COMMENTARY ON THE LAW
Searching for new antibiotics – inhibitors of bacterial chromosome replication
Damian Trojanowski 1 , Patrycja Skut 1 , Joanna Hołówka 2 , Marcin Jan Szafran 11. Wydział Biotechnologii, Uniwersytet Wrocławski
2. Instytut Immunologii i Terapii Doświadczalnej PAN im. Ludwika Hirszfelda, we Wrocławiu
Published: 2014-06-03
DOI: 10.5604/17322693.1106890
GICID: 01.3001.0003.1244
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 701-714
Abstract
The excessive and often unreasonable use of antibacterial drugs leads to rise of antibioticresistant strains. To overcome this problem, new antibiotics are searched and the new drug targets are investigated. The proteins involved in replication of bacterial chromosomes seem to be promising candidates for drug targets since they are involved in crucial life pathways and are structurally and/or functionally different from the eukaryotic homologues. Within last few years, a large number of newly developed methods allowed to search among thousands of molecules for the ones that specifically inhibit DNA synthesis in the prokaryotic cell. In this review, we present some of these methods.
References
- 1. Adachi T., Mizuuchi M., Robinson E.A., Appella E., O’Dea M.H., GellertM., Mizuuchi K.: DNA sequence of the E. coli gyrB gene: applicationof a new sequencing strategy. Nucleic Acids Res., 1987; 15: 771-784
Google Scholar - 2. Andrea J.E., Adachi K., Morgan A.R.: Fluorometric assays for DNAtopoisomerases and topoisomerase-targeted drugs: quantitation ofcatalytic activity and DNA cleavage. Mol. Pharmacol., 1991; 40: 495-501
Google Scholar - 3. Andrews B., Barth P., Mill S., Yang W.: Topoisomerase modulatorassays. 55. Patent application WO 2004/087963 A1
Google Scholar - 4. Bailey S., Eliason W.K., Steitz T.A.: Structure of hexameric DnaBhelicase and its complex with a domain of DnaG primase. Science,2007; 318: 459-463
Google Scholar - 5. Bergerat A., de Massy B., Gadelle D., Varoutas P.C., Nicolas A., ForterreP.: An atypical topoisomerase II from Archaea with implicationsfor meiotic recombination. Nature, 1997; 386: 414-417
Google Scholar - 6. Biswas T., Resto-Roldán E., Sawyer S.K., Artsimovitch I., TsodikovOV.: A novel non-radioactive primase-pyrophosphatase activity assayand its application to the discovery of inhibitors of Mycobacteriumtuberculosis primase DnaG. Nucleic Acids Res., 2013; 41: e56
Google Scholar - 7. Blinkova A., Hervas C., Stukenberg P.T., Onrust R., O’Donnell M.E.,Walker J.R.: The Escherichia coli DNA polymerase III holoenzymecontains both products of the dnaX gene, tau and gamma, but onlytau is essential. J. Bacteriol., 1993; 175: 6018-6027
Google Scholar - 8. Boehm H.J., Boehringer M., Bur D., Gmuender H., Huber W., KlausW., Kostrewa D., Kuehne H., Luebbers T., Meunier-Keller N., MuellerF.: Novel inhibitors of DNA gyrase: 3D structure based biased needlescreening, hit validation by biophysical methods, and 3D guidedoptimization. A promising alternative to random screening. J. Med.Chem., 2000; 43:2664-2674
Google Scholar - 9. Brown P.O., Cozzarelli N.R.: Catenation and knotting of duplexDNA by type 1 topoisomerases: a mechanistic parallel with type 2topoisomerases. Proc. Natl. Acad. Sci. USA, 1981; 78: 843-847
Google Scholar - 10. Browning D.F., Grainger D.C., Busby S.J.: Effects of nucleoidassociatedproteins on bacterial chromosome structure and geneexpression. Curr. Opin. Microbiol., 2010; 13: 773-780
Google Scholar - 11. Butler M.M., Lamarr W.A., Foster K.A., Barnes M.H., Skow DJ.,Lyden P.T., Kustigian L.M., Zhi Ch., Brown N.C., Wright G.E., BowlinT.L.: Antibacterial activity and mechanism of action of a novel anilinouracil-fluoroquinolonehybrid compound. Antimicrob. AgentsChemother., 2007; 51: 119-127
