Role of the Hippo pathway in cell proliferation and organ size control. Disorders of the pathway in cancer diseases

COMMENTARY ON THE LAW

Role of the Hippo pathway in cell proliferation and organ size control. Disorders of the pathway in cancer diseases

Agnieszka Rybarczyk 1 , Piotr Wierzbicki 1 , Anna Kowalczyk 2 , Zbigniew Kmieć 3

1. Katedra i Zakład Histologii, Gdański Uniwersytet Medyczny
2. Katedra Histologii i Embriologii Człowieka, Uniwersytet Warmińsko-Mazurski
3. Katedra i Zakład Histologii, Gdański Uniwersytet Medyczny; Katedra Histologii i Embriologii Człowieka, Uniwersytet Warmińsko-Mazurski

Published: 2014-05-08
DOI: 10.5604/17322693.1101609
GICID: 01.3001.0003.1227
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 504-516

 

Abstract

The Hippo pathway (also known as SWH – Salvador/Warts/Hippo), discovered for the first time in Drosophila melanogaster, is responsible for cell proliferation and organ size control in mammalian systems. The components of the pathway are two kinases and their adaptor proteins which inhibit the transcription co-activator YAP by phosphorylation. When the pathway is inactive (as an effect of upstream component gene expression disorders), activated YAP is translocated to the nucleus where it cooperates with TEAD transcription factor and promotes expression of genes that regulate cell proliferation and apoptosis. YAP acts generally as an oncogene, although there are some reports describing its role as a tumor suppressor. Since all of the core components are well known, the latest reports provide mostly information about upstream components of the Hippo pathway or its interaction with other biochemical pathways. Because of the Hippo pathway’s role in the cell cycle, it has become a very attractive object for studies of the genetic background of cancer. The under- or overexpression of genes involved in the Hippo pathway has been described in many different types of cancers. Moreover, it has been shown that there is a strong connection between cancer cell phenotype and highly activated YAP presence in the nucleus. This paper reviews the most important data about Hippo pathway regulation in Drosophila and mammals, including its numerous disorders and their implications for cell function.

References

  • 1. Alarcon C., Zaromytidou A.I., Xi Q., Gao S., Yu J., Fujisawa S., BarlasA., Miller A.N., Manova-Todorova K., Macias M.J., Sapkota G., PanD., Massague J.: Nuclear CDKs drive Smad transcriptional activationand turnover in BMP and TGF-beta pathways. Cell, 2009; 139: 757-769
    Google Scholar
  • 2. Ang X.L., Wade Harper J.: SCF-mediated protein degradation andcell cycle control. Oncogene, 2005; 24: 2860-2870
    Google Scholar
  • 3. Badouel C., Gardano L., Amin N., Garg A., Rosenfeld R., Le BihanT., McNeill H.: The FERM-domain protein Expanded regulates Hippopathway activity via direct interactions with the transcriptionalactivator Yorkie. Dev. Cell, 2009; 16: 411-420
    Google Scholar
  • 4. Basu S., Totty N.F., Irwin M.S., Sudol M., Downward J.: Akt phosphorylatesthe Yes-associated protein, YAP, to induce interactionwith 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell,2003; 11: 11-23
    Google Scholar
  • 5. Baumgartner R., Poernbacher I., Buser N., Hafen E., Stocker H.:The WW domain protein Kibra acts upstream of Hippo in Drosophila.Dev. Cell, 2010; 18: 309-316
    Google Scholar
