Stearoyl-CoA desaturase – the lipid metabolism regulator

COMMENTARY ON THE LAW

Stearoyl-CoA desaturase – the lipid metabolism regulator

Mirosław Kucharski 1 , Urszula Kaczor 1

1. Pracownia Biotechnologii i Genomiki, Katedra Hodowli Trzody Chlewnej i Małych Przeżuwaczy, Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy w Krakowie

Published: 2014-03-27
DOI: 10.5604/17322693.1095856
GICID: 01.3001.0003.1209
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 334-342

 

Abstract

Stearoyl-CoA desaturase is an enzyme from the class of oxidoreductase, which catalyzes the formation of a fatty acid double bond between C9 and C10. It plays a key role in composition of the fatty acid profile in adipose tissue and animal products such as meat and milk. Additionally, it is an important regulator of metabolic processes in the body, and it determines the maintenance of energy homeostasis. This enzyme is encoded by an SCD gene, which, depending on the species, may exist as different isoforms. mRNA expression of stearoyl-CoA desaturase is dependent on many factors, including diet, hormones, and the activity of other genes. In previous studies, several mutations were characterized within the sequence of Δ9-desaturase, which may affect the activity of the protein in the tissues, as well as the value of breeding animals. Effects of particular mutations of the gene encoding the enzyme appears to be particularly important for diseases associated with obesity, diabetes, hypertension, heart diseases or cancer in humans. Also, it seems that using sheep as a potential animal model could be helpful in uncovering and understanding the mechanisms regulated by stearoyl-CoA desaturase.

References

  • 1. Ariyama H., Kono N., Matsuda S., Inoue T., Arai H.: Decrease in membranephospholipid unsaturation induces unfolded protein response. J.Biol. Chem., 2010; 285: 22027-22035 2 Attie A.D., Krauss R.M., Gray-Keller M.P., Brownlie A., Miyazaki M.,Kastelein J.J., Lusis A.J., Stalenhoef A.F., Stoehr J.P., Hayden M.R., NtambiJ.M.: Relationship between stearoyl-CoA desaturase activity and plasmatriglycerides in human and mouse hypertriglyceridemia. J. Lipid Res.,2002; 43: 1890-1907
    Google Scholar
  • 2. J. Biol. Chem., 1999; 274: 20603-20610
    Google Scholar
  • 3. Bakhtiarizadeh M.R., Moradi-Shahrbabak M., Ebrahimie E.: Underlyingfunctional genomics of fat deposition in adipose tissue. Gene,2013; 521: 122-128
    Google Scholar
  • 4. Barber M.C., Ward R.J., Richards S.E., Salter A.M., Buttery P.J., VernonR.G., Travers M.T.: Ovine adipose tissue monounsaturated fat content iscorrelated to depot-specific expression of the stearoyl-CoA desaturasegene. J. Anim. Sci., 2000; 78: 62-68
    Google Scholar
  • 5. Bartz M., Szydlowski M., Kociucka B., Salamon S., Jelen H.H., SwitonskiM.: Transcript abundance of the pig stearoyl-CoA desaturasegene has no effect on fatty acid composition in muscle and fat tissues,but its polymorphism within the putative microRNA target site is associatedwith daily body weight gain and feed conversion ratio. J. Anim.Sci., 2013; 91: 10-19
    Google Scholar
  • 6. Beppu F., Hosokawa M., Yim M.J., Shinoda T., Miyashita K.: Down–regulation of hepatic stearoyl-CoA desaturase-1 expression by fucoxanthinvia leptin signaling in diabetic/obese KK-Ay mice. Lipids, 2013;48: 449-455
