Yamanaka’s factors and core transcription factors – the molecular link between embryogenesis and carcinogenesis

COMMENTARY ON THE LAW

Yamanaka’s factors and core transcription factors – the molecular link between embryogenesis and carcinogenesis

Łukasz Fuławka 1 , Piotr Donizy 2 , Agnieszka Hałoń 2

1. Zakład Patomorfologii i Cytologii Onkologicznej, Uniwersytet Medyczny we Wrocławiu; Zakład Patomorfologii, Dolnośląskie Centrum Onkologii we Wrocławiu
2. Zakład Patomorfologii i Cytologii Onkologicznej, Uniwersytet Medyczny we Wrocławiu

Published: 2014-06-05
DOI: 10.5604/17322693.1107325
GICID: 01.3001.0003.1245
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 715-721

 

Abstract

Oct4 and Sox2 transcription factors (belonging to the Yamanaka’s factor family) and Nanog, named together as core transcription factors of pluripotency, are indispensable to induce and maintain the pluripotency state. They act generally as activators of genes coding for transcription factors, cofactors and chromatin regulators. They also activate microRNA expression. In addition, Oct4, Sox2 and Nanog function as repressors of genes for factors responsible for escape from pluripotency and differentiation. Core transcription factors positively regulate their own promoters, forming a positive-feedback loop. In recent times, researchers’ attention has been attracted towards Oct4, Sox2 and Nanog as potential markers for cancer stem cells (CSCs). The expression of these factors has been confirmed in numerous types of tumors. The aim of this paper is to concisely review features of core transcription factors and their role in embryogenesis and tumorigenesis including the CSC hypothesis.

