Osteoarthritis: etiology, risk factors, molecular mechanisms

COMMENTARY ON THE LAW

Osteoarthritis: etiology, risk factors, molecular mechanisms

Michał Chojnacki 1 , Adam Kwapisz 2 , Marek Synder 2 , Janusz Szemraj 1

1. Zakład Biochemii Medycznej, Uniwersytet Medyczny w Łodzi
2. Klinika Ortopedii i Ortopedii Dziecięcej, Uniwersytet Medyczny w Łodzi

Published: 2014-01-02
DOI: 10.5604/17322693.1103551
GICID: 01.3001.0003.1239
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 640-652

 

Abstract

Osteoartroza jest to nieuleczalna choroba stawów objawiająca się stopniowo postępującymi zmianami zwyrodnieniowym, prowadzącymi do przedwczesnej niepełnosprawności ruchowej. Główną przyczyną powstawania tych zmian są zaburzenia równowagi pomiędzy procesami degeneracji a regeneracji struktur chrząstki stawowej. Dotychczas zidentyfikowano wiele czynników ryzyka sprzyjających rozwojowi choroby zwyrodnieniowej stawów. Wśród nich można wyróżnić: wiek, masę ciała, przebyte urazy stawów, aktywność sportowa, płeć oraz obciążenia genetyczne. Najnowsze doniesienia naukowe potwierdzają, że patogeneza zmian osteoartrotycznych w stawach jest złożona i przebiega na wielu płaszczyznach. Główną rolę w procesie degeneracji chrząstki stawowej odgrywają enzymy z rodziny metaloproteinaz. Aktywność tych enzymów regulowana jest przez liczne cytokiny prozapalne, czynniki transkrypcyjne oraz miRNA. Dokładna analiza wszystkich procesów zachodzących w stawie objętym procesem chorobowym jest niezbędna do opracowania skutecznych strategii terapeutycznych.

References

  • 1. Aida Y., Maeno M., Suzuki N., Namba A., Motohashi M., MatsumotoM., Makimura M., Matsumura H.: The effect of IL-1β on theexpression of inflammatory cytokines and their receptors in humanchondrocytes. Life Sci., 2006; 79: 764-771
    Google Scholar
  • 2. Akhtar N., Rasheed Z., Ramamurthy S., Anbazhagan A.N., VossF.R., Haqqi T.M.: MicroRNA-27b regulates the expression of matrixmetalloproteinase 13 in human osteoarthritis chondrocytes. ArthritisRheum., 2010; 62: 1361-1371
    Google Scholar
  • 3. Amour A., Slocombe P.M., Webster A., Butler M., Knight C.G.,Smith B.J., Stephens P.E., Shelley C., Hutton M., Knäuper V., DochertyA.J., Murphy G.: TNF-α converting enzyme (TACE) is inhibited byTIMP-3. FEBS Lett., 1998; 435: 39-44
    Google Scholar
  • 4. Andreini C., Banci L., Bertini I., Elmi S., Rosato A.: Comparativeanalysis of the ADAM and ADAMTS families. J. Proteome Res., 2005;4: 881-888
    Google Scholar
  • 5. Araldi E., Schipani E.: MicroRNA-140 and the silencing of osteoarthritis.Genes Dev., 2010; 24: 1075-1080
    Google Scholar
  • 6. Bao J.P., Chen W.P., Feng J., Hu P.F., Shi Z.L., Wu L.D.: Leptin plays a catabolicrole on articular cartilage. Mol. Biol. Rep., 2011; 37: 3265-3272
    Google Scholar
  • 7. Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., López-PuertasJ.M., Reddi A.H.: Articular cartilage: structure and regeneration.Tissue Eng. Part B Rev., 2010; 16: 617-627
    Google Scholar
  • 8. Blagojevic M., Jinks C., Jeffery A., Jordan K.P.: Risk factors for onsetof osteoarthritis of the knee in older adults: a systematic review andmeta-analysis. Osteoarthritis Cartilage, 2010; 18: 24-33
    Google Scholar
