Heme metabolism as an integral part of iron homeostasis
Paweł Lipiński 1 , Rafał R. Starzyński 1 , Agnieszka Styś 1 , Anna Gajowiak 1 , Robert Staroń 1Abstract
Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S]) – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis) as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.
References
- 1. Anderson G.J., Frazer D.M., McKie A.T., Vulpe C.D., Smith A.: Mechanismsof haem and non-haem iron absorption: lessons from inheriteddisorders of iron metabolism. Biometals, 2005; 18: 339-348
Google Scholar - 2. Andrews N.C.: The iron transporter DMT1. Int. J. Biochem. CellBiol., 1999; 31: 991-994
Google Scholar - 3. Auriac A., Willemetz A., Canonne-Hergaux F.: Lipid raft-dependentendocytosis: a new route for hepcidin-mediated regulation offerroportin in macrophages. Haematologica, 2010; 95: 1269-1277
Google Scholar - 4. Beaumont C.: Multiple regulatory mechanisms act in concert tocontrol ferroportin expression and heme iron recycling by macrophages.Haematologica, 2010; 95: 1233-1236 5 Bowman S.E., Bren K.L.: The chemistry and biochemistry of hemec: functional bases for covalent attachment. Nat. Prod. Rep., 2008;25: 1118-1130
Google Scholar - 5. deficiency causes sideroblastic anemia by specifically impairingheme biosynthesis and depleting cytosolic iron in human erythroblasts.J. Clin. Invest., 2010; 120: 1749-1761
Google Scholar - 6. Camaschella C., Campanella A., De Falco L., Boschetto L., MerliniR., Silvestri L., Levi S., Iolascon A.: The human counterpart of zebrafishshiraz shows sideroblastic-like microcytic anemia and ironoverload. Blood, 2007; 110: 1353-1358
Google Scholar - 7. Chiabrando D., Marro S., Mercurio S., Giorgi C., Petrillo S., VinchiF., Fiorito V., Fagoonee S., Camporeale A., Turco E., Merlo G.R,Silengo L., Altruda F, Pinton P., Tolosano E.: The mitochondrial hemeexporter FLVCR1b mediates erythroid differentiation. J. Clin. Invest.,2012; 122: 4569-4579
Google Scholar - 8. Clark S.F.: Iron deficiency anemia: diagnosis and management.Curr. Opin. Gastroenterol., 2009, 25: 122-128
Google Scholar - 9. Cooperman S.S., Meyron-Holtz E.G., Olivierre-Wilson H., GhoshM.C., McConnell J.P., Rouault T.A.: Microcytic anemia, erythropoieticprotoporphyria, and neurodegeneration in mice with targeteddeletion of iron-regulatory protein 2. Blood, 2005; 106: 1084-1091
Google Scholar - 10. Cox T.C., Bawden M.J., Martin A., May B.K.: Human erythroid5-aminolevulinate synthase: promoter analysis and identificationof an iron-responsive element in the mRNA. EMBO J., 1991;10: 1891-1902
Google Scholar - 11. Crooks D.R., Ghosh M.C., Haller R.G., Tong W.H., Rouault T.A.:Posttranslational stability of the heme biosynthetic enzyme ferrochelataseis dependent on iron availability and intact iron-sulfurcluster assembly machinery. Blood, 2010; 115: 860-869
Google Scholar - 12. Dandekar T., Stripecke R., Gray N.K., Goossen B., Constable A.,Johansson H.E., Hentze M.W.: Identification of a novel iron-responsiveelement in murine and human erythroid delta-aminolevulinicacid synthase mRNA. EMBO J., 1991; 10: 903-909
Google Scholar - 13. Davis M.R., Shawron K.M., Rendina E., Peterson S.K., Lucas E.A.,Smith B.J., Clarke S.L.: Hypoxia inducible factor-2 α is translationallyrepressed in response to dietary iron deficiency in Sprague-Dawleyrats. J. Nutr., 2011; 141: 1590-1596
Google Scholar - 14. De Domenico I., Ward D.M., Langelier C., Vaughn M.B., NemethE., Sundquist W.I., Ganz T., Musci G., Kaplan J.: The molecular mechanismof hepcidin-mediated ferroportin down-regulation. Mol.Biol. Cell, 2007; 18: 2569-2578
