Role of protein disulfide isomerase in activation of integrins

COMMENTARY ON THE LAW

Role of protein disulfide isomerase in activation of integrins

Marcin Popielarski 1 , Halszka Ponamarczuk 1 , Katarzyna Sobierajska 1 , Maria Świątkowska 1

1. Katedra i Zakład Biofizyki Molekularnej i Medycznej Uniwersytet Medyczny w Łodzi

Published: 2014-05-30
DOI: 10.5604/17322693.1105766
GICID: 01.3001.0003.1241
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 666-683

 

Abstract

Integrins belong to a large family of transmembrane cell adhesion receptors that communicate biochemical and mechanical signals in a bidirectional manner across the plasma membrane. Integrins and their ligands play a crucial role in a number of physiological and pathological processes, including cell migration, cell differentiation, hemostasis, adhesion, angiogenesis, cancer, cell invasiveness and wound healing. Intracellular signals switch integrins into a ligand-competent state as a result of conformational changes within the integrin molecule. Binding of extracellular ligands induces structural changes that can transmit signals to the cell interior. Transition of integrins from an inactive to a ligand binding state involves rearrangement of the disulfide bonding pattern. The rearrangement of disulfide bonds is modulated by protein disulfide isomerase (PDI). PDI has been found on the surface of several types of cells, including endothelial cells, hepatocytes, cancer cells, pancreatic cells and B cells. PDI was identified on the platelet surface, where it plays an important role in platelet reactions such as adhesion, aggregation and secretion. PDI was found to directly interact with integrins. Disulfide-thiol exchange mediated by PDI appears to be involved in the conformational changes in integrin activation. In this report we describe the structure of integrin and the role of disulfide bond rearrangement in its activation.

References

  • 1. Adair B.D., Yeager M.: Three-dimensional model of the humanplatelet integrin αIIbβ3 based on electron cryomicroscopy and x-raycrystallography. Proc. Natl. Acad. Sci. USA, 2002; 99: 14059-14064
    Google Scholar
  • 2. Anderson M.E., Meister A.: Dynamic state of glutathione in bloodplasma. J. Biol. Chem., 1980; 255: 9530-9533
    Google Scholar
  • 3. Andersson A., Isaksson A., Brattström L., Hultberg B.: Homocysteineand other thiols determined in plasma by HPLC and thiolspecificpostcolumn derivatization. Clin. Chem., 1993; 39: 1590-1597
    Google Scholar
  • 4. Appenzeller-Herzog C., Riemer J., Christensen B., Sorensen E.S.,Ellgaard L.: A novel disulphide switch mechanism in Ero1α balancesER oxidation in human cells. EMBO J., 2008; 27: 2977-2987
    Google Scholar
  • 5. Aszodi A., Hunziker E.B., Brakebusch C., Fässler R.: β1 integrinsregulate chondrocyte rotation, G1 progression, and cytokinesis.Genes Dev., 2003; 17: 2465-2479
    Google Scholar
  • 6. Baciu P.C., Suleiman E.A., Deryugina E.I, Strongin A.Y.: Membranetype-1 matrix metalloproteinase (MT1-MMP) processing of pro-αv integrin regulates cross-talk between αvβ3 and α2β1 integrins inbreast carcinoma cells. Exp. Cell Res., 2003; 291: 167-175
    Google Scholar
  • 7. Beglova N., Blacklow S.C., Takagi J., Springer T.A.: Cysteine-richmodule structure reveals a fulcrum for integrin rearrangement uponactivation. Nat. Struct. Biol., 2002; 9: 282-287
    Google Scholar