  • 9. Bluteau G., Conrozier T., Mathieu P., Vignon E., Herbage D., Mallein-GerinF.: Matrix metalloproteinase-1, -3, -13 and aggrecanase-1and -2 are differentially expressed in experimental osteoarthritis.Biochim. Biophys. Acta, 2001; 1526: 147-158
    Google Scholar
  • 10. Buckwalter J.A., Martin J.A.: Sports and osteoarthritis. Curr.Opin. Rheumatol., 2004; 16: 634-639
    Google Scholar
  • 11. Burrage P.S., Brinckerhoff C.E.: Molecular targets in osteoarthritis:metalloproteinases and their inhibitors. Curr. Drug Targets,2007; 8: 293-303
    Google Scholar
  • 12. Busija L., Bridgett L., Williams S.R., Osborne R.H., BuchbinderR., March L., Fransen M.: Osteoarthritis. Best Pract. Res. Clin. Rheumatol.2010; 24: 757-768
    Google Scholar
  • 13. Calich A.L., Domiciano D.S., Fuller R.: Osteoarthritis: can anti–cytokine therapy play a role in treatment? Clin. Rheumatol. 2010;29: 451-455
    Google Scholar
  • 14. Centers for Disease Control and Prevention (CDC). Prevalenceof disabilities and associated health conditions among adults–UnitedStates, 1999. MMWR Morb. Mortal. Wkly Rep., 2001; 50: 120-125
    Google Scholar
  • 15. Chirco R., Liu X.W., Jung K.K., Kim H.R.: Novel functions of TIMPsin cell signaling. Cancer Metastasis Rev., 2006; 25: 99-113
    Google Scholar
  • 16. Cornelis F.M., Luyten F.P., Lories R.J.: Functional effects of susceptibilitygenes in osteoarthritis. Discov. Med., 2011; 12: 129-139
    Google Scholar
  • 17. de Klerk B.M., Schiphof D., Groeneveld F.P., Koes B.W., van OschG.J., van Meurs J.B., Bierma-Zeinstra S.M.: Limited evidence for a protectiveeffect of unopposed oestrogen therapy for osteoarthritis ofthe hip: a systematic review. Rheumatology, 2009; 48: 104-112
    Google Scholar
  • 18. DeGroot J.: The AGE of the matrix: chemistry, consequence andcure. Curr. Opin. Pharmacol., 2004; 4: 301-305
    Google Scholar
  • 19. Dumond H., Presle N., Terlain B., Mainard D., Loeuille D., NetterP., Pottie P.: Evidence for a key role of leptin in osteoarthritis.Arthritis Rheum., 2003; 48: 3118-3129
    Google Scholar
  • 20. Durigova M., Nagase H., Mort J.S., Roughley P.J.: MMPs are lessefficient than ADAMTS5 in cleaving aggrecan core protein. MatrixBiol., 2011; 30: 145-153
    Google Scholar
  • 21. Elders M.J.: The increasing impact of arthritis on public health.J. Rheumatol. Suppl., 2000; 60: 6-8
    Google Scholar
  • 22. Felson D.T., Zhang Y.: An update on the epidemiology of kneeand hip osteoarthritis with a view to prevention. Arthritis Rheum.,1998; 41: 1343-1355
    Google Scholar
  • 23. Felson D.T., Zhang Y., Hannan M.T., Naimark A., Weissman B.N.,Aliabadi P., Levy D.: The incidence and natural history of knee osteoarthritisin the elderly: The Framingham Osteoarthritis Study.Arthritis Rheum., 1995; 38: 1500-1505
    Google Scholar
  • 24. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Metaloproteinazyw miażdżycy naczyń krwionośnych. Postępy Hig. Med. Dośw., 2011;65: 16-27
    Google Scholar
  • 25. Flannery C.R., Lark M.W., Sandy J.D.: Identification of a stromelysincleavage site within the interglobular domain of human aggrecan.Evidence for proteolysis at this site in vivo in human articularcartilage. J. Biol. Chem., 1992; 267: 1008-1014
    Google Scholar