Google Scholar - 15. Delaby C., Pilard N., Hetet G., Driss F., Grandchamp B., BeaumontC., Canonne-Hergaux F.: A physiological model to study iron recyclingin macrophages. Exp. Cell Res., 2005; 310: 43-53
Google Scholar - 16. Delaby C., Pilard N., Puy H., Canonne-Hergaux F.: Sequential regulationof ferroportin expression after erythrophagocytosis in murinemacrophages: early mRNA induction by haem, followed by iron–dependent protein expression. Biochem. J., 2008; 411: 123-131
Google Scholar - 17. Delaby C., Rondeau C., Pouzet C., Willemetz A., Pilard N., DesjardinsM., Canonne-Hergaux F.: Subcellular localization of iron andheme metabolism related proteins at early stages of erythrophagocytosis.PLoS One, 2012; 7: e42199
Google Scholar - 18. Desuzinges-Mandon E., Arnaud O., Martinez L., Huché F., DiPietro A., Falson P.: ABCG2 transports and transfers heme to albuminthrough its large extracellular loop. J. Biol. Chem., 2010; 285:33123-33133
Google Scholar - 19. Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O›RourkeJ., Mole D.R., Mukherji M., Metzen E., Wilson M.I., DhandaA., Tian Y.M., Masson N., Hamilton D.L., Jaakkola P., Barstead R.I wsp.: C. elegans EGL-9 and mammalian homologs define a familyof dioxygenases that regulate HIF by prolyl hydroxylation.Cell, 2001; 107: 43-54
Google Scholar - 20. Fleming M.D., Romano M.A., Su M.A., Garrick L.M., Garrick M.D.,Andrews N.C.: Nramp2 is mutated in the anemic Belgrade (b) rat:evidence of a role for Nramp2 in endosomal iron transport. Proc.Natl. Acad. Sci. USA, 1998; 95: 1148-1153
Google Scholar - 21. Folgueras A.R., de Lara F.M., Pendás A.M., Garabaya C., RodríguezF., Astudillo A., Bernal T., Cabanillas R., López-Otín C., VelascoG.: Membrane-bound serine protease matriptase-2 (Tmprss6) is anessential regulator of iron homeostasis. Blood, 2008; 112: 2539-2545
Google Scholar - 22. French C.E., Bell J.M., Ward F.B.: Diversity and distribution ofhemerythrin-like proteins in prokaryotes. FEMS Microbiol. Lett.,2008; 279: 131-145
Google Scholar - 23. Furuyama K., Kaneko K., Vargas P.D.: Heme as a magnificentmolecule with multiple missions: heme determines its own fate andgoverns cellular homeostasis. Tohoku J. Exp. Med., 2007; 213: 1-16
Google Scholar - 24. Galy B., Ferring D., Minana B., Bell O., Janser H.G., MuckenthalerM., Schumann K., Hentze M.W.: Altered body iron distribution andmicrocytosis in mice deficient in iron regulatory protein 2 (IRP2).Blood, 2005; 106: 2580-2589
Google Scholar - 25. Galy B., Ferring-Appel D., Becker C., Gretz N., Gröne H.J.,Schümann K., Hentze M.W.: Iron regulatory proteins control a mucosalblock to intestinal iron absorption. Cell Rep., 2013; 3: 844-857
Google Scholar - 26. Galy B., Ferring-Appel D., Kaden S., Gröne H.J., Hentze M.W.:Iron regulatory proteins are essential for intestinal function andcontrol key iron absorption molecules in the duodenum. Cell Metab.,2008; 7: 79-85
Google Scholar - 27. Galy B., Ferring-Appel D., Sauer S.W., Kaden S., Lyoumi S., PuyH., Kölker S., Gröne H.J., Hentze M.W.: Iron regulatory proteins securemitochondrial iron sufficiency and function. Cell Metab., 2010,12: 194-201
Google Scholar - 28. Ganz T.: Cellular iron: ferroportin is the only way out. Cell Metab.,2005; 1: 155-157
Google Scholar - 29. Ganz T., Nemeth E.: Hepcidin and iron homeostasis. Biochim.Biophys. Acta, 2012; 1823: 1434-1443
