Cooperation between heat shock proteins in organizing of proteins spatial structure

COMMENTARY ON THE LAW

Cooperation between heat shock proteins in organizing of proteins spatial structure

Zbigniew Wyżewski 1 , Karolina P. Gregorczyk 1 , Lidia Szulc-Dąbrowska 2 , Justyna Struzik 1 , Joanna Szczepanowska 3 , Marek Niemiałtowski 1

1. Zakład Immunologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
2. akład Immunologii, Katedra Nauk Przedklinicznych, Wydział Medycyny Weterynaryjnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
3. Pracownia Bioenergetyki i Błon Biologicznych, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN w Warszawie

Published: 2014-06-09
DOI: 10.5604/17322693.1108406
GICID: 01.3001.0003.1253
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 793-807

 

Abstract

Heat shock proteins (Hsps) are a class of proteins with highly conserved amino acid sequences. They are widespread in nature; they are found in archeons, true bacteria and eukaryotic organisms. Hsps from various families, commonly interact to execute essential cellular tasks, such as molecular regulation of newly synthesized protein-folding or restoration of the appropriate conformation of denatured and aggregated proteins. In this review we discuss mechanisms of spatial organization of protein structure mediated by Hsp10, Hsp40, Hsp60, Hsp70, Hsp104 (Hsp100) and Hsp110. Interactions between Hsps of different molecular weights are described.

References

  • 1. Ahmad A., Bhattacharya A., McDonald R.A., Cordes M., EllingtonB., Bertelsen E.B., Zuiderweg E.R.: Heat shock protein 70 kDa chaperone/DnaJcochaperone complex employs an unusual dynamicinterface. Proc. Natl. Acad. Sci. USA, 2011; 108: 18966-18971 2 Barends T.R., Werbeck N.D., Reinstein J.: Disaggregases in 4 dimensions.Curr. Opin. Struct. Biol., 2010; 20: 46-53
    Google Scholar
  • 2. and enable Hsp70-dependent protein disaggregation. J. Biol.Chem., 2014; 289: 848-867
    Google Scholar
  • 3. Bertelsen E.B., Chang L., Gestwicki J.E., Zuiderweg E.R.: Solutionconformation of wild-type E. coli Hsp70 (DnaK) chaperone complexedwith ADP and substrate. Proc. Natl. Acad. Sci. USA, 2009; 106: 8471-8476
    Google Scholar
  • 4. Borges J.C., Seraphim T.V., Mokry D.Z., Almeida F.C., Cyr D.M.,Ramos C.H.: Identification of regions involved in substrate bindingand dimer stabilization within the central domains of yeast Hsp40Sis1. PLoS One, 2012; 7: 1-15
    Google Scholar
  • 5. Bosl B., Grimminger V., Walter S.: The molecular chaperoneHsp104 – a molecular machine for protein disaggregation. J. Struct.Biol., 2006; 156: 139-148
    Google Scholar
  • 6. Bukau B., Weissman J., Horwich A.: Molecular chaperones andprotein quality control. Cell, 2006; 125: 443-451
    Google Scholar
  • 7. Cappello F., Conway de Macario E., Marino Gammazza A., BonaventuraG., Carini F., Czarnecka A.M., Farina F., Zummo G., MacarioA.J.: Hsp60 and human aging: Les liaisons dangereuses. Front.Biosci., 2013; 18: 626-637
    Google Scholar
  • 8. Chen G., Bradford W.D., Seidel C.W., Li R.: Hsp90 stress potentiatesrapid cellular adaptation through induction of aneuploidy. Nature,2012; 482: 246-250
    Google Scholar