  • 6. Callus B.A., Verhagen A.M., Vaux D.L.: Association of mammaliansterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminalcoiled-coil domains, leads to its stabilization and phosphorylation.FEBS J., 2006; 273: 4264-4276
    Google Scholar
  • 7. Camargo F.D., Gokhale S., Johnnidis J.B., Fu D., Bell G.W., JaenischR., Brummelkamp T.R.: YAP1 increases organ size and expands undifferentiatedprogenitor cells. Curr. Biol., 2007; 23: 2054-2060
    Google Scholar
  • 8. Carter S.L., Negrini M., Baffa R., Gillum D.R., Rosenberg A.L.,Schwartz G.F., Croce C.M.: Loss of heterozygosity at 11q22-q23 inbreast cancer. Cancer Res., 1994; 54: 6270-6274
    Google Scholar
  • 9. Chan S.W., Lim C.J., Chen L., Chong Y.F., Huang C., Song H., HongW.: The Hippo pathway in biological control and cancer development.J. Cell. Physiol., 2011; 226: 928-939
    Google Scholar
  • 10. Chan S.W., Lim C.J., Guo K., Ng C.P., Lee I., Hunziker W., Zeng Q.,Hong W.: A role for TAZ in migration, invasion, and tumorigenesisof breast cancer cells. Cancer Res., 2008; 68: 2592-2598
    Google Scholar
  • 11. Chen C.L., Gajewski K.M., Hamaratoglu F., Bossuyt W., Sansores–Garcia L., Tao C., Halder G.: The apical-basal cell polarity determinantCrumbs regulates Hippo signaling in Drosophila. Proc. Natl.Acad. Sci. USA, 2010; 107: 15810-15815
    Google Scholar
  • 12. Cho E., Feng Y., Rauskolb C., Maitra S., Fehon R., Irvine K.D.:Delineation of a Fat tumor suppressor pathway. Nat. Genet., 2006;38: 1142-1150
    Google Scholar
  • 13. Chow A., Hao Y., Yang X.: Molecular characterization of humanhomologs of yeast MOB1. Int. J. Cancer, 2010; 126: 2079-2089
    Google Scholar
  • 14. Dong J., Feldmann G., Huang J., Wu S., Zhang N., Comerford S.A.,Gayyed M.F., Anders R.A., Maitra A., Pan D.: Elucidation of a universalsize-control mechanism in Drosophila and mammals. Cell, 2007;130: 1120-1133
    Google Scholar
  • 15. Feng Y., Irvine K.D.: Fat and expanded act in parallel to regulategrowth through warts. Proc. Natl. Acad. Sci. USA, 2007; 104:20362-20367
    Google Scholar
  • 16. Fernandez L.A., Northcott P.A., Dalton J., Fraga C., Ellison D.,Angers S., Taylor M.D., Kenney A.M.: YAP1 is amplified and up-regulatedin hedgehog-associated medulloblastomas and mediatesSonic hedgehog-driven neural precursor proliferation. Genes Dev.,2009; 23: 2729-2741
    Google Scholar
  • 17. Goulev Y., Fauny J.D., Gonzalez-Marti B., Flagiello D., Silber J.,Zider A.: SCALLOPED interacts with YORKIE, the nuclear effectorof the hippo tumor-suppressor pathway in Drosophila. Curr. Biol.,2008; 18: 435-441
    Google Scholar
  • 18. Graves J.D., Draves K.E., Gotoh Y., Krebs E.G., Clark E.A.: Bothphosphorylation and caspase-mediated cleavage contribute to regulationof the Ste20-like protein kinase Mst1 during CD95/Fas-inducedapoptosis. J. Biol. Chem., 2001; 276: 14909-14915
    Google Scholar
  • 19. Grzeschik N.A., Parsons L.M., Allott M.L., Harvey K.F., RichardsonH.E.: Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathwaythrough two distinct mechanisms. Curr. Biol., 2010; 20: 573-581
    Google Scholar
  • 20. Guo C., Tommasi S., Liu L., Yee J.K., Dammann R., Pfeifer G.P.:RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Latstumor-suppressor network. Curr. Biol., 2007; 17: 700-705
    Google Scholar
  • 21. Halder G., Johnson R.L.: Hippo signaling: growth control andbeyond. Development, 2011; 138: 9-22
    Google Scholar