Google Scholar - 12. Calhoun J.H., Murray C.K., Manring M.M.: Multidrug-resistantorganisms in military wounds from Iraq and Afghanistan. Clin. Orthop.Relat. Res., 2008; 466: 1356-1362
Google Scholar - 13. Confalonieri F., Elie C., Nadal M., de La Tour C., Forterre P., DuguetM.: Reverse gyrase: a helicase-like domain and a type I topoisomerasein the same polypeptide. Proc. Natl. Acad. Sci. USA, 1993;90: 4753-4757
Google Scholar - 14. Daly J.S., Giehl T.J., Brown N.C., Zhi C., Wright G.E., Ellison R.T.:In vitro antimicrobial activities of novel anilinouracils which selectivelyinhibit DNA polymerase III of gram-positive bacteria. Antimicrob.Agents Chemother., 2000; 44: 2217-2221
Google Scholar - 15. D’Arpa P., Machlin P.S., Ratrie H., Rothfield N.F., Cleveland D.W.,Earnshaw W.C.: cDNA cloning of human DNA topoisomerase I: catalyticactivity of a 67.7-kDa carboxyl-terminal fragment. Proc. Natl.Acad. Sci. USA, 1988; 85: 2543-2547
Google Scholar - 16. Dervyn E., Suski C., Daniel R., Bruand C., Chapuis J., ErringtonJ., Janniere L., Ehrlich S.D.: Two essential DNA polymerases at thebacterial replication fork. Science, 2001; 294: 1716-1719
Google Scholar - 17. DiGate R.J., Marians K.J.: Molecular cloning and DNA sequenceanalysis of Escherichia coli topB, the gene encoding topoisomeraseIII. J. Biol. Chem., 1989; 264: 17924-17930
Google Scholar - 18. Dillon S.C., Dorman C.J.: Bacterial nucleoid-associated proteins,nucleoid structure and gene expression. Nat. Rev. Microbiol., 2010;8: 185-195
Google Scholar - 19. Durnford J.M., Champoux J.J.: The DNA untwisting enzyme fromSaccharomyces cerevisiae. Partial purification and characterization.J. Biol. Chem. 1978; 253: 1086-1089
Google Scholar - 20. Falagas M.E., Koletsi P.K., Bliziotis I.A.: The diversity of definitionsof multidrug-resistant (MDR) and pandrug-resistant (PDR)Acinetobacter baumannii and Pseudomonas aeruginosa. J. Med.Microbiol., 2006; 55: 1619-1629
Google Scholar - 21. Fijalkowska I.J., Schaaper R.M., Jonczyk P.: DNA replication fidelityin Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol.Rev., 2012; 36: 1105-1121
Google Scholar - 22. Georgescu R.E., Yurieva O., Kim S.S., Kuriyan J., Kong X.P.,O’Donnell M.: Structure of a small-molecule inhibitor of a DNA polymerasesliding clamp. Proc. Natl. Acad. Sci. USA, 2008; 105: 11116-11121
Google Scholar - 23. Gevi M., Domenici E.: A scintillation proximity assay amenablefor screening and characterization of DNA gyrase B subunit inhibitors.Anal. Biochem., 2002; 300: 34-39
Google Scholar - 24. Glaser B.T., Malerich J.P., Duellman S.J., Fong J., Hutson C., FineR.M., Keblansky B., Tang M.J., Madrid P.B.: A high-throughput fluorescencepolarization assay for inhibitors of gyrase B. J. Biomol.Screen, 2011; 16: 230-238
Google Scholar - 25. Green M., Barner H.D., Cohen S.S.: Studies on the biosynthesisof bacterial and viral pyrimidines. V. Hydrogenation of 5-hydroxymethylpyrimidines.J. Biol. Chem., 1957; 228: 621-631
Google Scholar - 26. Griep M.A., Blood S., Larson M.A., Koepsell S.A., Hinrichs S.H.:Myricetin inhibits Escherichia coli DnaB helicase but not primase.Bioorg. Med. Chem., 2007; 15: 7203-7208
Google Scholar - 27. Gross C.H., Parsons J.D., Grossman T.H., Charifson P.S., Bellon S.,Jernee J., Dwyer M., Chambers S.P., Markland W., Botfield M., RaybuckS.A.: Active-site residues of Escherichia coli DNA gyrase requiredin coupling ATP hydrolysis to DNA supercoiling and amino acidsubstitutions leading to novobiocin resistance. Antimicrob. AgentsChemother., 2003; 47: 1037-1046