  • 9. Chen L., Feany M.B.: Alpha-synuclein phosphorylation controlneurotoxicity and inclusion formation in a Drosophila model of Parkinsondisease. Nat. Neurosci., 2005; 8: 657-663 10 Conway K.A., Lee S.J, Rochet J.C., Ding T.T., Williamson R.E.,Lansbury P.T.Jr.: Acceleration of oligomerization, not fibrillization,is a shared property of both α-synuclein mutations linked to earlyonsetParkinson’s disease: Implications for pathogenesis and therapy.Proc. Natl. Acad. Sci. USA, 2000; 97: 571-576
    Google Scholar
  • 10. (Hsp10) in immune-related diseases: one coin, two sides. Int.J. Biochem. Mol. Biol., 2011; 2: 47-57
    Google Scholar
  • 11. DeSantis M.E., Shorter J.: The elusive middle domain of Hsp104and ClpB: Location and function. Biochim. Biophys. Acta, 2012; 1823:29-39
    Google Scholar
  • 12. DeSantis M.E., Sweeny E.A., Snead D., Leung E.H., Go M.S., GuptaK., Wendler P., Shorter J.: Conserved distal loop residues in theHsp104 and ClpB middle domain contact nucleotide-binding domain
    Google Scholar
  • 13. Dobson C.M.: Protein folding and misfolding. Nature, 2003; 426:884-890
    Google Scholar
  • 14. Doyle S.M., Wickner S.: Hsp104 and ClpB: protein disaggregatingmachines. Trends Biochem. Sci., 2009; 34: 40-48
    Google Scholar
  • 15. Dragovic Z., Broadley S.A., Shomura Y., Bracher A., Hartl F.U.:Molecular chaperones of the Hsp110 family act as nucleotide exchangefactors of Hsp70s. EMBO J., 2006; 25: 2519-2528
    Google Scholar
  • 16. Easton D.P., Kaneko Y., Subjeck J.R.: The Hsp110 and Grp170stress proteins: newly recognized relatives of the Hsp70s. Cell StressChaperones, 2000; 5: 276-290
    Google Scholar
  • 17. Erzberger J.P., Berger J.M.: Evolutionary relationships and structuralmechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol.Struct., 2006; 35: 93-114
    Google Scholar
  • 18. Garnier C., Lafitte D., Tsvetkov P.O., Barbier P., Leclerc-Devin J.,Millot J.M., Briand C., Makarov A.A., Catelli M.G., Peyrot V.: Bindingof ATP to heat shock protein 90: evidence for an ATP-binding sitein the C-terminal domain. J. Biol. Chem., 2002; 277: 12208-12214
    Google Scholar
  • 19. Glover J.R., Lindquist S.: Hsp104, Hsp70, and Hsp40: a novel chaperonesystem that rescues previously aggregated proteins. Cell, 1998; 94: 73-82
    Google Scholar
  • 20. Grimminger-Marquardt V., Lashuel H.A.: Structure and functionof the molecular chaperone Hsp104 from yeast. Biopolymers,2010; 93: 252-276
    Google Scholar
  • 21. Gupta R.S.: Evolution of the chaperonin families (Hsp60, Hsp10and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol.,1995; 15: 1-11
    Google Scholar
  • 22. Han W., Christen P.: Mechanism of the targeting action of DnaJin the DnaK molecular chaperone system. J. Biol. Chem., 2003; 278:19038-19043
    Google Scholar
  • 23. Hanson P.I., Whiteheart S.W.: AAA+ proteins: have engine, willwork. Nat. Rev. Mol. Cell Biol., 2005; 6: 519-529
    Google Scholar
  • 24. Hartl F.U., Bracher A., Hayer-Hartl M.: Molecular chaperones inprotein folding and proteostasis. Nature, 2011; 475: 324-332
    Google Scholar
  • 25. Hartl F.U., Hayer-Hartl M.: Converging concepts of protein foldingin vitro and in vivo. Nat. Struct. Mol. Biol., 2009; 16: 574-581
    Google Scholar
  • 26. Haslbeck M., Franzmann T., Weinfurtner D., Buchner J.: Somelike it hot: the structure and function of small heat-shock proteins.Nat. Struct. Mol. Biol., 2005; 12: 842-846