  • 22. Hamaratoglu F., Willecke M., Kango-Singh M., Nolo R., Hyun E.,Tao C., Jafar-Nejad H., Halder G.: The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cellproliferation and apoptosis. Nat. Cell Biol., 2006; 8: 27-36
    Google Scholar
  • 23. Hansson C.M., Buckley P.G., Grigelioniene G., Piotrowski A., HellstromA.R., Mantripragada K., Jarbo C., Mathiesen T., Dumanski J.P.:Comprehensive genetic and epigenetic analysis of sporadic meningiomafor macro-mutations on 22q and micro-mutations within theNF2 locus. BMC Genomics, 2007; 8: 16
    Google Scholar
  • 24. Hao Y., Chun A., Cheung K., Rashidi B., Yang X.: Tumor suppressorLATS1 is a negative regulator of oncogene YAP. J. Biol. Chem.,2008; 283: 5496-5509
    Google Scholar
  • 25. Harvey K.F., Pfleger C.M., Hariharan I.K.: The Drosophila Mst ortholog,hippo, restricts growth and cell proliferation and promotesapoptosis. Cell, 2003; 114: 457-467
    Google Scholar
  • 26. Hergovich A., Hemmings B.A.: Mammalian NDR/LATS proteinkinases in hippo tumor suppressor signaling. Biofactors, 2009;35: 338-345
    Google Scholar
  • 27. Hergovich A., Kohler R.S., Schmitz D., Vichalkovski A., Cornils H.,Hemmings B.A.: The MST1 and hMOB1 tumor suppressors controlhuman centrosome duplication by regulating NDR kinase phosphorylation.Curr. Biol., 2009; 19: 1692-1702
    Google Scholar
  • 28. Hiemer S.E., Varelas X.: Stem cell regulation by the Hippo pathway.Biochim Biophys. Acta, 2013; 1830: 2323-2334
    Google Scholar
  • 29. Hirabayashi S., Nakagawa K., Sumita K., Hidaka S., Kawai T., IkedaM., Kawata A., Ohno K., Hata Y.: Threonine 74 of MOB1 is a putativekey phosphorylation site by MST2 to form the scaffold to activatenuclear Dbf2-related kinase 1. Oncogene, 2008; 27: 4281-4292
    Google Scholar
  • 30. Hong J.H., Hwang E.S., McManus M.T., Amsterdam A., Tian Y.,Kalmukova R., Mueller E., Benjamin T., Spiegelman B.M., Sharp P.A.,Hopkins N., Yaffe M.B.: TAZ, a transcriptional modulator of mesenchymalstem cell differentiation. Science, 2005; 309: 1074-1078
    Google Scholar
  • 31. Huang J., Wu S., Barrera J., Matthews K., Pan D.: The Hippo signalingpathway coordinately regulates cell proliferation and apoptosisby inactivating Yorkie, the Drosophila Homolog of YAP. Cell,2005; 122: 421-434
    Google Scholar
  • 32. Ji D., Deeds S.L., Weinstein E.J.: A screen of shRNAs targeting tumorsuppressor genes to identify factors involved in A549 paclitaxelsensitivity. Oncol. Rep., 2007; 18: 1499-1505
    Google Scholar
  • 33. Jiang Z., Li X., Hu J., Zhou W., Jiang Y., Li G., Lu D.: Promoter hypermethylation-mediateddown-regulation of LATS1 and LATS2 inhuman astrocytoma. Neurosci. Res., 2006; 56: 450-458
    Google Scholar
  • 34. Justice R.W., Zilian O., Woods D.F., Noll M., Bryant P.J.: The Drosophilatumor suppressor gene warts encodes a homolog of humanmyotonic dystrophy kinase and is required for the control of cellshape and proliferation. Genes Dev., 1995; 9: 534-546
    Google Scholar
  • 35. Kang W., Tong J.H., Chan A.W., Lee T.L., Lung R.W., Leung P.P.,So K.K., Wu K., Fan D., Yu J., Sung J.J., To K.F. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulationassociates with poor prognosis. Clin. Cancer Res., 2011;17: 2130-2139
    Google Scholar
  • 36. Kawahara M., Hori T., Chonabayashi K., Oka T., Sudol M., UchiyamaT.: Kpm/Lats2 is linked to chemosensitivity of leukemic cellsthrough the stabilization of p73. Blood, 2008; 112: 3856-3866
    Google Scholar