    Google Scholar
  • 7. Bernard L., Leroux C., Hayes H., Gautier M., Chilliard Y., Martin P.:Characterization of the caprine stearoyl-CoA desaturase gene and itsmRNA showing an unusually long 3’-UTR sequence arising from a singleexon. Gene, 2001; 281: 53-61
    Google Scholar
  • 8. Bichi E., Toral P.G., Hervás G., Frutos P., Gómez-Cortés P., Juárez M.,de la Fuente M.A.: Inhibition of Δ9-desaturase activity with sterculicacid: effect on the endogenous synthesis of cis-9 18:1 and cis-9, trans-1118:2 in dairy sheep. J. Dairy Sci., 2012; 95: 5242-5252
    Google Scholar
  • 9. Brash A.R., Schneider C., Hamberg M.: Applications of stereospecifically-labeledfatty acids in oxygenase and desaturase biochemistry.Lipids, 2012; 47: 101-116
    Google Scholar
  • 10. Busch A.K., Gurisik E., Cordery D.V., Sudlow M., Denyer G.S., LaybuttD.R., Hughes W.E., Biden T.J.: Increased fatty acid desaturationand enhanced expression of stearoyl coenzyme A desaturase protectspancreatic beta-cells from lipoapoptosis. Diabetes, 2005; 54: 2917-2924
    Google Scholar
  • 11. Cánovas A., Estany J., Tor M., Pena R.N., Doran O.: Acetyl-CoA carboxylaseand stearoyl-CoA desaturase protein expression in subcutaneousadipose tissue is reduced in pigs selected for decreased backfat thicknessat constant intramuscular fat content. J. Anim. Sci., 2009; 87: 3905-3914
    Google Scholar
  • 12. Cao H., Gerhold K., Mayers J.R., Wiest M.M., Watkins S.M., HotamisligilG.S.: Identification of a lipokine, a lipid hormone linking adiposetissue to systemic metabolism. Cell, 2008; 134: 933-944
    Google Scholar
  • 13. Caputi Jambrenghi A., Paglialonga G., Gnoni A., Zanotti F., GiannicoF., Vonghia G., Gnoni G.V.: Changes in lipid composition and lipogenicenzyme activities in liver of lambs fed ω-6 polyunsaturated fatty acids.Comp. Biochem. Physiol. B Biochem. Mol., 2007; 147: 498-503
    Google Scholar
  • 14. Castro L.F., Wilson J.M., Gonçalves O., Galante-Oliveira S., Rocha E.,Cunha I.: The evolutionary history of the stearoyl-CoA desaturase genefamily in vertebrates. BMC Evol. Biol., 2011; 11: 132
    Google Scholar
  • 15. Chen X., Mao H., Ma X., Liu J.: Effects of dietary corn oil and vitaminE supplementation on fatty acid profiles and expression of acetylCoA carboxylase and stearoyl-CoA desaturase gene in Hu sheep. Anim.Sci. J., 2010; 81: 165-171
    Google Scholar
  • 16. Chen Z., Sun J., Li Z., Lan X., Zhang C., Qu Y., Fang X., Lei C., ChenH.: Novel SNPs in the caprine stearoyl-CoA desaturase (SCD) and decorin(DCN) genes that are associated with growth traits in Chinese goatbreeds. Mol. Biol. Rep., 2011; 38: 3121-3127
    Google Scholar
  • 17. Cockrum R.R., Austin K.J., Kim J.W., Garbe J.R., Fahrenkrug S.C., TaylorJ.F., Cammack K.M.: Differential gene expression of ewes varying intolerance to dietary nitrate. J. Anim. Sci., 2010; 88: 3187-3197
    Google Scholar
  • 18. Cohen P., Miyazaki M., Socci N.D., Hagge-Greenberg A., Liedtke W.,Soukas A.A., Sharma R., Hudgins L.C., Ntambi J.M., Friedman J.M.: Rolefor stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science,2002; 297: 240-243
    Google Scholar