    Google Scholar
  • 27. Hennessy F., Nicoll W.S., Zimmermann R., Cheetham M.E., BlatchG.L.: Not all J domains are created equal: implications for the specificityof Hsp40-Hsp70 interactions. Protein Sci., 2005; 14: 1697-1709
    Google Scholar
  • 28. Hernandez M.P., Sullivan W.P., Toft D.O.: The assembly and intermolecularproperties of the hsp70-Hop-hsp90 molecular chaperonecomplex. J. Biol. Chem., 2002; 277: 38294-38304
    Google Scholar
  • 29. Hong S.W., Vierling E.: Mutants of Arabidopsis thaliana defectivein the acquisition of tolerance to high temperature stress. Proc.Natl. Acad. Sci. USA, 2000; 97: 4392-4397
    Google Scholar
  • 30. Horwich A.L., Farr G.W., Fenton W.A.: GroEL-GroES-mediatedprotein folding. Chem. Rev., 2006; 106: 1917-1930
    Google Scholar
  • 31. Itoh H., Komatsuda A., Ohtani H., Wakui H., Imai H., Sawada K.,Otaka M., Ogura M., Suzuki A., Hamada F.: Mammalian HSP60 is quicklysorted into the mitochondria under conditions of dehydration.Eur. J. Biochem., 2002; 269: 5931-5938
    Google Scholar
  • 32. Jia H., Halilou A.I., Hu L., Cai W., Liu J., Huang B.: Heat shock protein
    Google Scholar
  • 33. Jiang J., Maes E.G., Taylor A.B., Wang L., Hinck A.P., Lafer E.M.,Sousa R.: Structural basis of J cochaperone binding and regulationof Hsp70. Mol. Cell., 2007; 28: 422-433
    Google Scholar
  • 34. Jo S., Kalló I., Bardóczi Z., Arrojo e Drigo R., Zeöld A., Liposits Z.,Oliva A., Lemmon V.P., Bixby J.L., Gereben B., Bianco A.C.: Neuronalhypoxia induces Hsp40-mediated nuclear import of type 3 deiodinaseas an adaptive mechanism to reduce cellular metabolism. J.Neurosci., 2012; 32: 8491-8500
    Google Scholar
  • 35. Kabani M., Beckerich J., Brodsky J.L.: The yeast Sls1p and Fes1pproteins define a new family of Hsp70 nucleotide exchange factors.Curr. Genom., 2003; 4: 263-273
    Google Scholar
  • 36. Kampinga H.H., Craig E.A.: The HSP70 chaperone machinery: Jproteins as drivers of functional specficity. Nat. Rev. Mol. Cell Biol.,2010; 11: 579-592
    Google Scholar
  • 37. Kaneko Y., Nishiyama H., Nonoguchi K., Higashitsuji H., KishishitaM., Fujita J.: A novel hsp110-related gene, apg-1, that is abundantlyexpressed in the testis responds to a low temperature heatshock rather than the traditional elevated temperatures. J. Biol.Chem., 1997; 272: 2640-2645
    Google Scholar
  • 38. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., CotmanC.W., Glabe C.G.: Common structure of soluble amyloid oligomers impliescommon mechanism of pathogenesis. Science, 2003; 300: 486-489
    Google Scholar
  • 39. Kityk R., Kopp J., Sinning I., Mayer M.P.: Structure and dynamicsof the ATP bound open conformation of Hsp70 chaperones.Mol. Cell, 2012; 48: 863-874
    Google Scholar
  • 40. Kregel K.C.: Heat shock proteins: modifying factors in physiologicalstress responses and acquired thermotolerance. J. Appl. Physiol.,2002; 92: 2177-2186
    Google Scholar
  • 41. Landry S.J., Taher A., Georgopoulos C., Van der Vies S.M.: Interplayof structure and disorder in cochaperonin mobile loops. Proc.Natl. Acad. Sci. USA, 1996; 93: 11622-11627
    Google Scholar