Google Scholar - 30. Gonzalez-Rosendo G., Polo J., Rodrıguez-Jerez J.J., Puga-DıazR., Reyes-Navarrete E.G., Quintero-Gutierrez A.G.: Bioavailabilityof a heme-iron concentrate product added to chocolate biscuit fillingin adolescent girls living in a rural area of Mexico. J. Food Sci.,2010; 75: H73-H78
Google Scholar - 31. Gottlieb Y., Truman M., Cohen L.A., Leichtmann-Bardoogo Y.,Meyron-Holtz E.G.: Endoplasmic reticulum anchored heme-oxygenase 1 faces the cytosol. Haematologica, 2012; 97: 1489-1493
Google Scholar - 32. Gozzelino R., Andrade B.B., Larsen R., Luz N.F., Vanoaica L., SeixasE., CoutinhoA., Cardoso S., Rebelo S., Poli M., Barral-Netto M.,Darshan D., Kühn L.C., Soares M.P.: Metabolic adaptation to tissueiron overload confers tolerance to malaria. Cell Host Microbe, 2012;12: 693-704
Google Scholar - 33. Gozzelino R., Soares M.P.: Heme sensitization to TNF-mediatedprogrammed cell death. Adv. Exp. Med. Biol., 2011; 691: 211-219
Google Scholar - 34. Guo B., Yu Y., Leibold E.A.: Iron regulates cytoplasmic levels ofa novel iron-responsive element-binding protein without aconitaseactivity. J. Biol. Chem., 1994; 269: 24252-24260
Google Scholar - 35. Harrison P.M., Arosio P.: The ferritins: molecular properties,iron storage function and cellular regulation. Biochim. Biophys.Acta, 1996; 1275: 161-203
Google Scholar - 36. Hentze M.W., Muckenthaler M.U., Galy B., Camaschella C.: Two totango: regulation of mammalian iron metabolism. Cell, 2010; 142: 24-38
Google Scholar - 37. Hira S., Tomita T., Matsui T., Igarashi K., Ikeda-Saito M.: Bach1,a heme-dependent transcription factor, reveals presence of multipleheme binding sites with distinct coordination structure. IUBMBLife, 2007; 59: 542-551
Google Scholar - 38. Hvidberg V., Maniecki M.B., Jacobsen C., Højrup P., Møller H.J.,Moestrup S.K.: Identification of the receptor scavenging hemopexin-hemecomplexes. Blood, 2005; 106: 2572-2579
Google Scholar - 39. Kakhlon O., Cabantchik Z.I.: The labile iron pool: characterization,measurement, and participation in cellular processes. FreeRadic. Biol. Med., 2002; 33: 1037-1046
Google Scholar - 40. Kakhlon O., Gruenbaum Y., Cabantchik Z.I.: Repression of ferritinexpression increases the labile iron pool, oxidative stress, andshort term growth of human erythroleukemia cells. Blood, 2001;97: 2863-2871
Google Scholar - 41. Keel S.B., Doty R.T., Yang Z., Quigley J.G., Chen J., KnoblaughS., Kingsley P.D., De Domenico I., Vaughn M.B., Kaplan J., Palis J.,Abkowitz J.L.: A heme export protein is required for red blood celldifferentiation and iron homeostasis. Science, 2008; 319: 825-828
Google Scholar - 42. Khan A.A., Quigley J.G.: Control of intracellular heme levels:heme transporters and heme oxygenases. Biochim. Biophys. Acta,2011; 1813: 668-682
Google Scholar - 43. Khan A.A., Quigley J.G.: Heme and FLVCR-related transporterfamilies SLC48 and SLC49. Mol. Aspects Med., 2013; 34: 669-682
Google Scholar - 44. Kikuchi G., Yoshida T., Noguchi M.: Heme oxygenase and hemedegradation. Biochem. Biophys. Res. Commun., 2005; 338: 558-567
Google Scholar - 45. Knutson M., Wessling-Resnick M.: Iron metabolism in the reticuloendothelialsystem. Crit. Rev. Biochem. Mol. Biol., 2003; 38: 61-88
Google Scholar - 46. Knutson M.D., Oukka M., Koss L.M., Aydemir F., Wessling-ResnickM.: Iron release from macrophages after erythrophagocytosisis up-regulated by ferroportin 1 overexpression and down-regulatedby hepcidin. Proc. Natl. Acad. Sci. USA, 2005; 102: 1324-1328