  • 19. Collins J.M., Neville M.J., Hoppa M.B., Frayn K.N.: De novo lipogenesisand stearoyl-CoA desaturase are coordinately regulated in thehuman adipocyte and protect against palmitate-induced cell injury. J.Biol. Chem., 2010; 285: 6044-6052
    Google Scholar
  • 20. Corl B.A., Baumgard L.H., Dwyer D.A., Griinari J.M., Phillips B.S., BaumanD.E.: The role of Δ9-desaturase in the production of cis-9, trans-11CLA. J. Nutr Biochem., 2001; 12: 622-630
    Google Scholar
  • 21. Costa A.S., Silva M.P., Alfaia C.P., Pires V.M., Fontes C.M., Bessa R.J.,Prates J.A.: Genetic background and diet impact beef fatty acid compositionand stearoyl-CoA desaturase mRNA expression. Lipids, 2013;48: 369-381
    Google Scholar
  • 22. Daniel Z.C., Wynn R.J., Salter A.M., Buttery P.J.: Differing effects offorage and concentrate diets on the oleic acid and conjugated linoleicacid content of sheep tissues: the role of stearoyl-CoA desaturase. J.Anim. Sci., 2004; 82: 747-758
    Google Scholar
  • 23. Dervishi E., Joy M., Sanz A., Alvarez-Rodriguez J., Molino F., CalvoJ.H.: Forage preservation (grazing vs. hay) fed to ewes affects the fattyacid profile of milk and CPT1B gene expression in the sheep mammarygland. BMC Vet. Res., 2012; 8: 106
    Google Scholar
  • 24. Dervishi E., Joy M., Alvarez-Rodriguez J., Serrano M., Calvo J.H.: Theforage type (grazing versus hay pasture) fed to ewes and the lamb sexaffect fatty acid profile and lipogenic gene expression in the longissimusmuscle of suckling lambs. J. Anim. Sci., 2012; 90: 54-66
    Google Scholar
  • 25. Dervishi E., Serrano C., Joy M., Serrano M., Rodellar C., Calvo J.H.:Effect of the feeding system on the fatty acid composition, expressionof the Δ9-desaturase, peroxisome proliferator-activated receptor alpha,gamma, and sterol regulatory element binding protein 1 genes inthe semitendinous muscle of light lambs of the Rasa Aragonesa breed.BMC Vet. Res., 2010; 6: 40
    Google Scholar
  • 26. Dixon J.L., Furukawa S., Ginsberg H.N.: Oleate stimulates secretionof apolipoprotein B-containing lipoproteins from Hep G2 cells byinhibiting early intracellular degradation of apolipoprotein B. J. Biol.Chem., 1991; 266: 5080-5086
    Google Scholar
  • 27. Dridi S., Taouis M., Gertler A., Decuypere E., Buyse J.: The regulationof stearoyl-CoA desaturase gene expression is tissue specific in chickens.J. Endocrinol., 2007; 192: 229-236
    Google Scholar
  • 28. Enoch H.G., Catala A., Strittmatter P.: Mechanism of rat liver microsomalstearoyl-CoA desaturase. Studies of the substrate specificity,enzyme-substrate interactions, and the function of lipid. J. Biol. Chem.,1976; 251: 5095-5103
    Google Scholar
  • 29. Flowers M.T., Keller M.P., Choi Y., Lan H., Kendziorski C., NtambiJ.M., Attie A.D.: Liver gene expression analysis reveals endoplasmic reticulumstress and metabolic dysfunction in SCD1-deficient mice fed avery low-fat diet. Physiol. Genomics, 2008; 33: 361-372
    Google Scholar
  • 30. Garcia-Fernández M., Gutiérrez-Gil B., Garcia-Gámez E., Arranz J.J.:Genetic variability of the stearoyl-CoA desaturase gene in sheep. Mol.Cell. Probes, 2009; 23: 107-111
    Google Scholar