  • 42. Lee J., Kim J.H., Biter A.B., Sielaff B., Lee S., Tsai F.T.: Heat shockprotein (Hsp)70 is an activator of the Hsp104 motor. Proc. Natl. Acad.Sci. USA, 2013, 110: 8513-8518
    Google Scholar
  • 43. Levy-Rimler G., Bell R.E., Ben-Tal N., Azem A.: Type I chaperonins:not all are created equal. FEBS Lett., 2002; 529: 1-5
    Google Scholar
  • 44. Li J., Buchner J.: Structure, function and regulation of the hsp90machinery. Biomed. J., 2013; 36: 106-117
    Google Scholar
  • 45. Lo Bianco C., Shorter J., Régulier E., Lashuel H., Iwatsubo T., LindquistS., Aebischer P.: Hsp104 antagonizes α-synuclein aggregationand reduces dopaminergic degeneration in a rat model of Parkinsondisease. J. Clin. Invest., 2008; 118: 3087-3097
    Google Scholar
  • 46. Makhnevych T., Houry W.A.: The control of spindle length by Hsp70and Hsp110 molecular chaperones. FEBS Lett., 2013; 587: 1067-1072
    Google Scholar
  • 47. Malinovska L., Kroschwald S., Munder M.C., Richter D., Alberti S.:Molecular chaperones and stress-inducible protein-sorting factorscoordinate the spatiotemporal distribution of protein aggregates.Mol. Biol. Cell, 2012; 23: 3041-3056
    Google Scholar
  • 48. Mayer M.P., Bukau B.: Hsp70 chaperones: cellular functions andmolecular mechanism. Cell. Mol. Life Sci., 2005; 62: 670–684
    Google Scholar
  • 49. McLaughlin K., Carr V.B., Iqbal M., Seago J., Lefevre E.A., RobinsonL., Prentice H., Charleston B.: Hsp110-mediated enhancementof CD4+ T cell responses to the envelope glycoprotein of membersof the family Flaviviridaein vitro does not occur in vivo. Clin. VaccineImmunol., 2011; 18: 311-317
    Google Scholar
  • 50. Misselwitz B., Staeck O., Rapoport T.A.: J proteins catalyticallyactivate Hsp70 molecules to trap a wide range of peptide sequences.Mol. Cell, 1998; 2: 593-603
    Google Scholar
  • 51. Moore D.J., West A.B., Dawson, V.L., Dawson T.M.: Molecularpathophysiology of Parkinson’s disease. Annu. Rev. Neurosci., 2005;28: 57-87
    Google Scholar
  • 52. Moro F., Fernandez V., Muga A.: Interdomain interaction throughhelices A and B of DnaK peptide binding domain. FEBS Lett.,2003; 533: 119-123
    Google Scholar
  • 53. Mosser D.D., Ho S., Glover, J.R.: Saccharomyces cerevisiae Hsp104enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry, 2004; 43: 8107-8115
    Google Scholar
  • 54. Nelson R., Eisenberg D.: Structural models of amyloid-like fibrils.Adv. Protein Chem., 2006; 73: 235-282
    Google Scholar
  • 55. Nelson R., Sawaya M.R., Balbirnie M., Madsen A.Ø., Riekel C.,Grothe R., Eisenberg D.: Structure of the cross-β spine of amyloid–like fibrils. Nature, 2005; 435: 773-778
    Google Scholar
  • 56. Nielsen K.L., Cowan N.J.: A single ring is sufficient for productivechaperonin mediated folding in vivo. Mol. Cell, 1998; 2: 93-99
    Google Scholar
  • 57. Ogura T., Whiteheart S.W., Wilkinson A.J.: Conserved arginineresidues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunitinteractions in AAA and AAA+ ATPases. J. Struct. Biol.,2004; 146: 106-112
    Google Scholar
  • 58. Okui M., Ito F., Ogita K., Kuramoto N., Kudoh J., Shimizu N., IdeT.: Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain. Neurochem. Int., 2000; 36: 35-43
    Google Scholar
  • 59. Parnas A., Nisemblat S., Weiss C., Levy-Rimler G., Pri-Or A., ZorT., Lund P.A., Bross P, Azem A.: Identification of elements that dictatethe specificity of mitochondrial Hsp60 for its co-chaperonin.PLoS One, 2012; 7: 1-14