  • 8. Benham A.M., Cabibbo A., Fassio A., Bulleid N., Sitia R., BraakmanI.: The CXXCXXC motif determines the folding, structure and stabilityof human Ero1-Lα. EMBO J., 2000; 19: 4493-4502
    Google Scholar
  • 9. Bennett T.A., Edwards B.S., Sklar L.A., Rogelj S.: Sulfhydryl regulationof L-selectin shedding: phenylarsine oxide promotes activation-independentL-selectin shedding from leukocytes. J. Immunol.,2000; 164: 4120-4129
    Google Scholar
  • 10. Bi S., Hong P.W., Lee B., Baum L.G.: Galectin-9 binding to cellsurface protein disulfide isomerase regulates the redox environmentto enhance T-cell migration and HIV entry. Proc. Natl. Acad.Sci. USA, 2011; 108: 10650-10655
    Google Scholar
  • 11. Burgess J.K., Hotchkiss K.A., Suter C., Dudman N.P., SzöllösiJ., Chesterman C.N., Chong B.H., Hogg P.J.: Physical proximity andfunctional association of glycoprotein 1bα and protein-disulfideisomerase on the platelet plasma membrane. J. Biol. Chem., 2000;275: 9758-9766
    Google Scholar
  • 12. Burke R.D.: Invertebrate integrins: structure, function and evolution.Int. Rev.Cytol., 1999; 191: 257-284
    Google Scholar
  • 13. Butta N., Arias-Salgado E.G., González-Manchón C., Ferrer M.,Larrucea S., Ayuso M.S., Parrilla R.: Disruption of the β3 663-687 disulfidebridge confers constitutive activity to β3 integrins. Blood,2003; 102: 2491-2497
    Google Scholar
  • 14. Cabrera M., Muñiz M., Hidalgo J., Vega L., Martín M.E., VelascoA.: The retrieval function of the KDEL receptor requires PKA phosphorylationof its C-terminus. Mol. Biol. Cell, 2003; 14: 4114-4125
    Google Scholar
  • 15. Cai H., Wang C.C., and Tsou C.L.: Chaperone-like activity of proteindisulfide isomerase in the refolding of a protein with no disulfidebonds. J. Biol. Chem., 1994; 269: 24550-24552
    Google Scholar
  • 16. Calvete J.J., Henschen A., González-Rodríguez J.: Complete localizationof the intrachain disulphide bonds and the N-glycosylationpoints in the alpha-subunit of human platelet glycoprotein IIb. Biochem.J., 1989; 261: 561-568
    Google Scholar
  • 17. Chen K., Detwiler T.C., Essex D.W.: Characterization of proteindisulphide isomerase released from activated platelets. Br. J. Haematol.,1995; 90: 425-431
    Google Scholar
  • 18. Cho J., Furie B.C., Coughlin S.R., Furie B.: A critical role for extracellularprotein disulfide isomerase during thrombus formationin mice. J. Clin. Invest., 2008; 118: 1123-1131
    Google Scholar
  • 19. Dyson H.J., Jeng M.F., Tennant L.L., Slaby I., Lindell M., Cui D.S.,Kuprin S., Holmgren A.: Effects of buried charged groups on cysteinethiol ionization and reactivity in Escherichia coli thioredoxin:structural and functional characterization of mutants of Asp26 andLys57. Biochemistry, 1997; 36: 2622-2636
    Google Scholar
  • 20. Eliceiri B.P., Klemke R., Stromblad S., Cheresh D.A.: Integrin αVβ3requirement for sustained mitogen-activated protein kinase activityduring angiogenesis. J. Cell Biol., 1998; 140: 1255-1263
    Google Scholar
  • 21. Emsley J., Knight C.G., Farndale R.W., Barnes M.J., LiddingtonR.C:. Structural basis of collagen recognition by integrin α2β1. Cell,2000; 101: 47-56
    Google Scholar
  • 22. Essex, D.W.: Redox control of platelet function. Antioxid. RedoxSignal., 2009; 11: 1191-1225
    Google Scholar
  • 23. Essex D.W., Chen K., Swiatkowska M.: Localization of proteindisulfide isomerase to the external surface of the platelet plasmamembrane. Blood, 1995; 86: 2168-2173