  • 37. Kosaka Y., Mimori K., Tanaka F., Inoue H., Watanabe M., MoriM.: Clinical significance of the loss of MATS1 mRNA expression incolorectal cancer. Int. J. Oncol., 2007; 31: 333-338
    Google Scholar
  • 38. Lai D., Ho K.C., Hao Y., Yang X.: Taxol resistance in breast cancercells is mediated by the hippo pathway component TAZ and itsdownstream transcriptional targets Cyr61 and CTGF. Cancer Res.,2011; 71: 2728-2738
    Google Scholar
  • 39. Lai D., Visser-Grieve S., Yang X.: Tumour suppressor genes inchemotherapeutic drug response. Biosci. Rep., 2012; 32: 361-374
    Google Scholar
  • 40. Lai Z.C., Wei X., Shimizu T., Ramos E., Rohrbaugh M., NikolaidisN., Ho L.L., Li Y.: Control of cell proliferation and apoptosis by mobas tumor suppressor, mats. Cell, 2005; 120: 675-685
    Google Scholar
  • 41. Lapi E., Di Agostino S., Donzelli S., Gal H., Domany E., RechaviG., Pandolfi P.P., Givol D., Strano S., Lu X., Blandino G.: PML, YAP, andp73 are components of a proapoptotic autoregulatory feedback loop.Mol. Cell, 2008; 32: 803-814
    Google Scholar
  • 42. Lee J.H., Kim T.S., Yang T.H., Koo B.K., Oh S.P., Lee K.P., Oh H.J.,Lee S.H., Kong Y.Y., Kim J.M., Lim D.S.: A crucial role of WW45 in developingepithelial tissues in the mouse. EMBO J., 2008; 27: 1231-1242
    Google Scholar
  • 43. Levy D., Adamovich Y., Reuven N., Shaul Y.: Yap1 phosphorylationby c-Abl is a critical step in selective activation of proapoptoticgenes in response to DNA damage. Mol. Cell., 2008; 29: 350-361
    Google Scholar
  • 44. Levy D., Adamovich Y., Reuven N., Shaul Y.: The Yes-associatedprotein 1 stabilizes p73 by preventing Itch-mediated ubiquitinationof p73. Cell Death Differ., 2007; 14: 743-751
    Google Scholar
  • 45. Li H., Wolfe A., Septer S., Edwards G., Zhong X., Abdulkarim A.B.,Ranganathan S., Apte U.: Deregulation of Hippo kinase signalling inhuman hepatic malignancies. Liver Int., 2012; 32: 38-47
    Google Scholar
  • 46. Mao Y., Kucuk B., Irvine K.D.: Drosophila lowfat, a novel modulatorof Fat signaling. Development, 2009; 136: 3223-3233
    Google Scholar
  • 47. Margolis B., Borg J.P.: Apicobasal polarity complexes. J. Cell Sci.,2005; 118: 5157-5159
    Google Scholar
  • 48. Matakatsu H., Blair S.S.: The DHHC palmitoyltransferase approximatedregulates Fat signaling and Dachs localization and activity.Curr. Biol., 2008; 18: 1390-1395
    Google Scholar
  • 49. Matallanas D., Romano D., Yee K., Meissl K., Kucerova L., PiazzollaD., Baccarini M., Vass J.K., Kolch W., O’Neill E.: RASSF1A elicits apoptosisthrough an MST2 pathway directing proapoptotic transcriptionby the p73 tumor suppressor protein. Mol. Cell, 2007; 27: 962-975
    Google Scholar
  • 50. Mauviel A., Nallet-Staub F., Varelas X.: Integrating developmentalsignals: a Hippo in the (path)way. Oncogene, 2012; 31: 1743-1756
    Google Scholar
  • 51. McCartney B.M., Fehon R.G.: Distinct cellular and subcellularpatterns of expression imply distinct functions for the Drosophilahomologues of moesin and the neurofibromatosis 2 tumor suppressor,merlin. J. Cell Biol., 1996; 133: 843-852
    Google Scholar
  • 52. Morin-Kensicki E.M., Boone B.N., Howell M., Stonebraker J.R.,Teed J., Alb J.G., Magnuson T.R., O’Neal W., Milgram S.L.: Defects inyolk sac vasculogenesis, chorioallantoic fusion, and embryonic axiselongation in mice with targeted disruption of Yap65. Mol. Cell.Biol., 2006; 26: 77-87
    Google Scholar