    Google Scholar
  • 60. Parsell D.A., Kowal A.S., Singer M.A., Lindquist S.: Protein disaggregationmediated by heat-shock protein Hsp104. Nature, 1994;372: 475-478
    Google Scholar
  • 61. Pearl L.H., Prodromou C.: Structure and in vivo function ofHsp90. Curr. Opin. Struct. Biol., 2000; 10: 46-51
    Google Scholar
  • 62. Polier S., Hartl F.U., Bracher A.: Interaction of the Hsp110 molecularchaperones from S. cerevisiae with substrate protein. J. Mol.Biol., 2010; 401: 696-707
    Google Scholar
  • 63. Prodromou C., Panaretou B., Chohan S., Siligardi G., O’Brien R.,Ladbury J.E., Roe S.M., Piper P.W., Pearl L.H.: The ATPase cycle ofHsp90 drives a molecular ‘clamp’ via transient dimerization of theN-terminal domains. EMBO J., 2000; 19: 4383-4392
    Google Scholar
  • 64. Qiu X.B., Shao Y.M., Miao S., Wang L.: The diversity of the DNAJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol.Life Sci., 2006; 63: 2560-2570
    Google Scholar
  • 65. Queitsch C., Hong S.W., Vierling E., Lindquist S.: Heat shockprotein 101 plays a crucial role in thermotolerance in Arabidopsis.Plant Cell, 2000; 12: 479-492
    Google Scholar
  • 66. Ranford J.C., Coates A.R., Henderson B.: The chaperonins arecell-signalling proteins: the unfolding biology of molecular chaperonins.Expert Rev. Mol. Med., 2000; 2: 1-17
    Google Scholar
  • 67. Rutherford S.L.: Between genotype and phenotype: protein chaperonesand evolvability. Nat. Rev. Genet., 2003; 4: 263-274
    Google Scholar
  • 68. Saibil H.R., Ranson N.A.: The chaperonin folding machine.Trends Biochem. Sci., 2002; 27: 627-632
    Google Scholar
  • 69. Sawaya M.R., Sambashivan S., Nelson R., Ivanova M.I., SieversS.A., Apostol M.I., Thompson M.J., Balbirnie M., Wiltzius J.J., McFarlaneH.T., Madsen A.Ø., Riekel C., Eisenberg D.: Atomic structuresof amyloid cross-beta spines reveal varied steric zippers. Nature,2007; 447: 453-457
    Google Scholar
  • 70. Scheibel T., Siegmund H.I., Jaenicke R., Ganz P., Lilie H., BuchnerJ.: The charged region of Hsp90 modulates the functionof the N-terminal domain. Proc. Natl. Acad. Sci. USA, 1999; 96:1297-1302
    Google Scholar
  • 71. Scheibel T., Weikl T., Buchner J.: Two chaperone sites in Hsp90differing in substrate specificity and ATP dependence. Proc. Natl.Acad. Sci. USA, 1998; 95: 1495-1499
    Google Scholar
  • 72. Schlecht R., Erbse A.H., Bukau B., Mayer M.P.: Mechanics of Hsp70chaperones enables differential interaction with client proteins. Nat.Struct. Mol. Biol., 2011; 18: 345-351
    Google Scholar
  • 73. Schumacher R.J., Hansen W.J., Freeman B.C., Alnemri E., LitwackG., Toft D.O.: Cooperative action of Hsp70, Hsp90, and DnaJ proteinsin protein renaturation. Biochemistry, 1996; 35: 14889-14898
    Google Scholar
  • 74. Sekhar A., Lam H.N., Cavagnero S.: Protein folding rates andthermodynamic stability are key determinants for interaction withthe Hsp70 chaperone system. Protein Sci., 2012; 21: 1489-1502
    Google Scholar
  • 75. Shaner L., Morano K.A.: All in the family: atypical Hsp70 chaperonesare conserved modulators of Hsp70 activity. Cell Stress Chaperones,2007; 12: 1-8
    Google Scholar