    Google Scholar
  • 24. Essex D.W., Li M.: Protein disulphide isomerase mediates plateletaggregation and secretion. Br. J. Haematol., 1999; 104: 448-454
    Google Scholar
  • 25. Frand A.R., Kaiser C.A.: Two pairs of conserved cysteines are requiredfor the oxidative activity of Ero1p in protein disulfide bond formationin the endoplasmic reticulum. Mol. Biol. Cell, 2000; 11: 2833-2843
    Google Scholar
  • 26. Gess B., Hofbauer K.H., Wenger R.H., Lohaus C., Meyer H.E.,Kurtz A.: The cellular oxygen tension regulates expression of theendoplasmic reticulum oxidoreductase ERO1-Lα. Eur. J. Biochem.,2003; 270: 2228-2235
    Google Scholar
  • 27. Goldberger R.F., Epstein C.J., Anfinsen C.B.: Acceleration of reactivationof reduced bovine pancreatic ribonuclease by a microsomalsystem from rat liver. J. Biol. Chem., 1963; 238: 628-635
    Google Scholar
  • 28. Gross E., Sevier C.S., Heldman N., Vitu E., Bentzur M., KaiserC.A., Thorpe C., Fass D.: Generating disulfides enzymatically: reactionproducts and electron acceptors of the endoplasmic reticulumthiol oxidase Ero1p. Proc. Natl. Acad. Sci. USA, 2006; 103: 299-304
    Google Scholar
  • 29. Hatahet F., Ruddock L.W.: Protein disulfide isomerase: a criticalevaluation of its function in disulfide bond formation. Antioxid.Redox Signal., 2009; 11: 2807-2850
    Google Scholar
  • 30. Humphries M.J.: Integrin structure. Biochem. Soc. Trans., 2000;28: 311-339
    Google Scholar
  • 31. Hynes R.O.: Integrins: bidirectional, allosteric signaling machines.Cell, 2002; 110: 673-687
    Google Scholar
  • 32. Hynes R.O., Zhao Q.: The evolution of cell adhesion. J. Cell Biol.,2000; 150: F89-F96
    Google Scholar
  • 33. Kamata T., Ambo H., Puzon-McLaughlin W., Tieu K.K., Handa M.,Ikeda Y., Takada Y.: Critical cysteine residues for regulation of integrinαIIbβ3 are clustered in the epidermal growth factor domainsof the β3 subunit. Biochem. J., 2004; 378: 1079-1082
    Google Scholar
  • 34. Kamata T., Handa M., Sato Y., Ikeda Y., Aiso S.: Membrane-proximalα/β stalk interactions differentially regulate integrin activation.J. Biol. Chem., 2005; 280: 24775-24783
    Google Scholar
  • 35. Kiema, T., Lad Y., Jiang P., Oxley C.L., Baldassarre M., WegenerK.L., Campbell I.D., Ylanne J., Calderwood D.A.: The molecular basisof filamin binding to integrins and competition with talin. Mol.Cell, 2006; 21: 337-347
    Google Scholar
  • 36. Klappa P., Hawkins H.C., Freedman R.B.: Interactions betweenprotein disulphide isomerase and peptides. Eur. J. Biochem., 1997;248: 37-42
    Google Scholar
  • 37. Klappa P., Koivunen P., Pirneskoski A., Karvonen P., RuddockL.W., Kivirikko K.I., Freedman R.B.: Mutations that destabilize thea’ domain of human protein-disulfide isomerase indirectly affectpeptide binding. J. Biol. Chem., 2000; 275: 13213-13218
    Google Scholar
  • 38. Klappa P., Ruddock L.W., Darby N.J., Freedman R.B.: The b’ domainprovides the principal peptide-binding site of protein disulfideisomerase but all domains contribute to binding of misfoldedproteins. EMBO J., 1998; 17: 927-935
    Google Scholar
  • 39. Koivunen P., Pirneskoski A., Karvonen P., Ljung J., Helaakoski T.,Notbohm H., Kivirikko K.I.: The acidic C-terminal domain of proteindisulfide isomerase is not critical for the enzyme subunit functionor for the chaperone or disulfide isomerase activities of the polypeptide.EMBO J., 1999; 18: 65-74
    Google Scholar