  • 26. Foye P.M., Stitik T.P., Chen B., Nadler S.F.: Osteoarthritis andbody weight. Nutrition Res., 2000; 20: 899-903
    Google Scholar
  • 27. Garstang S.V., Stitik T.P.: Osteoarthritis: epidemiology, risk factors,and pathophysiology. Am. J. Phys. Med. Rehabil., 2006; 85: S2-S11
    Google Scholar
  • 28. Gelber A.C., Hochberg M.C., Mead L.A., Wang N.Y., Wigley F.M.,Klag M.J.: Joint injury in young adults and risk for subsequent kneeand hip osteoarthritis. Ann. Intern. Med., 2000; 133: 321-328
    Google Scholar
  • 29. Gendron C., Kashiwagi M., Lim N.H., Enghild J.J., Thøgersen I.B.,Hughes C., Caterson B., Nagase H.: Proteolytic activities of humanADAMTS-5: comparative studies with ADAMTS-4. J. Biol. Chem.,2007; 282: 18294-18306
    Google Scholar
  • 30. Goodwin J.L., Kraemer J.J., Bajwa Z.H.: The use of opioids in thetreatment of osteoarthritis: when, why, and how? Curr. Rheumatol.Rep., 2009; 11: 5-14
    Google Scholar
  • 31. Groblewska M., Mroczko B., Szmitkowski M.: The role of selectedmatrix metalloproteinases and their inhibitors in colorectal cancerdevelopment. Postępy Hig. Med. Dośw., 2010; 64: 22-30
    Google Scholar
  • 32. Han Y.P., Yan C., Garner W.L.: Proteolytic activation of matrixmetalloproteinase-9 in skin wound healing is inhibited by alpha-1-antichymotrypsin. J. Invest. Dermatol., 2008; 128: 2334-2342
    Google Scholar
  • 33. Heinegård D.: Proteoglycans and more-from molecules to biology.Int. J. Exp. Pathol., 2009; 90: 575-586
    Google Scholar
  • 34. Hendren L., Beeson P.A.: A review of the differences betweennormal and osteoarthritis articular cartilage in human knee andankle joints. Foot (Edinb.), 2009; 19: 171-176
    Google Scholar
  • 35. Hu P.F., Bao J.P., Wu L.D.: The emerging role of adipokines inosteoarthritis: a narrative review. Mol. Biol. Rep., 2011; 38: 873-878
    Google Scholar
  • 36. Huang K., Wu L.D.: Aggrecanase and aggrecan degradation inosteoarthritis: a review. J. Int. Med. Res., 2008; 36: 1149-1160
    Google Scholar
  • 37. Jones S.W., Watkins G., Le Good N., Roberts S., Murphy C.L.,Brockbank S.M., Needham M.R., Read S.J., Newham P.: The identificationof differentially expressed microRNA in osteoarthritic tissuethat modulate the production of TNF-alpha and MMP13. OsteoarthritisCartilage, 2009; 17: 464-472
    Google Scholar
  • 38. Kashiwagi M., Tortorella M., Nagase H., Brew K.: TIMP-3 isa potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2(ADAM-TS5). J. Biol. Chem., 2001; 276: 12501-12504
    Google Scholar
  • 39. Kean W.F., Kean R., Buchanan W.W.: Osteoarthritis: symptoms,signs and source of pain. Inflammopharmacology, 2004; 12: 3-31
    Google Scholar
  • 40. Klein T., Bischoff R.: Physiology and pathophysiology of matrixmetalloproteases. Amino Acids, 2011; 41: 271-290
    Google Scholar
  • 41. Knudson C.B., Knudson W.: Proteoglycans and glycosaminoglycans.Semin. Cell. Dev. Biol., 2001; 12: 69-78
    Google Scholar
  • 42. Koshy P.J., Lundy C.J., Rowan A.D., Porter S., Edwards D.R., HoganA., Clark I.M., Cawston T.E.: The modulation of matrix metalloproteinaseand ADAM gene expression in human chondrocytes byinterleukin-1 and oncostatin M: a time-course study using real-timequantitative reverse transcription-polymerase chain reaction. ArthritisRheum., 2002; 46: 961-967