  • 53. Murakami H., Mizuno T., Taniguchi T., Fujii M., Ishiguro F., FukuiT., Akatsuka S., Horio Y., Hida T., Kondo Y., Toyokuni S., Osada H.,Sekido Y.: LATS2 is a tumor suppressor gene of malignant mesothelioma.Cancer Res., 2011; 71: 873-883
    Google Scholar
  • 54. Oh H., Irvine K.D.: Cooperative regulation of growth by Yorkieand Mad through bantam. Dev. Cell, 2011; 20: 109-122
    Google Scholar
  • 55. Oh H., Irvine K.D.: Yorkie: the final destination of Hippo signaling.Trends Cell Biol., 2010; 20: 410-417
    Google Scholar
  • 56. Oh H., Reddy B.V., Irvine K.D.: Phosphorylation-independentrepression of Yorkie in Fat-Hippo signaling. Dev. Biol., 2009; 335:188-197
    Google Scholar
  • 57. Oh S., Lee D., Kim T., Kim T.S., Oh H.J., Hwang C.Y., Kong Y.Y.,Kwon K.S., Lim D.S.: Crucial role for Mst1 and Mst2 kinases in earlyembryonic development of the mouse. Mol. Cell. Biol., 2009; 29:6309-6320
    Google Scholar
  • 58. Overholtzer M., Zhang J., Smolen G.A., Muir B., Li W., Sgroi D.C.,Deng C.X., Brugge J.S., Haber D.A.: Transforming properties of YAP,a candidate oncogene on the chromosome 11q22 amplicon. Proc.Natl. Acad. Sci. USA, 2006; 103: 12405-12410
    Google Scholar
  • 59. Peng H.W., Slattery M., Mann R.S.: Transcription factor choice inthe Hippo signaling pathway: homothorax and yorkie regulation ofthe microRNA bantam in the progenitor domain of the Drosophilaeye imaginal disc. Genes Dev., 2009; 23: 2307-2319
    Google Scholar
  • 60. Reddy B.V., Rauskolb C., Irvine K.D.: Influence of fat-hippo andnotch signaling on the proliferation and differentiation of Drosophilaoptic neuroepithelia. Development, 2010; 137: 2397-2408
    Google Scholar
  • 61. Ren F., Zhang L., Jiang J.: Hippo signaling regulates Yorkie nuclearlocalization and activity through 14-3-3 dependent and independentmechanisms. Dev. Biol., 2010; 337: 303-312
    Google Scholar
  • 62. Ribeiro P.S., Josue F., Wepf A., Wehr M.C., Rinner O., Kelly G., TaponN., Gstaiger M.: Combined functional genomic and proteomicapproaches identify a PP2A complex as a negative regulator of Hipposignaling. Mol. Cell, 2010; 39: 521-534
    Google Scholar
  • 63. Robinson B.S., Huang J., Hong Y., Moberg K.H.: Crumbs regulatesSalvador/Warts/Hippo signaling in Drosophila via the FERM-domainprotein Expanded. Curr. Biol., 2010; 20: 582-590
    Google Scholar
  • 64. Romano D., Matallanas D., Weitsman G., Preisinger C., Ng T.,Kolch W.: Proapoptotic kinase MST2 coordinates signaling crosstalkbetween RASSF1A, Raf-1, and Akt. Cancer Res., 2010; 70: 1195-1203
    Google Scholar
  • 65. Sasaki H., Kawano O., Endo K., Suzuki E., Yukiue H., KobayashiY., Yano M., Fujii Y.: Human MOB1 expression in non-small-cell lungcancer. Clin. Lung Cancer, 2007; 8: 273-276
    Google Scholar
  • 66. Sekido Y.: Genomic abnormalities and signal transduction dysregulationin malignant mesothelioma cells. Cancer Sci., 2010; 101: 1-6
    Google Scholar
  • 67. Simon M.A., Xu A., Ishikawa H.O., Irvine K.D.: Modulation offat:dachsous binding by the cadherin domain kinase four-jointed.Curr. Biol., 2010; 20: 811-817
    Google Scholar
  • 68. Song H., Oh S., Oh H.J., Lim D.S.: Role of the tumor suppressorRASSF2 in regulation of MST1 kinase activity. Biochem. Biophys.Res. Commun., 2010; 391: 969-973
    Google Scholar
  • 69. Sopko R. McNeill H.: The skinny on Fat: an enormous cadherinthat regulates cell adhesion, tissue growth, and planar cell polarity.Curr. Opin. Cell Biol., 2009; 21: 717-723
    Google Scholar