References

  • 1. Atlasi Y., Mowla S.J., Ziaee S.A., Bahrami A.R.: OCT-4, an embryonicstem cell marker, is highly expressed in bladder cancer. Int. J.Cancer, 2007; 120: 1598-1602
    Google Scholar
  • 2. Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell–Badge R.: Multipotent cell lineages in early mouse developmentdepend on SOX2 function. Genes Dev., 2003; 17: 126-140
    Google Scholar
  • 3. Baltus G.A., Kowalski M.P., Zhai H., Tutter A.V., Quinn D., Wall D.,Kadam S.: Acetylation of Sox2 induces its nuclear export in embryonicstem cells. Stem Cells, 2009; 27: 2175-2184
    Google Scholar
  • 4. Ben-Porath I., Thomson M.W., Carey V.J., Ge R., Bell G.W., RegevA., Weinberg R.A.: An embryonic stem cell-like gene expressionsignature in poorly differentiated aggressive human tumors. Nat.Genet., 2008; 40: 499-507
    Google Scholar
  • 5. Boiani M., Scholer H.R.: Regulatory networks in embryo-derivedpluripotent stem cells. Nat. Rev. Mol. Cell Biol., 2005; 6: 872-884
    Google Scholar
  • 6. Chambers I., Silva J., Colby D., Nichols J., Nijmeijer B., RobertsonM., Vrana J., Jones K., Grotewold L., Smith A.: Nanog safeguardspluripotency and mediates germline development. Nature, 2007;450: 1230-1234
    Google Scholar
  • 7. Chen X., Xu H., Yuan P., Fang F., Huss M., Vega V.B., Wong E., OrlovY.L., Zhang W., Jiang J., Loh Y.H., Yeo H.C., Yeo Z.X., Narang V.,Govindarajan K.R. i wsp.: Integration of external signaling pathwayswith the core transcriptional network in embryonic stem cells. Cell,2008; 133: 1106-1117
    Google Scholar
  • 8. Cheng L.: Establishing a germ cell origin for metastatic tumorsusing OCT4 immunohistochemistry. Cancer, 2004; 101: 2006-2010
    Google Scholar
  • 9. Cheng L., Thomas A., Roth L.M., Zheng W.X., Michael H., KarimF.W.: OCT4 – A novel biomarker for dysgerminoma of the ovary. Am.J. Surg. Pathol., 2004; 28: 1341-1346
    Google Scholar
  • 10. Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., JonesD.L., Visvader J., Weissman I.L., Wahl G.M.: Cancer stem cells–perspectiveson current status and future directions: AACR workshopon cancer stem cells. Cancer Res., 2006; 66: 9339-9344
    Google Scholar
  • 11. Denker H.W.: Early human development: new data raise importantembryological and ethical questions relevant for stem cellresearch. Naturwissenschaften, 2004; 91: 1-21
    Google Scholar
  • 12. Donovan P.J., de Miguel M.P.: Turning germ cells into stem cells.Curr. Opin.Gen. Develop., 2003; 13: 463-471
    Google Scholar
  • 13. Gu G., Yuan J., Wils M., Kasper S.: Prostate cancer cells with stemcell characteristics reconstitute the original human tumor in vivo.Cancer Res., 2007; 67: 4807-4815
    Google Scholar
  • 14. Gurdon J.B.: Developmental capacity of nuclei taken from intestinalepithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol.,1962; 10: 622-640
    Google Scholar
  • 15. Hanna J.H., Saha K., Jaenisch R.: Pluripotency and cellular reprogramming:facts, hypotheses, unresolved issues. Cell, 2010; 143:508-525
    Google Scholar
  • 16. Huang X., Cho S., Spangrude G.J.: Hematopoietic stem cells:generation and self-renewal. Cell Death Differ., 2007; 14: 1851-1859
    Google Scholar
  • 17. Jeong C.H., Cho Y.Y., Kim M.O., Kim S.H., Cho E.J., Lee S.Y., JeonY.J., Lee K.Y., Yao K., Keum Y.S., Bode A.M., Dong Z.: Phosphorylationof Sox2 cooperates in reprogramming to pluripotent stem cells. StemCells, 2010; 28: 2141-2150
    Google Scholar
  • 18. Jones T.D., Ulbright T.M., Eble J.N., Baldridge L.A., Cheng L.:OCT4 staining in testicular tumors – a sensitive and specific markerfor seminoma and embryonal carcinoma. Am. J. Surg. Pathol.,2004; 28: 935-940
    Google Scholar
  • 19. Kanatsu-Shinohara M., Inoue K., Lee J., Yoshimoto M., OgonukiN., Miki H., Baba S., Kato T., Kazuki Y., Toyokuni S., Toyoshima M.,Niwa O., Oshimura M., Heike T., Nakahata T., Ishino F., Ogura A.,Shinohara T.: Generation of pluripotent stem cells from neonatalmouse testis. Cell, 2004; 119: 1001-1012
    Google Scholar
  • 20. Kellner S., Kikyo N.: Transcriptional regulation of the Oct4gene, a master gene for pluripotency. Histol. Histopathol., 2010;25: 405-412
    Google Scholar
  • 21. Lin T.X., Chao C., Saito S., Mazur S.J., Murphy M.E., Appella E.,Xu Y.: P53 induces differentiation of mouse embryonic stem cellsby suppressing Nanog expression. Nat. Cell Biol., 2005; 7: 165-171
    Google Scholar
  • 22. Liu K., Lin B., Zhao M., Yang X., Chen M., Gao A., Liu F., Que J.,Lan X.: The multiple roles for Sox2 in stem cell maintenance andtumorigenesis. Cell. Signal., 2013; 25: 1264-1271
    Google Scholar
  • 23. Ma N., Thanan R., Kobayashi H., Hammam O., Wishahi M., ElLeithy T., Hiraku Y., Amro E.-K., Oikawa S., Ohnishi S., Murata M.,Kawanishi S.: Nitrative DNA damage and Oct3/4 expression in urinarybladder cancer with Schistosoma haematobium infection. Biochem.Biophys. Res. Commun., 2011; 414: 344-349
    Google Scholar
  • 24. Matoba R., Niwa H., Masui S., Ohtsuka S., Carter M.G., SharovA.A., Ko M.S.: Dissecting Oct3/4-regulated gene networks in embryonicstem cells by expression profiling. Plos One, 2006; 1: e26
    Google Scholar