  • 76. Sharma D., Stanley R.F., Masison D.C.: Curing of yeast [URE3]prion by the Hsp40 cochaperone Ydj1p is mediated by Hsp70. Genetics,2009; 181: 129-137
    Google Scholar
  • 77. Sharon R., Bar-Joseph I., Frosch M.P., Walsh D.M., Hamilton J.A.,Selkoe D.J.: The formation of highly soluble oligomers of alphasynucleinis regulated by fatty acids and enhanced in Parkinson’sdisease. Neuron, 2003; 37: 583-595
    Google Scholar
  • 78. Shomura Y., Dragovic Z., Chang H.C., Tzvetkov N., Young J.C.,Brodsky J.L., Guerriero V., Hartl F.U., Bracher A.: Regulation of Hsp70function by HspBP1: Structural analysis reveals an alternate mechanismfor Hsp70 nucleotide exchange. Mol. Cell, 2005; 17: 367-379
    Google Scholar
  • 79. Shorter J.: Hsp104: a weapon to combat diverse neurodegenerativedisorders. Neurosignals, 2008; 16: 63-74
    Google Scholar
  • 80. Shorter J.: The mammalian disaggregase machinery: Hsp110synergizes with Hsp70 and Hsp40 to catalyze protein disaggregationand reactivation in a cell-free system. PLoS One, 2011; 6: 1-12
    Google Scholar
  • 81. Shorter J., Lindquist S.: Prions as adaptive conduits of memoryand inheritance. Nat. Rev. Genet., 2005; 6: 435-450
    Google Scholar
  • 82. Silflow C.D., Sun X., Haas N.A., Foley J.W., Lefebvre P.A.: TheHsp70 and Hsp40 chaperones influence microtubule stability inChlamydomonas. Genetics, 2011; 189: 1249-1260
    Google Scholar
  • 83. Sousa R., Jiang J., Lafer E.M., Hinck A.P., Wang L., Taylor A.B.,Maes E.G.: Evaluation of competing J domain Hsp70 complex modelsin light of existing mutational and NMR data. Proc. Natl. Acad.Sci. USA, 2012; 109: E734
    Google Scholar
  • 84. Tessarz P., Mogk A., Bukau B.: Substrate threading through the centralpore of the Hsp104 chaperone as a common mechanism for proteindisaggregation and prion propagation. Mol. Microbiol., 2008; 68: 87-97
    Google Scholar
  • 85. Thompson A.D., Bernard S.M., Skiniotis G., and Gestwicki J.E.:Visualization and functional analysis of the oligomeric states ofEscherichia coli heat shock protein 70 (Hsp70/DnaK). Cell Stress Chaperones,2012; 17: 313-327
    Google Scholar
  • 86. Tkach J.M., Glover J.R.: Amino acid substitutions in the C-terminalAAA+ module of Hsp104 prevent substrate recognition by disruptingoligomerization and cause high temperature inactivation.J. Biol. Chem., 2004; 279: 35692-35701
    Google Scholar
  • 87. Turturici G., Sconzo G., Geraci F.: Hsp70 and its molecular role innervous system diseases. Biochem. Res. Int., 2011; 2011: 1-18
    Google Scholar
  • 88. Wall D., Żylicz M., Georgopoulos C.: The NH2-terminal 108 aminoacids of the Escherichia coli DnaJ protein stimulate the ATPase activityof DnaK and are sufficient for lambda replication. J. Biol. Chem.,1994; 269: 5446-5451
    Google Scholar
  • 89. Walsh P., Bursać D., Law Y.C., Cyr D., Lithgow T.: The J-proteinfamily: modulating protein assembly, disassembly and translocation.EMBO Rep., 2004; 5: 567-571
    Google Scholar
  • 90. Waters E.R., Aevermann B.D., Sanders-Reed Z.: Comparativeanalysis of the small heat shock proteins in three angiosperm genomesidentifies new subfamilies and reveals diverse evolutionarypatterns. Cell Stress Chaperones., 2008; 13: 127-142
    Google Scholar