Google Scholar - 47. Konijn A.M., Glickstein H., Vaisman B., Meyron-Holtz E.G., SlotkiI.N., Cabantchik Z.I.: The cellular labile iron pool and intracellularferritin K562 cells. Blood, 1999; 94: 2128-2134
Google Scholar - 48. Kovtunovych G., Eckhaus M.A., Ghosh M.C., Ollivierre-WilsonH., Rouault T.: Dysfunction of the heme recycling system in hemeoxygenase 1-deficient mice: effects on macrophage viability andtissue iron distribution. Blood, 2010; 116: 6054-6062
Google Scholar - 49. Kruszewski M.: Labile iron pool: the main determinant of cellularresponse to oxidative stress. Mutat. Res., 2003; 531: 81-92
Google Scholar - 50. Le Blanc S., Garrick M.D., Arredondo M.: Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am. J.Physiol. Cell Physiol., 2012; 302: C1780-C1785
Google Scholar - 51. Lill R., Hoffmann B., Molik S., Pierik A.J., Rietzschel N., StehlingO., Uzarska M.A., Webert H., Wilbrecht C., Mühlenhoff U.: The roleof mitochondria in cellular iron-sulfur protein biogenesis and ironmetabolism. Biochim. Biophys. Acta, 2012; 1823: 1491-1508
Google Scholar - 52. Lin Y.W., Wang J.: Structure and function of heme proteins in non–native states: A mini-review, J. Inorg. Biochem., 2013; 129: 162-171
Google Scholar - 53. Lipiński P., Starzyński R.R., Styś A., Straciło M.: Iron homeostasis,a defense mechanism in oxidative stress. Postępy Biochem.,2010; 56: 305-316
Google Scholar - 54. Liu Z.G., Hsu H., Goeddel D.V., Karin M.: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis whileNF-kappaB activation prevents cell death. Cell, 1996; 87: 565-576
Google Scholar - 55. Mangum C.P.: Oxygen transport in invertebrates. Am. J. Physiol.,1985; 248: R505-R514
Google Scholar - 56. Marques L., Auriac A., Willemetz A., Banha J., Silva B., Canonne–Hergaux F., Costa L.: Immune cells and hepatocytes express glycosylphosphatidylinositol-anchoredceruloplasmin at their cell surface.Blood Cells Mol. Dis., 2012; 48: 110-120
Google Scholar - 57. Mastrogiannaki M., Matak P., Keith B., Simon M.C., Vaulont S.,Peyssonnaux C.: HIF-2α, but not HIF-1α, promotes iron absorptionin mice. J. Clin. Invest., 2009; 119: 1159-1166
Google Scholar - 58. Mastrogiannaki M., Matak P., Peyssonnaux C.: The gut in ironhomeostasis: role of HIF-2 under normal and pathological conditions.Blood, 2013; 122: 885-892
Google Scholar - 59. McKie A.T., Barrow D., Latunde-Dada G.O., Rolfs A., Sager G.,Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A., PetersT.J., Raja K.B., Shirali S., Hediger M.A., Farzaneh F., Simpson R.J.: Aniron regulated ferric reductase associated with the absorption ofdietary iron. Science, 2001; 291: 1755-1759
Google Scholar - 60. McKie A.T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D.,Miret S., Bomford A., Peters T.J., Farzaneh F., Hediger M.A., HentzeM.W., Simpson R.J.: A novel duodenal iron-regulated transporter,IREG1, implicated in the basolateral transfer of iron to the circulation.Mol. Cell., 2000; 5: 299-309
Google Scholar - 61. Meyron-Holtz E.G., Ghosh M.C., Iwai K., LaVaute T, BrazzolottoX., Berger U.V., Land W., Ollivierre-Wilson H., Grinberg A., Love P.,Rouault T.A.: Genetic ablations of iron regulatory proteins 1 and 2reveal why iron regulatory protein 2 dominates iron homeostasis.EMBO J., 2004; 23: 386-395
Google Scholar - 62. Mueller S.: Iron regulatory protein 1 as a sensor of reactive oxygenspecies. Biofactors, 2005; 24: 171-181
Google Scholar - 63. Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A.,Ward D.M., Ganz T., Kaplan J.: Hepcidin regulates cellular iron effluxby binding to ferroportin and inducing its internalization. Science,2004; 306: 2090-2093