    Google Scholar
  • 43. Koskinen A., Vuolteenaho K., Nieminen R., Moilanen T., MoilanenE.: Leptin enhances MMP-1, MMP-3 and MMP-13 productionin human osteoarthritic cartilage and correlates with MMP-1 andMMP-3 in synovial fluid from OA patients. Clin. Exp. Rheumatol.,2011; 29: 57-64
    Google Scholar
  • 44. Kotani K., Sakane N., Kamimoto M., Taniguchi N.: Levels of reactiveoxygen metabolites in patients with knee osteoarthritis. Australas.J. Ageing, 2011; 30: 231-233
    Google Scholar
  • 45. Kuno K., Matsushima K.: ADAMTS-1 protein anchors at the extracellularmatrix through the thrombospondin type I motifs and itsspacing region. J. Biol. Chem., 1998; 273: 13912-13917
    Google Scholar
  • 46. Laine L., White W.B., Rostom A., Hochberg M.: COX-2 selectiveinhibitors in the treatment of osteoarthritis. Semin. ArthritisRheum., 2008; 38: 165-187
    Google Scholar
  • 47. Lambert E., Dasse E., Haye B., Petitfrere E.: TIMPs as multifacialproteins. Crit. Rev. Oncol. Hematol., 2004; 49: 187-198
    Google Scholar
  • 48. Lawrence R.C., Felson D.T., Helmick C.G., Arnold L.M., Choi H.,Deyo R.A., Gabriel S., Hirsch R., Hochberg M.C., Hunder G.G., Jordan.JM., Katz J.N., Kremers H.M., Wolfe F.: Estimates of the prevalence ofarthritis and other rheumatic conditions in the United States. PartII. Arthritis Rheum., 2008; 58: 26-35
    Google Scholar
  • 49. Li X., Gibson G., Kim J.S., Kroin J., Xu S., van Wijnen A.J., Im H.J.:MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis.Gene, 2011; 480: 34-41
    Google Scholar
  • 50. Lin E.A., Liu C.J.: The role of ADAMTSs in arthritis. Protein Cell,2010; 1: 33-47
    Google Scholar
  • 51. Lipka D., Boratyński J.: Metaloproteinazy MMP. Struktura i funkcja.Postępy Hig. Med. Dośw., 2008; 62: 328-336
    Google Scholar
  • 52. Loeser R.F.: Aging and osteoarthritis. Curr. Opin. Rheumatol.,2011; 23: 492-496
    Google Scholar
  • 53. Lohmander L.S., Englund P.M., Dahl L.L., Roos E.M.: The longtermconsequence of anterior cruciate ligament and meniscus injuries:osteoarthritis. Am. J. Sports Med., 2007; 35: 1756-1769
    Google Scholar
  • 54. Marcu K.B., Otero M., Olivotto E., Borzi R.M., Goldring M.B.: NFkappaBsignaling: multiple angles to target OA. Curr. Drug Targets,2010; 11: 599-613
    Google Scholar
  • 55. Martel-Pelletier J.: Pathophysiology of osteoarthritis. OsteoarthritisCartilage, 2004; 12, Suppl. A: S31-S33
    Google Scholar
  • 56. May M.J., Ghosh S.: Signal transduction through NF-κB. Immunol.Today, 1998; 19: 80-88
    Google Scholar
  • 57. Migliore A., Bizzi E., Massafra U., Vacca F., Alimonti A., IannessiF., Tormenta S.: Viscosupplementation: a suitable option forhip osteoarthritis in young adults. Eur. Rev. Med. Pharmacol. Sci.,2009; 13: 465-472
    Google Scholar
  • 58. Miyaki S., Sato T., Inoue A., Otsuki S., Ito Y., Yokoyama S., KatoY., Takemoto F., Nakasa T., Yamashita S., Takada S., Lotz M.K., Ueno–Kudo H., Asahara H.: MicroRNA-140 plays dual roles in both cartilagedevelopment and homeostasis. Genes Dev., 2010; 24: 1173-1185
    Google Scholar
  • 59. Moreland L.W.: Intra-articular hyaluronan (hyaluronic acid) andhylans for the treatment of osteoarthritis: mechanisms of action.Arthritis Res. Ther., 2003; 5: 54–67