  • 31. Garcia-Fernández M., Gutiérrez-Gil B., Garcia-Gámez E., SánchezJ.P., Arranz J.J.: Detection of quantitative trait loci affecting the milkfatty acid profil on sheep chromosome 22: role of the stearoyl-CoA desaturasegene in Spanish Churra sheep. J. Dairy Sci., 2010; 93: 348-357
    Google Scholar
  • 32. Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V.:Conjugated linoleic acid is synthesized endogenously in lactatingdairy cows by Δ9-desaturase. J. Nutr., 2000; 130: 2285-2291
    Google Scholar
  • 33. Gutiérrez-Juárez R., Pocai A., Mulas C., Ono H., Bhanot S., MoniaB.P., Rossetti L.: Critical role of stearoyl-CoA desaturase-1 (SCD1) inthe onset of diet-induced hepatic insulin resistance. J. Clin. Invest.,2006; 116: 1686-1695
    Google Scholar
  • 34. Hayes H., Petit E., Dutrillaux B.: Comparison of RBG-banded karyotypesof cattle, sheep and goats. Cytogenet. Cell Genet., 1991; 57: 51-55
    Google Scholar
  • 35. Hoashi S., Ashida N., Ohsaki H., Utsugi T., Sasazaki S., TaniguchiM., Oyama K., Mukai F., Mannen H.: Genotype of bovine sterolregulatory element binding protein-1 (SREBP-1) is associated withfatty acid composition in Japanese Black cattle. Mamm. Genome,2007; 18: 880-886
    Google Scholar
  • 36. Ibeagha-Awemu E.M., Kgwatalala P., Zhao X.: A crititcal analysisof production-associated DNA polymorphisms in the genes of cattle,goat, sheep, and pig. Mamm. Genome, 2008; 19: 591-617
    Google Scholar
  • 37. Jacobs A.A., Dijkstra J., Liesman J.S., VandeHaar M.J., Lock A.L.,van Vuuren A.M., Hendriks W.H., van Baal J.: Effects of short- andlong-chain fatty acids on the expression of stearoyl-CoA desaturaseand other lipogenic genes in bovine mammary epithelial cells. Animal,2013; 7: 1508-1516
    Google Scholar
  • 38. Jeffcoat R., Brawn P.R., Safford R., James A.T.: Properties of ratliver microsomal stearoyl-coenzyme A desaturase. Biochem. J., 1977;161: 431-437
    Google Scholar
  • 39. Kaestner K.H., Ntambi J.M., Kelly T.J.Jr., Lane M.D.: Differentiation-inducedgene expression in 3T3-L1 preadipocytes. A seconddifferentially expressed gene encoding stearoyl-CoA desaturase. J.Biol. Chem., 1989; 264: 14755-14761
    Google Scholar
  • 40. Karahashi M., Ishii F., Yamazaki T., Imai K., Mitsumoto A., KawashimaY., Kudo N.: Up-regulation of stearoyl-CoA desaturase 1increases liver MUFA content in obese Zucker but non Goto-Kakizakirats. Lipids, 2013; 48: 457-467
    Google Scholar
  • 41. Keating A.F., Stanton C., Murphy J.J., Smith T.J., Ross R.P., CairnsM.T.: Isolation and characterization of the bovine stearoyl-CoA desaturasepromoter and analysis of polymorphisms in the promoterregion in dairy cows. Mamm. Genome, 2005; 16: 184-193
    Google Scholar
  • 42. Kuchel H., Siebert B.D., Bottema C.D., Webb G.C., Crawford A.M.,Duncan S.J., McDonald P.A., McEwan J.C., Pitchford W.S.: Physicalmapping of the stearoyl-CoA desaturase (SCD) locus in sheep. Anim.Genet., 2004; 35: 163
    Google Scholar
  • 43. Kuchtik J., Zapletal D., Šustová K.: Chemical and physical characteristicsof lamb meat related to crossbreeding of Romanov eweswith Suffolk and Charollais sires. Meat Sci., 2012; 90: 426-430
    Google Scholar
  • 44. Legrand P., Catheline D., Fichot M.C., Lemarchal P.: InhibitingΔ9-desaturase activity impairs triacylglycerol secretion in culturedchicken hepatocytes. J. Nutr, 1997; 127: 249-256