  • 91. Wendler P., ShorterJ., PlissonC., CashikarA.G., LindquistS., SaibilH.R.: Atypical AAA+ subunit packing creates an expanded cavity fordisaggregation by the protein-remodeling factor Hsp104. Cell, 2007;131: 1366-1377
    Google Scholar
  • 92. Wittung-Stafshede P., Guidry J., Horne B.E., Landry S.J.: TheJ-domain of Hsp40 couples ATP hydrolysis to substrate capture inHsp70. Biochemistry, 2003; 42: 4937-4944
    Google Scholar
  • 93. Wu X., Zhang Y., Yin Y., Yuan Z., Yu H., Wu Z., Wu G.: Roles ofheat-shock protein 70 in protecting against intestinal mucosal damage.Front. Biosci., 2013; 18: 356-365
    Google Scholar
  • 94. Xu Z., Rye H.S., Burston S.G., Fenton W.A., Beechem J.M. SiglerP.B., Horwich A.L.: Distinct actions of cis and trans ATP within thedouble ring of the chaperonin GroEL. Nature, 1997; 388: 792-798
    Google Scholar
  • 95. Xue J.H., Fukuyama H., Nonoguchi K., Kaneko Y., Kido T., FukumotoM., Fujibayashi Y., Itoh K., Fujita J.: Induction of Apg-1,a member of the heat shock protein 110 family, following transientforebrain ischemia in the rat brain. Biochem. Biophys. Res.Commun., 1998; 247: 796-801
    Google Scholar
  • 96. Yam A.Y., Albanese V., Lin H.T., Frydman J.: HSP110 cooperateswith different cytosolic HSP70 systems in a pathway for de novofolding. J. Biol. Chem., 2005; 280: 41252-41261
    Google Scholar
  • 97. Yamagishi N., Ishihara K., Hatayama T.: Hsp105α suppressesHsc70 chaperone activity by inhibiting Hsc70 ATPase activity. J. Biol.Chem., 2004; 279: 41727-41733
    Google Scholar
  • 98. Yamagishi N., Ishihara K., Saito Y., Hatayama T.: Hsp105 butnot Hsp70 family proteins suppress the aggregation of heat-denaturedprotein in the presence of ADP. FEBS Lett., 2003; 555: 390-396
    Google Scholar
  • 99. Yan J., Garza A.G., Bradley M.D., Welch R.D.: A Clp/Hsp100 chaperonefunctions in Myxococcus xanthus sporulation and self-organization.J. Bacteriol., 2012; 194: 1689-1696
    Google Scholar
  • 100. Yan X., Hu S., Guan Y.X., Yao S.J.: Coexpression of chaperoninGroEL/GroES markedly enhanced soluble and functional expressionof recombinant human interferon-gamma in Escherichia coli. Appl.Microbiol. Biotechnol., 2012; 93: 1065-1074
    Google Scholar
  • 101. Yoneyama M., Iwamoto N., Nagashima R., Sugiyama C., KawadaK., Kuramoto N., Shuto M., Ogita K.: Altered expression of heatshock protein 110 family members in mouse hippocampal neuronsfollowing trimethyltin treatment in vivo and in vitro. Neuropharmacology,2008; 55: 693-703
    Google Scholar
  • 102. Young J.C, Obermann W.M, Hartl F.U.: Specific binding of tetratricopeptiderepeat proteins to the C-terminal 12-kDa domain ofHsp90. J. Biol. Chem., 1998; 273: 18007-18010
    Google Scholar
  • 103. Zhao R., Davey M., Hsu Y.C., Kaplanek P., Tong A., Parsons A.B.,Krogan N., Cagney G., Mai D., Greenblatt J., Boone C., Emili A., HouryW.A.: Navigating the chaperone network: An integrative map ofphysical and genetic interactions mediated by the Hsp90 chaperone.Cell, 2005; 120: 715-727
    Google Scholar
  • 104. Żylicz M., King F.W., Wawrzynow A.: Hsp70 interactions withthe p53 tumour suppressor protein. EMBO J., 2001; 20: 4634-4638
    Google Scholar
  • 105. Żylicz M., Wawrzynow A.: Insights into the function of Hsp70chaperones. IUBMB Life, 2001; 51: 283-287
    Google Scholar

Full text

Skip to content