    Google Scholar
  • 60. Moseley T.A., Haudenschild D.R., Rose L., Reddi A.H.: Interleukin-17family and IL-17 receptors. Cytokine Growth Factor Rev.,2003; 14: 155-174
    Google Scholar
  • 61. Mueller M.B., Tuan R.S.: Anabolic/catabolic balance in pathogenesisof osteoarthritis: identifying molecular targets. PM R, 2011; 3: S3-S11
    Google Scholar
  • 62. Murphy G., Willenbrock F.: Tissue inhibitors of matrix metalloendopeptidases.Methods Enzymol., 1995; 248: 496-510
    Google Scholar
  • 63. Nagase H., Itoh Y., Binner S.: Interaction of alpha 2-macroglobulinwith matrix metalloproteinases and its use for identification oftheir active forms. Ann. N. Y. Acad. Sci., 1994; 732: 294-302
    Google Scholar
  • 64. Nagase H., Visse R., Murphy G.: Structure and function of matrixmetalloproteinases and TIMPs. Cardiovasc. Res., 2006; 69: 562-573
    Google Scholar
  • 65. Nakasa T., Shibuya H., Nagata Y., Niimoto T., Ochi M.: The inhibitoryeffect of microRNA-146a expression on bone destruction incollagen-induced arthritis. Arthritis Rheum., 2011; 63: 1582-1590
    Google Scholar
  • 66. Oeckinghaus A., Ghosh S.: The NF-κB family of transcriptionfactors and its regulation. Cold Spring Harb. Perspect. Biol., 2009;1: a000034
    Google Scholar
  • 67. Onishi R.M., Gaffen S.L.: Interleukin-17 and its target genes:mechanisms of interleukin-17 function in disease. Immunology,2010; 129: 311-321
    Google Scholar
  • 68. Otero M., Plumb D.A., Tsuchimochi K., Dragomir C.L., HashimotoK., Peng H., Olivotto E., Bevilacqua M., Tan L., Yang Z., Zhan Y.,Oettgen P., Li Y., Marcu K.B., Goldring M.B.: E74-like factor 3 (ELF3)impacts on matrix metalloproteinase 13 (MMP13) transcriptionalcontrol in articular chondrocytes under pro-inflammatory stress.J. Biol. Chem., 2012; 287: 3559-3572
    Google Scholar
  • 69. Palotie A., Väisänen P., Ott J., Ryhänen L., Elima K., Vikkula M.,Cheah K., Vuorio E., Peltonen L.: Predisposition to familial osteoarthrosislinked to type II collagen gene. Lancet, 1989; 1: 924-927
    Google Scholar
  • 70. Perumal S., Antipova O., Orgel J.P.: Collagen fibril architecture,domain organization, and triple-helical conformation govern itsproteolysis. Proc. Natl. Acad. Sci. USA, 2008; 105: 2824-2829
    Google Scholar
  • 71. Plaas A., Velasco J., Gorski D.J., Li J., Cole A., Christopherson K.,Sandy J.D.: The relationship between fibrogenic TGFβ1 signaling inthe joint and cartilage degradation in post-injury osteoarthritis.Osteoarthritis Cartilage, 2011; 19: 1081-1090
    Google Scholar
  • 72. Porter S., Clark I.M., Kevorkian L., Edwards D.R.: The ADAMTSmetalloproteinases. Biochem. J., 2005; 386: 15-27
    Google Scholar
  • 73. Pratta M.A., Scherle P.A., Yang G., Liu R.Q., Newton R.C.: Inductionof aggrecanase 1 (ADAM-TS4) by interleukin-1 occurs throughactivation of constitutively produced protein. Arthritis Rheum.,2003; 48: 119-133
    Google Scholar
  • 74. Richmond R.S., Carlson C.S., Register T.C., Shanker G., Loeser R.F.:Functional estrogen receptors in adult articular cartilage: estrogenreplacement therapy increases chondrocyte synthesis of proteoglycansand insulin-like growth factor binding protein 2. ArthritisRheum., 2000; 43: 2081-2090