    Google Scholar
  • 45. Lengi A.J., Corl B.A.: Comparison of pig, sheep and chicken SCD5homologs: evidence for an early gene duplication event. Comp. Biochem.Physiol. B Biochem. Mol. Biol., 2008; 150: 440-446
    Google Scholar
  • 46. Lengi A.J., Corl B.A.: Identification and characterization of anovel bovine stearoyl-CoA desaturase isoform with homology tohuman SCD5. Lipids, 2007; 42: 499-508
    Google Scholar
  • 47. Li X.. Ekerljung M., Lundström K., Lundén A.: Association ofpolymorphism at DGAT1, leptin, SCD1, CAPN1 and CAST genes withcolor, marbling and water holding capacity in meat from beef cattlepopulations in Sweden. Meat Sci., 2013; 94: 153-158
    Google Scholar
  • 48. Li Z.Z., Berk M., McIntyre T.M., Feldstein A.E.: Hepatic lipidpartitioning and liver damage in nonalcoholic fatty liver disease:role of stearoyl-CoA desaturase. J. Biol. Chem., 2009; 284: 5637-5644
    Google Scholar
  • 49. Listenberger L.L., Han X., Lewis S.E., Cases S., Farese R.V. Jr, OryD.S., Schaffer J.E.: Triglyceride accumulation protects against fattyacid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA, 2003; 100:3077-3082
    Google Scholar
  • 50. Liu X., Miyazaki M., Flowers M.T., Sampath H., Zhao M., Chu K.,Paton C.M., Joo D.S., Ntambi J.M.: Loss of stearoyl-CoA desaturase-1attenuates adipocyte inflammation: effects of adipocyte-deriveredoleate. Arterioscler. Thromb. Vasc. Biol., 2010; 30: 31-38
    Google Scholar
  • 51. Liu X., Strable M.S., Ntambi J.M.: Stearoyl-CoA desaturase 1:role in cellular inflammation and stress. Adv. Nutr., 2011; 2: 15-22
    Google Scholar
  • 52. Man W.C., Miyazaki M., Chu K., Ntambi J.M.: Membrane topologyof mouse stearoyl-CoA desaturase 1. J. Biol. Chem., 2006; 281:1251-1260
    Google Scholar
  • 53. Martins S.V., Lopes P.A., Alves S.P., Alfaia C.M., Castro M.F., BessaR.J., Prates J.A.: Dietary CLA combined with palm oil or ovine fatdifferentially influences fatty acid deposition in tissues of obeseZucker rats. Lipids, 2012; 47: 47-58
    Google Scholar
  • 54. Mayneris-Perxachs J., Guerendiain M., Castellote A.I., Estruch R.,Covas M.I., Fitó M., Salas-Salvadó J., Martinez-González M.A., Aros F.,Lamuela-Raventós R.M., López-Sabater M.C.: Plasma fatty acid composition,estimated desaturase activities, and their relation with themetabolic syndrome in a population at high risk of cardiovasculardisease. Clin. Nutr, 2014; 33: 90-97
    Google Scholar
  • 55. Milanesi E., Nicoloso L., Crepaldi P.: Stearoyl-CoA desaturase(SCD) gene polymorphisms in Italian cattle breeds. J. Anim. Breed.Genet., 2008; 125: 63-67
    Google Scholar
  • 56. Miyazaki M., Kim Y.C., Gray-Keller M.P., Attie A.D., Ntambi J.M.:The biosynthesis of hepatic cholesterol esters and triglycerides isimpaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1 J. Biol. Chem., 2000; 275: 30132-30138
    Google Scholar
  • 57. Miyazaki M., Man W.C., Ntambi J.M.: Targeted disruption ofstearoyl-CoA desaturase1 gene in mice causes atrophy of sebaceousand meibomian glands and depletion of wax esters in the eyelid. J.Nutr., 2001; 131: 2260-2268
    Google Scholar
  • 58. Miyazaki M., Ntambi J.M.: Role of stearoyl-coenzyme A desaturasein lipid metabolism. Prostaglandins Leukot. Essent. FattyAcids, 2003; 68: 113-121