  • 40. Kortemme T., Creighton T.E.: Ionisation of cysteine residues atthe termini of model α-helical peptides: relevance to unusual thiolpKa values in proteins of the thioredoxin family. J. Mol. Biol., 1995;253: 799-812
    Google Scholar
  • 41. Kortemme T., Darby N.J., Creighton T.E.: Electrostatic interactionsin the active site of the N-terminal thioredoxin-like domainof protein disulfide isomerase. Biochemistry, 1996; 35: 14503-14511
    Google Scholar
  • 42. Kozlov G., Määttänen P., Thomas D.Y., Gehring K.: A structuraloverview of the PDI family of proteins. FEBS J., 2010; 277: 3924-3936
    Google Scholar
  • 43. Lappi A.K., Lensink M.F., Alanen H.I., Salo K.E., Lobell M., Juffer A.H.,Ruddock L.W.: A conserved arginine plays a role in the catalytic cycleof the protein disulphide isomerases. J. Mol. Biol., 2004; 335: 283-295
    Google Scholar
  • 44. Laurindo F.R., Pescatore L.A., Fernandes D.C.: Protein disulfideisomerase in redox cell signaling and homeostasis. Free Radic. Biol.Med., 2012; 52: 1954-1966
    Google Scholar
  • 45. Lee J.O., Rieu P., Arnaout M.A., Liddington R.: Crystal structureof the A domain from the α subunit of integrin CR3 (CD11b/CD18).Cell, 1995; 80: 631-638
    Google Scholar
  • 46. Lissitzky J.C., Luis J., Munzer J.S., Benjannet S., Parat F., ChrétienM., Marvaldi J., Seidah N.G.: Endoproteolytic processing of integrinpro-α subunits involves the redundant function of furin and proproteinconvertase (PC) 5A, but not paired basic amino acid convertingenzyme (PACE) 4, PC5B or PC7. Biochem. J., 2000; 346: 133-138
    Google Scholar
  • 47. Loftus J.C., Liddington R.C.: Cell adhesion in vascular biology.New insights into integrin-ligand interaction. J. Clin. Invest., 1997;99: 2302-2306
    Google Scholar
  • 48. Luo B.H., Carman C.V., Springer T.A.: Structural basis of integrinregulation and signaling. Annu. Rev. Immunol., 2007; 25: 619-647
    Google Scholar
  • 49. Mansoor M.A., Svardal A.M., Ueland P.M.: Determination of thein vivo redox status of cysteine, cysteinylglycine, homocysteine, andglutathione in human plasma. Anal. Biochem., 1992; 200: 218-229
    Google Scholar
  • 50. Marciniak S.J., Yun C.Y., Oyadomari S., Novoa I., Zhang Y., JungreisR., Nagata K., Harding H.P., Ron D.: CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmicreticulum. Genes Dev., 2004; 18: 3066-3077
    Google Scholar
  • 51. Masui, S., Vavassori, S., Fagioli, C., Sitia, R., Inaba K.: Molecularbases of cyclic and specific disulfide interchange between humanERO1α protein and protein-disulfide isomerase (PDI). J. Biol. Chem.,2011; 286: 16261-16271
    Google Scholar
  • 52. Meister A.: A glutathione metabolism. Methods Enzymol., 199339: 1590-1597
    Google Scholar
  • 53. Molteni S.N., Fassio A., Ciriolo M.R., Filomeni G., Pasqualetto E.,Fagioli C., Sitia R.: Glutathione limits Ero1-dependent oxidation inthe endoplasmic reticulum. J. Biol. Chem., 2004; 279: 32667-32673
    Google Scholar
  • 54. Mor-Cohen R., Rosenberg N., Einav Y., Zelzion E., Landau M.,Mansour W., Averbukh Y., Seligsohn U.: Unique disulfide bonds inepidermal growth factor (EGF) domains of β3 affect structure andfunction of αIIbβ3 and αvβ3 integrins in different manner. J. Biol.Chem., 2012; 287: 8879-8891
    Google Scholar
  • 55. Mor-Cohen R., Rosenberg N., Landau M., Lahav J., Seligsohn U.:Specific cysteines in β3 are involved in disulfide bond exchangedependentand -independent activation of αIIbβ3. J. Biol. Chem.,2008; 283: 19235-19244