  • 70. Sopko R., Silva E., Clayton L., Gardano L., Barrios-Rodiles M.,Wrana J., Varelas X., Arbouzova N.I., Shaw S., Saburi S., MatakatsuH., Blair S., McNeill H.: Phosphorylation of the tumor suppressor fatis regulated by its ligand Dachsous and the kinase discs overgrown.Curr. Biol., 2009; 19: 1112-1117
    Google Scholar
  • 71. Staley B.K., Irvine K.D.: Hippo signaling in Drosophila: recentadvances and insights. Dev. Dyn., 2012; 241: 3-15
    Google Scholar
  • 72. Steinhardt A.A., Gayyed M.F., Klein A.P., Dong J., Maitra A., PanD., Montgomery E.A., Anders R.A.: Expression of Yes-associated proteinin common solid tumors. Hum. Pathol., 2008; 39: 1582-1589
    Google Scholar
  • 73. Strano S., Monti O., Pediconi N., Baccarini A., Fontemaggi G., LapiE., Mantovani F., Damalas A., Citro G., Sacchi A., Del Sal G., LevreroM., Blandino G.: The transcriptional coactivator Yes-associated proteindrives p73 gene-target specificity in response to DNA Damage.Mol. Cell, 2005; 18: 447-459
    Google Scholar
  • 74. Strano S., Munarriz E., Rossi M., Castagnoli L., Shaul Y., SacchiA., Oren M., Sudol M., Cesareni G., Blandino G.: Physical interactionwith Yes-associated protein enhances p73 transcriptional activity.J. Biol. Chem., 2001; 276: 15164-15173
    Google Scholar
  • 75. Sudol M., Shields D.C., Farooq A.: Structures of YAP proteindomains reveal promising targets for development of new cancerdrugs. Semin. Cell Dev. Biol., 2012; 23: 827-833
    Google Scholar
  • 76. Takahashi Y., Miyoshi Y., Takahata C., Irahara N., Taguchi T.,Tamaki Y., Noguchi S.: Down-regulation of LATS1 and LATS2 mRNAexpression by promoter hypermethylation and its association withbiologically aggressive phenotype in human breast cancers. Clin.Cancer Res., 2005; 11: 1380-1385
    Google Scholar
  • 77. Tapon N., Harvey K.F., Bell D.W., Wahrer D.C., Schiripo T.A.,Haber D.A., Hariharan I.K.: Salvador promotes both cell cycle exitand apoptosis in Drosophila and is mutated in human cancer celllines. Cell, 2002; 110: 467-478
    Google Scholar
  • 78. Tumaneng K., Russell R.C., Guan K.L.: Organ size control by Hippoand TOR pathways. Curr. Biol., 2012; 22: R368-R379
    Google Scholar
  • 79. Udan R.S., Kango-Singh M., Nolo R., Tao C., Halder G.: Hippopromotes proliferation arrest and apoptosis in the Salvador/Wartspathway. Nat. Cell Biol., 2003; 5: 914-920
    Google Scholar
  • 80. Vassilev A., Kaneko K.J., Shu H., Zhao Y., DePamphilis M.L.: TEAD/TEF transcription factors utilize the activation domain of YAP65,a Src/Yes-associated protein localized in the cytoplasm. Genes Dev.,2001; 15: 1229-1241
    Google Scholar
  • 81. Visser S., Yang X.: Identification of LATS transcriptional targetsin HeLa cells using whole human genome oligonucleotide microarray.Gene, 2010; 449: 22-29
    Google Scholar
  • 82. Wang Y., Dong Q., Zhang Q., Li Z., Wang E., Qiu X.: Overexpressionof yes-associated protein contributes to progression andpoor prognosis of non-small-cell lung cancer. Cancer Sci., 2010;101: 1279-1285
    Google Scholar
  • 83. Wu S., Huang J., Dong J., Pan D.: Hippo encodes a Ste-20 familyprotein kinase that restricts cell proliferation and promotesapoptosis in conjunction with salvador and warts. Cell, 2003; 114:445-456
    Google Scholar
  • 84. Xie C., Guo Y., Zhu T., Zhang J., Ma P.X., Chen Y.E.: Yap1 proteinregulates vascular smooth muscle cell phenotypic switch by interactionwith myocardin. J. Biol. Chem., 2012; 287: 14598-14605
    Google Scholar