Google Scholar - 28. Guiles J., Sun X., Critchley I.A., Ochsner U., Tregay M., StoneK., Bertino J., Green L., Sabin R., Dean F., Dallmann H.G., McHenryC.S., Janjic N.: Quinazolin-2-ylamino-quinazolin-4-ols as novel nonnucleosideinhibitors of bacterial DNA polymerase III. Bioorg. Med.Chem. Lett., 2009; 19: 800-802
Google Scholar - 29. Hanai R., Caron P.R., Wang J.C.: Human TOP3: a single-copy geneencoding DNA topoisomerase III. Proc. Natl. Acad. Sci. USA,1996;93: 3653-3657
Google Scholar - 30. Hardy C.D., Cozzarelli N.R.: Alteration of Escherichia coli topoisomeraseIV to novobiocin resistance. Antimicrob. Agents Chemother.,2003; 47: 941-947
Google Scholar - 31. Herendeen D.R, Kelly T.J.: DNA polymerase III: running ringsaround the fork. Cell, 1996; 84: 5-8
Google Scholar - 32. Jenkins J.R., Ayton P., Jones T., Davies S.L., Simmons D.L., HarrisA.L., Sheer D., Hickson I.D.: Isolation of cDNA clones encoding thebeta isozyme of human DNA topoisomerase II and localisation of thegene to chromosome 3p24. Nucleic Acids Res., 1992; 20: 5587-5592
Google Scholar - 33. Kato J., Nishimura Y., Imamura R., Niki H., Hiraga S., Suzuki H.:New topoisomerase essential for chromosome segregation in E. coli.Cell, 1990; 63: 393-404
Google Scholar - 34. Khann S., Mao E.T., Rajendra Y.P., Satyanarayana S., NagarajaS.B., Kumar A.M.: Linkage of presumptive multidrug resistant tuberculosis(MDR-TB) patients to diagnostic and treatment servicesin Cambodia. PloS One, 2013; 8: e59903
Google Scholar - 35. Kornberg A., Baker T.A.: The DNA replication. Second edition.W.H. Freeman & Co, New York 1992
Google Scholar - 36. Kuhl A., Svenstrup N., Ladel C., Otteneder M., Binas A., SchifferG., Brands M., Lampe T., Ziegelbauer K., Rubsamen-Waigmann H., HaebichD., Ehlert K.: Biological characterization of novel inhibitors ofthe gram-positive DNA polymerase IIIC enzyme. Antimicrob. AgentsChemother., 2005; 49: 987-995
Google Scholar - 37. Laginha K.M., Verwoert S., Charrois G.J., Allen T.M.: Determinationof doxorubicin levels in whole tumor and tumor nuclei inmurine breast cancer tumors. Clin. Cancer. Res., 2005; 11: 6944-6949
Google Scholar - 38. Leelaram M.N., Bhat A.G., Suneetha N., Nagaraja V., ManjunathR.: Immunological cross-reactivity of mycobacterial topoisomeraseI and divergence from other bacteria. Tuberc. Edinb. Scotl.;2009; 89: 256-262
Google Scholar - 39. Leelaram M.N., Suneetha N., Nagaraja V., Manjunath R.: A newELISA plate based microtiter well assay for mycobacterial topoisomeraseI for the direct screening of enzyme inhibitory monoclonalantibody supernatants. J. Immunol. Methods, 2010; 357: 26-32
Google Scholar - 40. López de Saro F.J., O’Donnell M.: Interaction of the beta slidingclamp with MutS, ligase, and DNA polymerase I. Proc. Natl. Acad.Sci. USA, 2001; 98: 8376-8380
Google Scholar - 41. Lu D., Bernstein D.A., Satyshur K.A., Keck J.L.: Small-moleculetools for dissecting the roles of SSB/protein interactions in genomemaintenance. Proc. Natl. Acad. Sci. USA, 2010; 107: 633-638
Google Scholar - 42. Lu D., Windsor M.A., Gellman S.H., Keck J.L.: Peptide inhibitorsidentify roles for SSB C-terminal residues in SSB/exonuclease I complexformation. Biochemistry (Mosc), 2009; 48: 6764-6771
Google Scholar - 43. Maxwell A., Burton N.P., O’Hagan N.: High-throughput assaysfor DNA gyrase and other topoisomerases. Nucleic Acids Res., 2006;34: e104
Google Scholar - 44. McGlynn P., Lloyd R.G.: Recombinational repair and restart ofdamaged replication forks. Nat. Rev. Mol. Cell Biol., 2002; 3: 859-870
Google Scholar - 45. McHenry C.S.: DNA polymerase III holoenzyme of Escherichiacoli: components and function of a true replicative complex. Mol.Cell. Biochem., 1985; 66: 71-85