    Google Scholar
  • 56. Mould A.P., Akiyama S.K., Humphries M.J.: Regulation of integrinα5β1-fibronectin interactions by divalent cations. Evidence for distinctclasses of binding sites for Mn2+, Mg2+, and Ca2+. J. Biol. Chem.,1995; 270: 26270-26277
    Google Scholar
  • 57. Mould A.P., Barton S.J., Askari J.A., Craig S.E., Humphries M.J.:Role of ADMIDAS cation-binding site in ligand recognition by integrinα5β1. J. Biol. Chem., 2003; 278: 51622-51629
    Google Scholar
  • 58. Mould A.P., Humphries M.J.: Regulation of integrin functionthrough conformational complexity: not simply a knee-jerk reaction?Curr. Opin. Cell Biol., 2004; 16: 544-551
    Google Scholar
  • 59. Noiva R., Freedman R.B., Lennarz W.J.: Peptide binding to proteindisulfide isomerase occurs at a site distinct from the active sites. J.Biol. Chem., 1993; 268: 19210-19217
    Google Scholar
  • 60. O’Neill S., Robinson A., Deering A., Ryan M., Fitzgerald D.J., MoranN.: The platelet integrin αIIbβ3 has an endogenous thiol isomeraseactivity. J. Biol. Chem., 2000; 275: 36984-36990
    Google Scholar
  • 61. Pagani M., Fabbri M., Benedetti C., Fassio A., Pilati S., BulliedN.J., Cabibbo A., Sitia R.: Endoplasmic reticulum oxidoreductin 1-Lβ(ERO1-Lβ), a human gene induced in the course of the unfolded proteinresponse. J. Biol. Chem., 2000; 275: 23685-23692
    Google Scholar
  • 62. Plow E.F., Haas T.A., Zhang L., Loftus J., Smith J.W.: Ligand bindingto integrins. J. Biol. Chem., 2000; 275: 21785-21788
    Google Scholar
  • 63. Puig A., Gilbert H.F.: Protein disulfide isomerase activity exhibitschaperone and anti-chaperone activity in the oxidative refolding oflysozyme. J. Biol. Chem., 1994; 269: 7764-7771
    Google Scholar
  • 64. Qi Y., Grishin N.V.: Structural classification of thioredoxin-likefold proteins. Proteins, 2005; 58: 376-388
    Google Scholar
  • 65. Quan H., Fan G., Wang C.C.: Independence of the chaperone activityof protein disulfide isomerase from its thioredoxin-like activesite. J. Biol. Chem., 1995; 270: 17078-17080
    Google Scholar
  • 66. Raturi A., Miersch S., Hudson J.W., Mutus B.: Platelet microparticleassociatedprotein disulfide isomerase promotes platelet aggregationand inactivates insulin. Biochim. Biophys. Acta, 2008; 1778: 2790-2796
    Google Scholar
  • 67. Rigobello M.P., Donella-Deana A., Cesaro L., Bindoli A.: Distributionof protein disulphide isomerase in rat liver mitochondria.Biochem. J., 2001; 356: 567-570
    Google Scholar
  • 68. Ruiz C., Liu C.Y., Sun Q.H., Sigaud-Fiks M., Fressinaud E., MullerJ.Y., Nurden P., Nurden A.T., Newman P.J., Valentin N.: A point mutationin the cysteine-rich domain of glycoprotein (GP) IIIa resultsin the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked ina high-affinity state and a Glanzmann thrombasthenia-like phenotype.Blood, 2001; 98: 2432-2441
    Google Scholar
  • 69. Schwander M., Leu M., Stumm M., Dorchies O.M., Ruegg U.T.,Schittny J., Müller U.: β1 integrins regulate myoblast fusion andsarcomere assembly. Dev. Cell, 2003; 4: 673-685
    Google Scholar
  • 70. Schwartz M.A., Schaller M.D., Ginsberg M.H.: Integrins: emergingparadigms of signal transduction. Annu. Rev. Cell Dev. Biol.,1995; 11: 549-599
    Google Scholar
  • 71. Shi M., Sundramurthy K., Liu B., Tan S.M., Law S.K., Lescar J.:The crystal structure of the plexin-semaphorin-integrin domain/hybrid domain/I-EGF1 segment from the human integrin β2 subunitat 1.8-A resolution. J. Biol. Chem., 2005; 280: 30586-30593