  • 25. Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., TakahashiK., Maruyama M., Maeda M., Yamanaka S.: The homeoproteinNanog is required for maintenance of pluripotency in mouse epiblastand ES cells. Cell, 2003; 113: 631-642
    Google Scholar
  • 26. Ng H.H., Surani M.A.: The transcriptional and signalling networksof pluripotency. Nat. Cell Biol., 2011; 13: 490-496
    Google Scholar
  • 27. Oliveira L.R.: Stem cells and cancer stem cells. cancer stemcells – the cutting edge, 2011; Shostak S.; InTech; Rijeka 2011, 3-28
    Google Scholar
  • 28. Preston S.L., Alison M.R., Forbes S.J., Direkze N.C., Poulsom R.,Wright N.A.: The new stem cell biology: something for everyone.Mol. Pathol., 2003; 56: 86-96
    Google Scholar
  • 29. Rahl P.B., Lin C.Y., Seila A.C., Flynn R.A., McCuine S., Burge C.B.,Sharp P.A., Young R.A.: c-Myc regulates transcriptional pause release.Cell, 2010; 141: 432-445
    Google Scholar
  • 30. Reya T., Morrison S.J., Clarke M.F., Weissman I.L.: Stem cells,cancer, and cancer stem cells. Nature, 2001; 414: 105-111
    Google Scholar
  • 31. Sell S.: Stem cells and cancer: an introduction. Stem Cells andCancer, 2009; Majumder S.; Springer; 2009: 1-31
    Google Scholar
  • 32. Sharov A.A., Masui S., Sharova L.V., Piao Y., Aiba K., Matoba R.,Xin L., Niwa H., Ko M.S.: Identification of Pou5f1, Sox2, and Nanogdownstream target genes with statistical confidence by applyinga novel algorithm to time course microarray and genome-widechromatin immunoprecipitation data. BMC Genomics, 2008; 9: 269
    Google Scholar
  • 33. Shi G., Jin Y.: Role of Oct4 in maintaining and regaining stemcell pluripotency. Stem Cell Res. Ther., 2010; 1: 39
    Google Scholar
  • 34. Shostak S.: Evolution of cancer stem cells. cancer stem cells – thecutting edge, 2011; Shostak S.; InTech; Rijeka 2011,
    Google Scholar
  • 35. Suva M.L., Riggi N., Stehle J.C., Baumer K., Tercier S., Joseph J.M.,Suva D., Clement V., Provero P., Cironi L., Osterheld M.C., Guillou L.,Stamenkovic I.: Identification of cancer stem cells in Ewing’s sarcoma.Cancer Res., 2009; 69: 1776-1781
    Google Scholar
  • 36. Szabo E., Rampalli S., Risueno R.M., Schnerch A., Mitchell R., Fiebig–Comyn A., Levadoux-Martin M., Bhatia M.: Direct conversion of humanfibroblasts to multilineage blood progenitors. Nature, 2010; 468: 521-526
    Google Scholar
  • 37. Takahashi K., Yamanaka S.: Induction of pluripotent stem cellsfrom mouse embryonic and adult fibroblast cultures by defined factors.Cell, 2006; 126: 663-676
    Google Scholar
  • 38. Tanveer S.: Towards new anticancer strategies by targetingcancer stem cells with phytochemical compounds. cancer stem cells- the cutting edge, 2011; Shostak S.; InTech; Rijeka 2011, 431-456
    Google Scholar
  • 39. Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I.: MicroRNAsto Nanog, Oct4 and Sox2 coding regions modulate embryonic stem celldifferentiation. Nature, 2008; 455: 1124-1128
    Google Scholar
  • 40. Tsuruzoe S., Ishihara K., Uchimura Y., Watanabe S., Sekita Y.,Aoto T., Saitoh H., Yuasa Y., Niwa H., Kawasuji M., Baba H., NakaoM.: Inhibition of DNA binding of Sox2 by the SUMO conjugation.Biochem. Biophys. Res. Commun., 2006; 351: 920-926
    Google Scholar
  • 41. Uwanogho D., Rex M., Cartwright E.J., Pearl G., Healy C., ScottingP.J., Sharpe P.T.: Embryonic expression of the chicken sox2, sox3 andsox11 genes suggests an interactive role in neuronal development.Mech. Dev., 1995; 49: 23-36
    Google Scholar
  • 42. Wang P.X., Branch D.R., Bali M., Schultz G.A., Goss P.E., Jin T.: ThePOU homeodomain protein OCT3 as a potential transcriptional activatorfor fibroblast growth factor-4 (FGF-4) in human breast cancercells. Biochem. J., 2003; 375: 199-205
    Google Scholar
  • 43. Wang X., Dai J.W.: Concise review: Isoforms of OCT4 contributeto the confusing diversity in stem cell biology. Stem Cells, 2010;28: 885-893
    Google Scholar
  • 44. Wei F., Scholer H.R., Atchison M.L.: Sumoylation of Oct4 enhancesits stability, DNA binding, and transactivation. J. Biol. Chem.,2007; 282: 21551-21560
    Google Scholar
  • 45. Xu H., Wang W., Li C., Yu H., Yang A., Wang B., Jin Y.: WWP2 promotesdegradation of transcription factor OCT4 in human embryonicstem cells. Cell Res., 2009; 19: 561-573
    Google Scholar
  • 46. Xu N., Papagiannakopoulos T., Pan G., Thomson J.A., KosikK.S.: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and repressespluripotency in human embryonic stem cells. Cell, 2009; 137:647-658
    Google Scholar
  • 47. Young R.A.: Control of the embryonic stem cell state. Cell, 2011;144: 940-954
    Google Scholar
  • 48. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J.,Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., SlukvinI.I., Thomson J.A.: Induced pluripotent stem cell lines derived fromhuman somatic cells. Science, 2007; 318: 1917-1920
    Google Scholar
  • 49. Zappone M.V., Galli R., Catena R., Meani N., De Biasi S., Mattei E.,Tiveron C., Vescovi A.L., Lovell-Badge R., Ottolenghi S., Nicolis S.K.:Sox2 regulatory sequences direct expression of a beta-geo transgeneto telencephalic neural stem cells and precursors of the mouseembryo, revealing regionalization of gene expression in CNS stemcells. Development, 2000; 127: 2367-2382
    Google Scholar

Full text

Skip to content