Google Scholar - 46. McKay G.A., Reddy R., Arhin F., Belley A., Lehoux D., Moeck G.,Sarmiento I., Parr T.R., Gros P., Pelletier J., Far A.R.: TriaminotriazineDNA helicase inhibitors with antibacterial activity. Bioorg. Med.Chem. Lett., 2006; 16: 1286-1290
Google Scholar - 47. Messer W., Meijer M, Bergmans H.E., Hansen F.G., von MeyenburgK., Beck E., Schaller H.: Origin of replication, oriC, of the Escherichiacoli K12 chromosome: nucleotide sequence. Cold Spring Harb.Symp. Quant. Biol., 1979; 43: 139-145
Google Scholar - 48. Moir D.T., Ming Di., Opperman T., Schweizer H.P., Bowlin T.L.:A high-throughput, homogeneous, bioluminescent assay for Pseudomonasaeruginosa gyrase inhibitors and other DNA-damagingagents. J. Biomol. Screen, 2007; 12: 855-864
Google Scholar - 49. Morais Cabral J.H., Jackson A.P., Smith C.V., Shikotra N., MaxwellA., Liddington R.C.: Crystal structure of the breakage-reunion domainof DNA gyrase. Nature, 1997; 388: 903-906
Google Scholar - 50. Nordmann P., Cuzon G., Naas T.: The real threat of Klebsiellapneumoniae carbapenemase-producing bacteria. Lancet Infect.Dis., 2009; 9: 228-236
Google Scholar - 51. Pommier Y.: Drugging topoisomerases: lessons and challenges.ACS Chem. Biol., 2013; 8: 82-95
Google Scholar - 52. Reyes-Lamothe R., Sherratt D.J., Leake M.C.: Stoichiometry andarchitecture of active DNA replication machinery in Escherichia coli.Science, 2010; 328: 498-501
Google Scholar - 53. Robinson A., Causer R.J., Dixon N.E.: Architecture and conservationof the bacterial DNA replication machinery, an underexploiteddrug target. Curr. Drug Targets, 2012; 13: 352-372
Google Scholar - 54. Rothenberg M.L.: Topoisomerase I inhibitors: review and update.Ann. Oncol., 1997; 8: 837-855
Google Scholar - 55. Scherzinger E., Haring V., Lurz R., Otto S.: Plasmid RSF1010 DNAreplication in vitro promoted by purified RSF1010 RepA, RepB andRepC proteins. Nucleic Acids Res., 1991; 19: 1203-1211
Google Scholar - 56. Seville M., West A.B., Cull M.G., McHenry C.S.: Fluorometric assayfor DNA polymerases and reverse transcriptase. BioTechniques,1996; 21: 664-672
Google Scholar - 57. Shakya N., Srivastav N.C., Bhavanam S., Tse C., Desroches N.,Agrawal B., Kunimoto D.Y., Kumar R.: Discovery of novel 5-(ethyl orhydroxymethyl) analogs of 2’-’up’ fluoro (or hydroxyl) pyrimidinenucleosides as a new class of Mycobacterium tuberculosis, Mycobacteriumbovis and Mycobacterium avium inhibitors. Bioorg. Med.Chem., 2012; 20: 4088-4097
Google Scholar - 58. Shapiro A., Jahic H., Prasad S., Ehmann D., Thresher J., Gao N.,Hajec L.: A homogeneous, high-throughput fluorescence anisotropy–based DNA supercoiling assay. J. Biomol. Screen, 2010; 15: 1088-1098
Google Scholar - 59. Shereda R.D., Kozlov A.G., Lohman T.M., Cox M.M., Keck J.L.: SSBas an organizer/mobilizer of genome maintenance complexes. Crit.Rev. Biochem. Mol. Biol., 2008; 43: 289-318
Google Scholar - 60. Shuman S., Moss B.: Identification of a vaccinia virus gene encodinga type I DNA topoisomerase. Proc. Natl. Acad. Sci. USA, 1987;84: 7478-7482
Google Scholar - 61. Siwek A., Stączek P., Stefańska J.: Synthesis and structure-activityrelationship studies of 4-arylthiosemicarbazides as topoisomeraseIV inhibitors with Gram-positive antibacterial activity. Search formolecular basis of antibacterial activity of thiosemicarbazides. Eur.J. Med. Chem., 2011; 46: 5717-5726
Google Scholar - 62. Slesarev A.I., Lake J.A., Stetter K.O., Gellert M,. Kozyavkin S.A.:Purification and characterization of DNA topoisomerase V. An enzymefrom the hyperthermophilic prokaryote Methanopyrus kandlerithat resembles eukaryotic topoisomerase I. J. Biol. Chem., 1994;269: 3295-3303