  • 85. Xu Z.P., Zhu J.S., Zhang Q., Wang X.Y.: A breakdown of the Hippopathway in gastric cancer. Hepatogastroenterology, 2011; 58:1611-1617
    Google Scholar
  • 86. Yabuta N., Okada N., Ito A., Hosomi T., Nishihara S., SasayamaY., Fujimori A., Okuzaki D., Zhao H., Ikawa M., Okabe M., Nojima H.:Lats2 is an essential mitotic regulator required for the coordinationof cell division. J. Biol. Chem., 2007; 282: 19259-19271
    Google Scholar
  • 87. Yuan M., Tomlinson V., Lara R., Holliday D., Chelala C., Harada T.,Gangeswaran R., Manson-Bishop C., Smith P., Danovi S.A., Pardo O.,Crook T., Mein C.A., Lemoine N.R., Jones L.J., Basu S.: Yes-associatedprotein (YAP) functions as a tumor suppressor in breast. Cell DeathDiffer., 2008; 15: 1752-1759
    Google Scholar
  • 88. Yuan Z., Kim D., Shu S., Wu J., Guo J., Xiao L., Kaneko S., CoppolaD., Cheng J.Q.: Phosphoinositide 3-kinase/Akt inhibits MST1-mediatedpro-apoptotic signaling through phosphorylation of threonine 120 J. Biol. Chem., 2010; 285: 3815-3824
    Google Scholar
  • 89. Yuan Z., Lehtinen M.K., Merlo P., Villen J., Gygi S., Bonni A.:Regulation of neuronal cell death by MST1-FOXO1 signaling. J. Biol.Chem., 2009; 284: 11285-11292
    Google Scholar
  • 90. Zaidi S.K., Sullivan A.J., Medina R., Ito Y., van Wijnen A.J., SteinJ.L., Lian J.B., Stein G.S.: Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBOJ., 2004; 23: 790-799
    Google Scholar
  • 91. Zang Z.J., Cutcutache I., Poon S.L., Zhang S.L., McPherson J.R.,Tao J., Rajasegaran V., Heng H.L., Deng N., Gan A., Lim K.H., Ong C.K.,Huang D., Chin S.Y., Tan I.B. i wsp.: Exome sequencing of gastric adenocarcinomaidentifies recurrent somatic mutations in cell adhesionand chromatin remodeling genes. Nat. Genet., 2012; 44: 570-574
    Google Scholar
  • 92. Zhang L., Ren F., Zhang Q., Chen Y., Wang B., Jiang J.: The TEAD/TEF family of transcription factor Scalloped mediates Hippo signalingin organ size control. Dev. Cell, 2008; 14: 377-387
    Google Scholar
  • 93. Zhang X., George J., Deb S., Degoutin J.L., Takano E.A., Fox S.B.,Bowtell D.D., Harvey K.F.: The Hippo pathway transcriptional coactivator,YAP, is an ovarian cancer oncogene. Oncogene, 2011; 30:2810-2822
    Google Scholar
  • 94. Zhao B., Li L., Lei Q., Guan K.L.: The Hippo-YAP pathway in organsize control and tumorigenesis: an updated version. Genes Dev.,2010; 24: 862-874
    Google Scholar
  • 95. Zhao B., Li L., Tumaneng K., Wang C.Y., Guan K.L.: A coordinatedphosphorylation by Lats and CK1 regulates YAP stability throughSCF(beta-TRCP). Genes Dev., 2010; 24: 72-85
    Google Scholar
  • 96. Zhao B., Wei X., Li W., Udan R.S., Yang Q., Kim J., Xie J., IkenoueT., Yu J., Li L., Zheng P., Ye K., Chinnaiyan A., Halder G., Lai Z.C., GuanK.L.: Inactivation of YAP oncoprotein by the Hippo pathway is involvedin cell contact inhibition and tissue growth control. GenesDev., 2007; 21: 2747-2761
    Google Scholar
  • 97. Zhao B., Ye X., Yu J., Li L., Li W., Li S., Lin J.D., Wang C.Y., ChinnaiyanA.M., Lai Z.C., Guan K.L.: TEAD mediates YAP-dependent geneinduction and growth control. Genes Dev., 2008; 22: 1962-1971
    Google Scholar
  • 98. Zhou D., Conrad C., Xia F., Park J.S., Payer B., Yin Y., Lauwers G.Y.,Thasler W., Lee J.T., Avruch J., Bardeesy N.: Mst1 and Mst2 maintainhepatocyte quiescence and suppress hepatocellular carcinoma developmentthrough inactivation of the Yap1 oncogene. Cancer Cell,2009; 16: 425-438
    Google Scholar

Full text

Skip to content