    Google Scholar
  • 75. Roughley P.J.: The structure and function of cartilage proteoglycans.Eur. Cell Mater., 2006; 12: 92-101
    Google Scholar
  • 76. Sandy J.D., Neame P.J., Boynton R.E., Flannery C.R.: Catabolism ofaggrecan in cartilage explants. Identification of a major cleavage sitewithin the interglobular domain. J. Biol. Chem., 1991; 266: 8683-8685
    Google Scholar
  • 77. Schiller M., Javelaud D., Mauviel A.: TGF-β-induced SMAD signalingand gene regulation: consequences for extracellular matrixremodeling and wound healing. J. Dermatol. Sci., 2004; 35: 83-92
    Google Scholar
  • 78. Scott J.L., Gabrielides C., Davidson R.K., Swingler T.E., Clark I.M.,Wallis G.A., Boot-Handford R.P., Kirkwood T.B., Taylor R.W., YoungD.A.: Superoxide dismutase downregulation in osteoarthritis progressionand end-stage disease. Ann. Rheum. Dis., 2010; 69: 1502-1510
    Google Scholar
  • 79. Sondergaard B.C., Schultz N., Madsen S.H., Bay-Jensen A.C.,Kassem M., Karsdal M.A.: MAPK are essential upstream signalingpathways in proteolytic cartilage degradation – divergence in pathwaysleading to aggrecanase and MMP-mediated articular cartilagedegradation. Osteoarthritis Cartilage, 2010; 18: 279-288
    Google Scholar
  • 80. Song R.H., Tortorella M.D., Malfait A.M., Alston J.T., Yang Z.,Arner E.C., Griggs D.W.: Aggrecan degradation in human articularcartilage explants is mediated by both ADAMTS-4 and ADAMTS-5.Arthritis Rheum., 2007; 56: 575-585
    Google Scholar
  • 81. Stevens-Lapsley J.E., Kohrt W.M.: Osteoarthritis in women:effects of estrogen, obesity and physical activity. Womens Health(Lond. Engl.), 2010; 6: 601-615
    Google Scholar
  • 82. Tallant C., Marrero A., Gomis-Rüth F.X., Tallant C., Marrero A.,Gomis-Rüth F.X.: Matrix metalloproteinases: fold and function oftheir catalytic domains. Biochim. Biophys. Acta, 2010; 1803: 20-28
    Google Scholar
  • 83. Tanigawa S., Aida Y., Kawato T., Honda K., Nakayama G., MotohashiM., Suzuki N., Ochiai K., Matsumura H., Maeno M.: Interleukin–17F affects cartilage matrix turnover by increasing the expressionof collagenases and stromelysin-1 and by decreasing the expressionof their inhibitors and extracellular matrix components in chondrocytes.Cytokine, 2011; 56: 376-386
    Google Scholar
  • 84. Tardif G., Hum D., Pelletier J.P., Duval N., Martel-Pelletier J.:Regulation of the IGFBP-5 and MMP-13 genes by the microRNAsmiR-140 and miR-27a in human osteoarthritic chondrocytes. BMCMusculoskelet Disord., 2009; 10: 148
    Google Scholar
  • 85. Tchetina E.V.: Developmental mechanisms in articular cartilagedegradation in osteoarthritis. Arthritis, 2011; 2011: 683970
    Google Scholar
  • 86. Tseng C.C., Wolfe M.M.: Nonsteroidal anti-inflammatory drugs.Med. Clin. North Am., 2000; 84: 1329-1344
    Google Scholar
  • 87. Van der Kraan P.M., Blaney Davidson E.N., Van den Berg W.B.: A rolefor age-related changes in TGFβ signaling in aberrant chondrocytedifferentiation and osteoarthritis. Arthritis Res. Ther., 2010; 12: 201
    Google Scholar
  • 88. Van Lint P., Libert C.: Chemokine and cytokine processing bymatrix metalloproteinases and its effect on leukocyte migration andinflammation. J. Leukoc. Biol., 2007; 82: 1375-1381