Google Scholar - 63. Srivastav N.C., Shakya N., Bhavanam S., Agrawal A., Tse C., DesrochesN., Kunimoto D.Y., Kumar R.: Antimycobacterial activitiesof 5-alkyl (or halo)-3’-substituted pyrimidine nucleoside analogs.Bioorg. Med. Chem. Lett., 2012; 22: 1091-1094
Google Scholar - 64. Stavans J., Oppenheim A.: DNA-protein interactions and bacterialchromosome architecture. Phys. Biol., 2006: 3: 1-10
Google Scholar - 65. Stillman B.: Cell cycle control of DNA replication. Science, 1996;274: 1659-1664
Google Scholar - 66. Swanberg S.L., Wang J.C.: Cloning and sequencing of the Escherichiacoli gyrA gene coding for the A subunit of DNA gyrase. J. Mol.Biol., 1987; 197: 729-736
Google Scholar - 67. Szafran M., Zakrzewska-Czerwińska J., Jakimowicz D.: Bakteryjnetopoizomerazy typu I – rola biologiczna i zastosowanie jakopotencjalnych celów dla antybiotyków. Postȩpy Hig. Med. Dośw.,2013; 67: 130-142
Google Scholar - 68. Taft-Benz S.A., Schaaper R.M.: The theta subunit of Escherichiacoli DNA polymerase III: a role in stabilizing the epsilon proofreadingsubunit. J. Bacteriol., 2004; 186: 2774-2780
Google Scholar - 69. Tarantino P.M., Zhi C., Wright G.E., Brown NC.: Inhibitors of DNApolymerase III as novel antimicrobial agents against gram-positiveeubacteria. Antimicrob. Agents Chemother., 1999; 43: 1982-1987
Google Scholar - 70. Taylor J.A., Mitchenall L.A., Rejzek M., Field R.A., Maxwell A.:Application of a novel microtitre plate-based assay for the discoveryof new inhibitors of DNA gyrase and DNA topoisomerase VI. PloSOne, 2013; 8: e58010
Google Scholar - 71. Topcu Z.: DNA topoisomerases as targets for anticancer drugs.J. Clin. Pharm. Ther., 2001; 26: 405-416
Google Scholar - 72. Tsai-Pflugfelder M., Liu L.F., Liu A.A., Tewey K.M., Whang-PengJ., Knutsen T., Huebner K., Croce C., Wang J.C: Cloning and sequencingof cDNA encoding human DNA topoisomerase II and localizationof the gene to chromosome region 17q21-22. Proc. Natl. Acad. Sci.USA, 1988; 85: 7177-7181
Google Scholar - 73. Tse-Dinh Y.C.: Bacterial topoisomerase I as a target for discoveryof antibacterial compounds. Nucleic Acids Res., 2009; 37: 731-737
Google Scholar - 74. Tse-Dinh Y.C., Wang J.C.: Complete nucleotide sequence of thetopA gene encoding Escherichia coli DNA topoisomerase I. J. Mol.Biol., 1986; 191: 321-331
Google Scholar - 75. Waga S., Stillman B.: The DNA replication fork in eukaryoticcells. Annu. Rev. Biochem., 1998; 67: 721-751
Google Scholar - 76. Wallis J.W., Chrebet G., Brodsky G., Rolfe M., Rothstein R.: A hyper-recombinationmutation in S. cerevisiae identifies a novel eukaryotictopoisomerase. Cell, 1989; 58: 409-419
Google Scholar - 77. Xu H., Ziegelin G., Schröder W., Frank J., Ayora S., Alonso J.C.,Lanka E., Saenger W.: Flavones inhibit the hexameric replicativehelicase RepA. Nucleic Acids Res., 2001; 29: 5058-5066
Google Scholar - 78. Zhang Y., Yang F., Kao Y.C., Kurilla M.G., Pompliano D.L., DickerI.B.: Homogenous assays for Escherichia coli DnaB-stimulated DnaGprimase and DnaB helicase and their use in screening for chemicalinhibitors. Anal. Biochem., 2002; 304: 174-179
Google Scholar - 79. Zhang Z., Cheng B., Tse-Dinh Y.C.: Crystal structure of a covalentintermediate in DNA cleavage and rejoining by Escherichia coli DNAtopoisomerase I. Proc. Natl. Acad. Sci. USA, 2011; 108: 6939-6944
Google Scholar - 80. Zhi C., Long Z.Y., Manikowski A., Comstock J., Xu W.C., BrownN.C., Tarantino P.M., Holm K.A., Dix E.J., Wright G.E.: Hybrid antibacterials.DNA polymerase-topoisomerase inhibitors. J. Med. Chem.,2006; 49: 1455-1465
Google Scholar