Google Scholar - 64. Ohgami R.S., Campagna D.R., Greer E.L., Antiochos B., McDonaldA., Chen J., Sharp J.J., Fujiwara Y., Barker J.E., Fleming M.D.: Identificationof a ferrireductase required for efficient transferrin-dependentiron uptake in erythroid cells. Nat. Genet., 2005; 37: 1264-1269
Google Scholar - 65. Paoli M., Marles-Wright J., Smith A.: Structure-function relationshipsin heme-proteins. DNA Cell Biol., 2002; 21: 271-280
Google Scholar - 66. Parfenova H, Leffler C.W.: Cerebroprotective functions of HO-2.Curr. Pharm. Des., 2008; 14: 443-453
Google Scholar - 67. Petrat F., de Groot H., Rauen U.: Subcellular distribution of chelatableiron: a laser scanning microscopic study in isolated hepatocytesand liver endothelial cells. Biochem. J., 2001; 356: 61-69
Google Scholar - 68. Pham C.G., Bubici C., Zazzeroni F., Papa S., Jones J., Alvarez K.,Jayawardena S., De Smaele E., Cong R., Beaumont C., Torti F.M., TortiS.V., Franzoso G.: Ferritin heavy chain upregulation by NF-κB inhibitsTNFα-induced apoptosis by suppressing reactive oxygen species.Cell, 2004; 119: 529-542
Google Scholar - 69. Picard V., Epsztejn S., Santambrogio P., Cabantchik Z.I., BeaumontC.: Role of ferritin in the control of the labile iron pool in murineerythroleukemia cells. J. Biol. Chem., 1998; 273: 15382-15386
Google Scholar - 70. Pietrangelo A.: Hereditary hemochromatosis: pathogenesis, diagnosis,and treatment. Gastroenterology, 2010; 139: 393-408
Google Scholar - 71. Ponka P.: Cell biology of heme. Am. J. Med. Sci., 1999; 318: 241-256
Google Scholar - 72. Ponka P., Lok C.N.: The transferrin receptor: role in health anddisease. Int. J. Biochem. Cell Biol., 1999; 31: 1111-1137
Google Scholar - 73. Poss K.D., Tonegawa S.: Heme oxygenase 1 is required for mammalianiron reutilization. Proc. Natl. Acad. Sci. USA, 1997; 94: 10919-10924
Google Scholar - 74. Quigley J.G., Yang Z., Worthington M.T., Phillips J.D., Sabo K.M.,Sabath D.E., Berg C.L., Sassa S., Wood B.L., Abkowitz J.L.: Identificationof a human heme exporter that is essential for erythropoiesis.Cell, 2004; 118: 757-766
Google Scholar - 75. Quintero-Gutierrez A.G., Gonzalez-Rosendo G., Sanchez-MunozJ., Polo-Pozo J., Rodrıguez-Jerez J.J.: Bioavailability of heme iron inbiscuit filling using piglets as an animal model for humans. Int. J.Biol. Sci., 2008; 4: 58-62
Google Scholar - 76. Rajagopal A., Rao A.U., Amigo J., Tian M., Upadhyay S.K., HallC., Uhm S., Mathew M.K., Fleming M.D., Paw B.H., Krause M., HamzaI.: Haem homeostasis is regulated by the conserved and concertedfunctions of HRG-1 proteins. Nature, 2008; 453: 1127-1131
Google Scholar - 77. Rouault T.A.: The role of iron regulatory proteins in mammalianiron homeostasis and disease. Nat. Chem. Biol., 2006; 2: 406-414
Google Scholar - 78. Rouhier N., Couturier J., Johnson M.K., Jacquot J.P.: Glutaredoxins:roles in iron homeostasis. Trends. Biochem. Sci., 2010; 35: 43-52
Google Scholar - 79. Salahudeen A.A., Thompson J.W., Ruiz J.C., Ma H.W., Kinch L.N.,Li Q., Grishin N.V., Bruick R.K.: An E3 ligase possessing an iron-responsivehemerythrin domain is a regulator of iron homeostasis.Science, 2009; 326: 722-726
Google Scholar - 80. Sanchez M., Galy B., Muckenthaler M.U., Hentze M.W.: Iron-regulatoryproteins limit hypoxia-inducible factor-2alpha expressionin iron deficiency. Nat. Struct. Mol. Biol., 2007; 14: 420-426
Google Scholar - 81. Sassa S.: Why heme needs to be degraded to iron, biliverdinIXα, and carbon monoxide? Antioxid. Redox Signal., 2004; 6: 819-824