    Google Scholar
  • 72. Shimaoka M., Xiao T., Liu J.H., Yang Y., Dong Y., Jun C.D., McCormackA., Zhang R., Joachimiak A., Takagi J., Wang J.H., SpringerT.A: Structures of the αL I domain and its complex with ICAM-1reveal a shape-shifting pathway for integrin regulation. Cell, 2003;112: 99-111
    Google Scholar
  • 73. Smagghe B.J., Huang P.S., Ban Y.E., Baker D., Springer T.A.: Modulationof integrin activation by an entropic spring in the β-knee. J.Biol. Chem., 2010; 285: 32954-32966
    Google Scholar
  • 74. Song J.L.,Wang C.C.: Chaperone-like activity of protein disulfide-isomerasein the refolding of rhodanese. Eur. J. Biochem., 1995;231: 312-316
    Google Scholar
  • 75. Springer T.A., Dustin M.L.: Integrin inside-out signaling andthe immunological synapse. Curr. Opin. Cell Biol., 2012; 24: 107-115
    Google Scholar
  • 76. Stewart P.L., Nemerow G.R.: Cell integrins: commonly used receptorsfor diverse viral pathogens. Trends Microbiol., 2007; 15: 500-507
    Google Scholar
  • 77. Swiatkowska M., Padula G., Michalec L., Stasiak M., SkurzynskiS., Cierniewski C.S.: Ero1α is expressed on blood platelets in associationwith protein-disulfide isomerase and contributes to redoxcontrolledremodeling of αIIbβ3. J. Biol. Chem., 2010; 285: 29874-29883
    Google Scholar
  • 78. Swiatkowska M., Szymański J., Padula G., Cierniewski C.S.: Interactionand functional association of protein disulfide isomerasewith αVβ3 integrin on endothelial cells. FEBS J., 2008; 275: 1813-1823
    Google Scholar
  • 79. Takada Y., Ye X., Simon S.: The integrins. Genome Biol., 2007;8: 215
    Google Scholar
  • 80. Takagi J., Beglova N., Yalamanchili P., Blacklow S.C., SpringerT.A.: Definition of EGF-like, closely interacting modules that bearactivation epitopes in integrin β subunits. Proc. Natl. Acad. Sci. USA,2001; 98: 11175-11180
    Google Scholar
  • 81. Tavender T.J., Bulleid N.J.: Molecular mechanisms regulatingoxidative activity of the Ero1 family in the endoplasmic reticulum.Antioxid. Redox Signal., 2010; 13: 1177-1187
    Google Scholar
  • 82. Tu Y., Wu S., Shi X., Chen K., Wu C.: Migfilin and Mig-2 link focaladhesions to filamin and the actin cytoskeleton and function incell shape modulation. Cell, 2003; 113: 37-47
    Google Scholar
  • 83. Turano C., Coppari S., Altieri, F., Ferraro A.: Proteins of the PDIfamily: unpredicted non-ER locations and functions. J. Cell. Physiol.,2002; 193: 154-163
    Google Scholar
  • 84. Ueland P.M., Mansoor M.A., Guttormsen A.B., Müller F., AukrustP., Refsum H., Svardal A.M.: Reduced, oxidized and protein-boundforms of homocysteine and other aminothiols in plasma comprisethe redox thiol status a possible element of the extracellular antioxidantdefense system. J. Nutr., 1996; 126: 1281S-1294S
    Google Scholar
  • 85. Venetianer P. Straub F.B.: Enzymic formation of the disulfidebridges of ribonuclease. Acta Physiol. Acad. Sci. Hung., 1963; 24:41-53
    Google Scholar
  • 86. Vinogradova O., Haas T., Plow E.F., Qin J.: A structural basis forintegrin activation by the cytoplasmic tail of the αIIb-subunit. Proc.Natl. Acad. Sci. USA, 2000; 97: 1450-1455
    Google Scholar
  • 87. Vinogradova O., Vaynberg J., Kong X., Haas T.A., Plow E.F., QinJ.: Membrane-mediated structural transitions at the cytoplasmicface during integrin activation. Proc. Natl. Acad. Sci. USA, 2004;101: 4094-4099