    Google Scholar
  • 59. Morgan-Lappe S.E., Tucker L.A., Huang X., Zhang Q., Sarthy A.V.,Zakula D., Vernetti L., Schurdak M., Wang J., Fesik S.W.: Identificationof Ras-related nuclear protein, targeting protein for xenopus kinesin-likeprotein 2, and stearoyl-CoA desaturase 1 as promising cancertargets from an RNAi-based screen. Cancer Res., 2007; 67: 4390-4398
    Google Scholar
  • 60. Nakamura M.T., Nara T.Y.: Structure, function, and dietary regulationof Δ6, Δ5, Δ9 desaturases. Annu. Rev. Nutr., 2004; 24: 345-376
    Google Scholar
  • 61. Ntambi J.M.: Regulation of stearoyl-CoA desaturase by polyunsaturatedfatty acids and cholesterol. J. Lipid Res., 1999; 40: 1549-1558
    Google Scholar
  • 62. Ntambi J.M.: The regulation of stearoyl-CoA desaturase (SCD).Prog. Lipid Res., 1995; 34: 139-150
    Google Scholar
  • 63. Ntambi J.M., Buhrow S.A., Kaestner K.H., Christy R.J., Sibley E.,Kelly T.J., Lane M.D.: Differentiation-induced gene expression in3T3-L1 preadipocytes: characterization of a differentially expressedgene encoding stearoyl-CoA desaturase. J. Biol. Chem., 1988;263: 17291-17300
    Google Scholar
  • 64. Ntambi J.M., Miyazaki M., Dobrzyn A.: Regulation of stearoyl–CoA desaturase expression. Lipids, 2004; 39: 1061-1065
    Google Scholar
  • 65. Palmquist D.L., Lock A.L., Shingfield K.J., Bauman D.E.: Biosynthesisof conjugated linoleic acid in ruminants and humans. Adv.Food Nutr. Res., 2005; 50: 179-217
    Google Scholar
  • 66. Paton C.M., Ntambi J.M.: Biochemical and physiological functionof stearoyl-CoA desaturase. Am. J. Physiol. Endocrinol. Metab.,2009; 297: E28-E37
    Google Scholar
  • 67. Pauciullo A., Cosenza G., D’Avino A., Colimoro L., Nicodemo D.,Coletta A., Feligini M., Marchitelli C., Di Berardino D., Ramunno L.:Sequence analysis and genetic variability of stearoyl CoA desaturase (SCD) gene in the Italian Mediterranean river buffalo. Mol. CellProbes, 2010; 24: 407-410
    Google Scholar
  • 68. Pauciullo A., Cosenza G., Steri R., Coletta A., La Battaglia A., DiBerardino D., Macciotta N.P., Ramunno L.: A single nucleotide polymorphismin the promoter region of river buffalo stearoyl CoAdesaturase gene (SCD) is associated with milk yield. J. Dairy Res.,2012; 79: 429-435
    Google Scholar
  • 69. Peter A., Weigert C., Staiger H., Machicao F., Schick F., Machann J.,Stefan N., Thamer C., Häring H.U., Schleicher E.: Individual stearoyl-CoAdesaturase 1 expression modulates endoplasmic reticulum stress andinflammation in human myotubes and is associated with skeletal musclelipid storage and insulin sensitivity in vivo. Diabetes, 2009; 58: 1757-1765
    Google Scholar
  • 70. Peter A., Weigert C., Staiger H., Rittig K., Cegan A., Lutz P., MachicaoF., Häring H.U., Schleicher E.: Induction of stearoyl-CoA desaturaseprotects human arterial endothelial cells against lipotoxicity.Am. J. Physiol. Endocrinol. Metab., 2008; 295: E339-E349
    Google Scholar
  • 71. Reaven G.M.: Role of insulin resistance in human disease (syndromeX): an expanded definition. Annu. Rev. Med., 1993; 44: 121-131
    Google Scholar
  • 72. Ren J., Knorr C., Huang L., Brenig B.: Isolation and molecularcharacterization of the porcine stearoyl-CoA desaturase gene. Gene,2004; 340: 19-30