Google Scholar - 82. Shah Y.M., Matsubara T., Ito S., Yim S.H., Gonzalez F.J.: Intestinalhypoxia-inducible transcription factors are essential for ironabsorption following iron deficiency. Cell Metab., 2009; 9: 152-164
Google Scholar - 83. Shaw G.C., Cope J.J., Li L., Corson K., Hersey C., Ackermann G.E.,Gwynn B., Lambert A.J., Wingert R.A., Traver D., Trede N.S., BarutB.A., Zhou Y., Minet E., Donovan A. i wsp.: Mitoferrin is essential forerythroid iron assimilation. Nature, 2006; 440: 96-100
Google Scholar - 84. Shayeghi M., Latunde-Dada G.O., Oakhill J.S., Laftah A.H., TakeuchiK., Halliday N., Khan Y., Warley A., McCann F.E., Hider R.C.,Frazer D.M., Anderson G.J., Vulpe C.D., Simpson R.J., McKie A.T.:Identification of an intestinal heme transporter. Cell, 2005; 122:789-801
Google Scholar - 85. Shi H., Bencze K.Z., Stemmler T.L., Philpott C.C.: A cytosolic ironchaperone that delivers iron to ferritin. Science, 2008; 320: 1207-1210
Google Scholar - 86. Sikorska K., Bielawski K.P., Romanowski T., Stalke P.: Hemochromatozadziedziczna – najczęstsza choroba genetyczna człowieka.Postępy Hig. Med. Dośw., 2006; 60: 667-676
Google Scholar - 87. Smith A., Rish K.R., Lovelace R., Hackney J.F., Helston R.M.: Rolefor copper in the cellular and regulatory effects of heme-hemopexin.Biometals, 2009; 22: 421-437
Google Scholar - 88. Soe-Lin S., Apte S.S, Andriopoulos B.Jr, Andrews M.C., SchranzhoferM., Kahawita T., Garcia-Santos D., Ponka P.: Nramp1 promotesefficient macrophage recycling of iron following erythrophagocytosisin vivo. Proc. Natl. Acad. Sci. USA, 2009; 106: 5960-5965
Google Scholar - 89. Starzyński R.R., Canonne-Hergaux F., Lenartowicz M., KrzeptowskiW., Willemetz A., Styś A., Bierła J., Pietrzak P., Dziaman T.,Lipiński P.: Ferroportin expression in haem oxygenase 1-deficientmice. Biochem. J., 2013; 449: 69-78
Google Scholar - 90. Starzyński R.R., Lipiński P.: IRP1, białko kontrolujące homeostazężelaza komórkach ssaków: regulacja jego aktywności przez jonyżelaza i tlenek azotu. Postępy Biol. Kom., 2003; 30: 497-514
Google Scholar - 91. Styś A., Galy B., Starzyński R.R., Smuda E., Drapier J.C., LipińskiP., Bouton C.: Iron regulatory protein 1 outcompetes iron regulatoryprotein 2 in regulating cellular iron homeostasis in response tonitric oxide. J. Biol. Chem., 2011; 286: 22846-22854
Google Scholar - 92. Sun C.C., Vaja V., Babitt J.L., Lin H.Y.: Targeting the hepcidin–ferroportin axis to develop new treatment strategies for anemiaof chronic disease and anemia of inflammation. Am. J. Hematol.,2012; 87: 392-400
Google Scholar - 93. Suzuki H., Tashiro S., Hira S., Sun J., Yamazaki C., Zenke Y., Ikeda–Saito M., Yoshida M., Igarashi K.: Heme regulates gene expressionby triggering Crm1-dependent nuclear export of Bach1. EMBO J.,2004; 23: 2544-2553
Google Scholar - 94. Tanno T., Bhanu N.V., Oneal P.A., Goh S.H., Staker P., Lee Y.T.,Moroney J.W, Reed C.H., Luban N.L., Wang R.H., Eling T.E., Childs R.,Ganz T., Leitman S.F., Fucharoen S., Miller J.L.: High levels of GDF15in thalassemia suppress expression of the iron regulatory proteinhepcidin. Nat. Med., 2007; 13: 1096-1101
Google Scholar - 95. Tanno T., Porayette P., Sripichai O., Noh S.J., Byrnes C., BhupatirajuA., Lee Y.T., Goodnough J.B., Harandi O., Ganz T., Paulson R.F.,Miller J.L.: Identification of TWSG1 as a second novel erythroid regulatorof hepcidin expression in murine and human cells. Blood,2009; 114: 181-186