    Google Scholar
  • 88. Vorup-Jensen T., Ostermeier C., Shimaoka M., Hommel U.,Springer T.A.: Structure and allosteric regulation of the αXβ2 integrinI domain. Proc. Natl. Acad. Sci. USA, 2003; 100: 1873-1878
    Google Scholar
  • 89. Vorup-Jensen T., Waldron T.T., Astrof N., Shimaoka M., SpringerT.A.: The connection between metal ion affinity and ligand affinityin integrin I domains. Biochim. Biophys. Acta, 2007; 1774: 1148-1155
    Google Scholar
  • 90. Walker K.W., Gilbert H.F.: Scanning and escape during proteindisulfideisomerase assisted protein folding. J. Biol. Chem., 1997;272: 8845-8848
    Google Scholar
  • 91. Wan S.W., Lin C.F., Lu Y.T., Lei H.Y., Anderson R., Lin Y.S.: Endothelialcell surface expression of protein disulfide isomerase activatesβ1 and β3 integrins and facilitates dengue virus infection. J.Cell. Biochem., 2012; 113: 1681-1691
    Google Scholar
  • 92. Wang L., Wang L., Vavassori S., Li S., Ke H., Anelli T., Degano M.,Ronzoni R., Sitia R., Sun F., Wang C.C.: Crystal structure of humanERp44 shows a dynamic functional modulation by its carboxy-terminaltail. EMBO Rep., 2008; 9: 642-647
    Google Scholar
  • 93. Wilkinson B., Gilbert H.F.: Protein disulfide isomerase. Biochim.Biophys. Acta, 2004; 1699: 35-44
    Google Scholar
  • 94. Willems S.H., Tape C. J., Stanley P.L., Taylor N. A., Mills I.G., NealD.E., McCafferty J., Murphy G.: Thiol isomerases negatively regulatethe cellular shedding activity of ADAM17. Biochem. J., 2010;428: 439-450
    Google Scholar
  • 95. Winter J., Klappa P., Freedman R.B., Lilie H., Rudolph R.: Catalyticactivity and chaperone function of human protein-disulfideisomerase are required for the efficient refolding of proinsulin. J.Biol. Chem., 2002; 277: 310-317
    Google Scholar
  • 96. Xie L., Chesterman C.N., Hogg P.J.: Reduction of von Willebrandfactor by endothelial cells. J. Thromb. Haemost., 2000; 84: 506-513
    Google Scholar
  • 97. Xiong J.P., Mahalingham B., Alonso J.L., Borrelli L.A., Rui X.,Anand S., Hyman B.T., Rysiok T., Müller-Pompalla D., GoodmanS.L., Arnaout M.A.: Crystal structure of the complete integrin αVβ3ectodomain plus an α/β transmembrane fragment. J. Cell Biol., 2009;186: 589-600
    Google Scholar
  • 98. Xiong J.P., Stehle T., Goodman S.L., Arnaout M.A.: A novel adaptationof the integrin PSI domain revealed from its crystal structure.J. Biol. Chem., 2004; 279: 40252-40254
    Google Scholar
  • 99. Xiong J.P., Stehle T., Zhang R., Joachimiak A., Frech M., GoodmanS.L., Arnaout M.A.: Crystal structure of the extracellular segmentof integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science,2002; 296: 151-155
    Google Scholar
  • 100. Yan B., Hu D.D., Knowles S.K., Smith J.W.: Probing chemical andconformational differences in the resting and active conformers ofplatelet integrin αIIbβ3. J. Biol. Chem., 2000; 275: 7249-7260
    Google Scholar
  • 101. Yao Y., Zhou Y.C., Wang C.: Both the isomerase and chaperoneactivities of protein disulfide isomerase are required for the reactivationof reduced and denatured acidic phospholipase A2. EMBOJ., 1997; 16: 651-658
    Google Scholar
  • 102. Ye F., Hu G., Taylor D., Ratnikov B., Bobkov A.A., McLean M.A,.Sligar S.G., Taylor K.A., Ginsberg M.H.: Recreation of the terminalevents in physiological integrin activation. J. Cell Biol., 2010; 188:157-173
    Google Scholar

Full text

Skip to content