    Google Scholar
  • 89. Van Wart H.E., Birkedal-Hansen H.: The cysteine switch: a principleof regulation of metalloproteinase activity with potential applicabilityto the entire matrix metalloproteinase gene family. Proc.Natl. Acad. Sci. USA, 1990; 87: 5578-5582
    Google Scholar
  • 90. Verma P., Dalal K.: ADAMTS-4 and ADAMTS-5: key enzymes inosteoarthritis. J. Cell. Biochem., 2011; 112: 3507-3514
    Google Scholar
  • 91. Vincenti M.P., Brinckerhoff C.E.: Transcriptional regulation ofcollagenase (MMP-1, MMP-13) genes in arthritis: integration of complexsignaling pathways for the recruitment of gene-specific transcriptionfactors. Arthritis Res., 2002; 4: 157-164
    Google Scholar
  • 92. Visse R., Nagase H.: Matrix metalloproteinases and tissue inhibitorsof metalloproteinases: structure, function, and biochemistry.Circ. Res., 2003; 92: 827-839
    Google Scholar
  • 93. Wang M., Shen J., Jin H., Im H.J., Sandy J., Chen D.: Recent progressin understanding molecular mechanisms of cartilage degenerationduring osteoarthritis. Ann. N. Y. Acad. Sci., 2011; 1240: 61-69
    Google Scholar
  • 94. Wassilew G.I., Lehnigk U., Duda G.N., Taylor W.R., Matziolis G.,Dynybil C.: The expression of proinflammatory cytokines and matrixmetalloproteinases in the synovial membranes of patients withosteoarthritis compared with traumatic knee disorders. Arthroscopy,2010; 26: 1096-1104
    Google Scholar
  • 95. Williams C.J., Jimenez S.A.: Heritable diseases of cartilage causedby mutations in collagen genes. J. Rheumatol. Suppl., 1995; 43: 28-33
    Google Scholar
  • 96. Xu L., Peng H., Glasson S., Lee P.L., Hu K., Ijiri K., Olsen B.R., GoldringM.B., Li Y.: Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in thepathogenesis of osteoarthritis. Arthritis Rheum., 2007; 56: 2663-2673
    Google Scholar
  • 97. Xu L., Servais J., Polur I., Kim D., Lee P.L., Chung K., Li Y.: Attenuationof osteoarthritis progression by reduction of discoidin domainreceptor 2 in mice. Arthritis Rheum., 2010; 62: 2736-2744
    Google Scholar
  • 98. Yamasaki K., Nakasa T., Miyaki S., Ishikawa M., Deie M., AdachiN., Yasunaga Y., Asahara H., Ochi M.: Expression of microRNA-146ain osteoarthritis cartilage. Arthritis Rheum., 2009; 60: 1035-1041
    Google Scholar
  • 99. Zhang W., Moskowitz R.W., Nuki G., Abramson S., Altman R.D.,Arden N., Bierma-Zeinstra S., Brandt K.D., Croft P., Doherty M., DougadosM., Hochberg M., Hunter D.J., Kwoh K., Lohmander L.S., TugwellP.: OARSI recommendations for the management of hip andknee osteoarthritis, Part II: OARSI evidence-based, expert consensusguidelines. Osteoarthritis Cartilage, 2008; 16: 137-162
    Google Scholar
  • 100. Zhang Y., Jordan J. M.: Epidemiology of osteoarthritis. Clin.Geriatr. Med., 2010; 26: 355-369
    Google Scholar
  • 101. Ziskoven C., Jäger M., Zilkens C., Bloch W., Brixius K., KrauspeR.: Oxidative stress in secondary osteoarthritis: from cartilage destructionto clinical presentation? Orthop. Rev. (Pavia), 2010; 2: e23
    Google Scholar
  • 102. Zitka O., Kukacka J., Krizkova S., Huska D., Adam V., MasarikM., Prusa R., Kizek R.: Matrix metalloproteinases. Curr. Med. Chem.,2010; 17: 3751-3768
    Google Scholar

Full text

Skip to content