucleus incertusrespond to stress. Eur. J. Neurosci., 2005; 21: 1659-1670
    Google Scholar
  • 59. Torres S.J., Nowson C.A.: Relationship between stress, eatingbehavior, and obesity. Nutrition, 2007; 23: 887-894
    Google Scholar
  • 60. Tregear G.W., Bathgate R.A., Layfield S., Ferraro T., GundlachA., Ma S., Lin F., Hanson N.F., Summers R.J., Rosengren J., Craik D.J.,Wade J.D.: The chemistry and biology of human relaxin-3. Ann. N.Y. Acad. Sci., 2005; 1041: 40-46
    Google Scholar
  • 61. Van der Westhuizen E.T., Werry T.D., Sexton P.M., SummersR.J.: The relaxin family peptide receptor 3 activates extracellularsignal-regulated kinase 1/2 through a protein kinase C-dependentmechanism. Mol. Pharmacol., 2007; 71: 1618-1629
    Google Scholar
  • 62. Watanabe Y., Miyamoto Y., Matsuda T., Tanaka M.: Relaxin-3/INSL7 regulates the stress-response system in the rat hypothalamus.J. Mol. Neurosci., 2011; 43: 169-174
    Google Scholar
  • 63. Watanabe Y., Tsujimura A., Takao K., Nishi K., Ito Y., YasuharaY., Nakatomi Y., Yokoyama C., Fukui K., Miyakawa T., Tanaka M.: Relaxin-3-deficientmice showed slight alteration in anxiety-relatedbehavior. Front. Behav. Neurosci., 2011; 5: 50
    Google Scholar
  • 64. Wilkinson T.N., Speed T.P., Tregear G.W., Bathgate R.A.: Evolutionof the relaxin-like peptide family. BMC Evol. Biol., 2005; 5: 14
    Google Scholar
  • 65. Wilkinson T.N., Speed T.P., Tregear G.W., Bathgate R.A.: Coevolutionof the relaxin-like peptides and their receptors. Ann. N. Y.Acad. Sci., 2005; 1041: 534-539
    Google Scholar

Full text

Skip to content