Google Scholar - 96. Tolosano E., Fagoonee S., Morello N., Vinchi F., Fiorito V.: Hemescavenging and the other facets of hemopexin. Antioxid. Redox Signal.,2010; 12: 305-320
Google Scholar - 97. Tolosano E., Hirsch E., Patrucco E., Camaschella C., Navone R., SilengoL., Altruda F.: Defective recovery and severe renal damage after acutehemolysis in hemopexin-deficient mice. Blood, 1999; 94: 3906-3914
Google Scholar - 98. Vashisht A.A., Zumbrennen K.B., Huang X., Powers D.N., DurazoA., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., SpruckC., Leibold E.A., Wohlschlegel J.A.: Control of iron homeostasis by aniron-regulated ubiquitin ligase. Science, 2009; 326: 718-721
Google Scholar - 99. Viatte L., Vaulont S.: Hepcidin, the iron watcher. Biochimie,2009; 91: 1223-1228
Google Scholar - 100. Vinchi F., Gastaldi S., Silengo L., Altruda F., Tolosano E.: Hemopexinprevents endothelial damage and liver congestion in a mousemodel of heme overload. Am. J. Pathol., 2008; 173: 289-299
Google Scholar - 101. Volz K.: The functional duality of iron regulatory protein 1.Curr. Opin. Struct. Biol., 2008; 18: 106-111
Google Scholar - 102. Vulpe C.D., Kuo Y.M., Murphy T.L., Cowley L., Askwith C., LibinaN., Gitschier J., Anderson G.J.: Hephaestin, a ceruloplasmin homologueimplicated in intestinal iron transport, is defective in the slamouse. Nat. Genet., 1999; 21: 195-199
Google Scholar - 103. Walker F.A.: Models of the bis-histidine-ligated electron-transferringcytochromes. Comparative geometric and electronic structureof low-spin ferro- and ferrihemes. Chem. Rev., 2004; 104: 589-615
Google Scholar - 104. Wang X.M., Kim H.P., Nakahira K., Ryter S.W., Choi A.M.: Theheme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J.Immunol., 2009; 182: 3809-3818
Google Scholar - 105. West A.R., Oates P.S.: Subcellular location of heme oxygenase 1 and 2 and divalent metal transporter 1 in relation to endocytoticmarkers during heme iron absorption. J. Gastroenterol. Hepatol.,2008; 23: 150-158
Google Scholar - 106. White K.N., Conesa C., Sánchez L., Amini M., Farnaud S., LorvoralakC., Evans R.W.: The transfer of iron between ceruloplasmin andtransferrins. Biochim. Biophys. Acta, 2012; 1820: 411-416
Google Scholar - 107. Yang Z., Philips J.D., Doty R.T., Giraudi P., Ostrow J.D., TiribelliC., Smith A., Abkowitz J.L.: Kinetics and specificity of feline leukemiavirus subgroup C receptor (FLVCR) export function and its dependenceon hemopexin. J. Biol. Chem., 2010, 285: 28874-28882
Google Scholar - 108. Ye H., Jeong S.Y., Ghosh M.C., Kovtunovych G., Silvestri L., OrtilloD., Uchida N., Tisdale J., Camaschella C., Rouault T.A.: Glutaredoxin
Google Scholar - 109. Ye H., Rouault T.A.: Erythropoiesis and iron-sulfur cluster biogenesis.Adv. Hematol., 2010; 2010: 1-8
Google Scholar - 110. Young M.F., Griffin I., Pressman E., McIntyre A.W., Cooper E.,McNanley T., Harris Z.L., Westerman M., O’Brien K.O.: Utilization ofiron from an animal-based iron source is greater than that of ferroussulfate in pregnant and nonpregnant women. J. Nutr., 2010;140: 2162-2166
Google Scholar - 111. Zhang D.L., Hughes R.M., Ollivierre-Wilson H., Ghosh M.C.,Rouault T.A.: A ferroportin transcript that lacks an iron-responsiveelement enables duodenal and erythroid precursor cells to evadetranslational repression. Cell Metab., 2009; 9: 461-473
Google Scholar - 112. Zhang D.L., Senecal T., Ghosh M.C., Ollivierre-Wilson H., Tu T.,Rouault T.A.: Hepcidin regulates ferroportin expression and intracellulariron homeostasis of erythroblasts. Blood, 2011; 118: 2868-2877
Google Scholar