    Google Scholar
  • 73. Renaville B., Prandi A., Fan B., Sepulcri A., Rothschild M.F., PiasentierE.: Candidate gene marker associations with fatty acid profilesin heavy pigs. Meat Sci., 2013; 93: 495-500
    Google Scholar
  • 74. Samuel W., Kutty R.K., Nagineni S., Gordon J.S., Prouty S.M.,Chandraratna R.A., Wiggert B.: Regulation of stearoyl coenzyme Adesaturase expression in human retinal pigment epithelial cells byretinoic acid. J. Biol. Chem., 2001; 276: 28744-28750
    Google Scholar
  • 75. Santercole V., Mazzette R., De Santis E.P., Banni S., GoonewardeneL., Kramer J.K.: Total lipids of Sarda sheep meat that includethe fatty acid and alkenyl composition and the CLA and trans-18:1isomers. Lipids, 2007; 42: 361-382
    Google Scholar
  • 76. Shimomura I., Shimano H., Korn B.S., Bashmakov Y., HortonJ.D.: Nuclear sterol regulatory element-binding proteins activategenes responsible for the entire program of unsaturated fatty acidbiosynthesis in transgenic mouse liver. J. Biol. Chem., 1998; 273:35299-35306
    Google Scholar
  • 77. Siebert B.D., Pitchford W.S., Kruk Z.A., Kuchel H., Deland M.P.,Bottema C.D.: Differences in Δ9 desaturase activity between JerseyandLimousin-sired cattle. Lipids, 2003; 38: 539-543
    Google Scholar
  • 78. Sjögren P., Sierra-Johnson J., Gertow K., Rosell M., Vessby B., deFaire U., Hamsten A., Hellenius M.L., Fisher R.M.: Fatty acid desaturasesin human adipose tissue: relationships between gene expression, desaturationindexes and insulin resistance. Diabetologia, 2008; 51: 328-335
    Google Scholar
  • 79. Strittmatter P., Spatz L., Corcoran D., Rogers M.J., Setlow B.,Redline R.: Purification and properties of rat liver microsomal stearylcoenzyme A desaturase. Proc. Natl. Acad. Sci. USA, 1974; 71:4565-4569
    Google Scholar
  • 80. Tabor D.E., Kim J.B., Spiegelman B.M., Edwards P.A.: Identificationof conserved cis-elements and transcription factors requiredfor sterol-regulated transcription of stearoyl-CoA desaturase 1 and
    Google Scholar
  • 81. Tabor D.E., Kim J.B., Spiegelman B.M., Edwards P.A.: Transcriptionalactivation of the stearoyl-CoA desaturase 2 gene by sterolregulatory element-binding protein/adipocyte determination anddifferentiation factor 1. J. Biol. Chem., 1998; 273: 22052-22058
    Google Scholar
  • 82. Taniguchi M., Utsugi T., Oyama K., Mannen H., Kobayashi M.,Tanabe Y., Ogino A., Tsuji S.: Genotype of stearoyl-CoA desaturaseis associated with fatty acid composition in Japanese Black cattle.Mamm. Genome, 2004; 15: 142-148
    Google Scholar
  • 83. Thörn K., Hovsepyan M., Bergsten P.: Reduced levels of SCD1accentuate palmitate-induced stress in insulin-producing β-cells.Lipids Health Dis., 2010; 9: 108
    Google Scholar
  • 84. Toral P.G., Hervás G., Gómez-Cortés P., Frutos P., Juárez M., de laFuente M.A.: Milk fatty acid profile and dairy sheep performance inresponse to diet supplementation with sunflower oil plus incrementallevels of marine algae. J. Dairy Sci., 2010; 93: 1655-1667
    Google Scholar
  • 85. Tsiplakou E., Flemetakis E., Kalloniati C., Papadomichelakis G.,Katinakis P., Zervas G.: Sheep and goats differences in CLA and fattyacids milk fat content in relation with mRNA stearoyl-CoA desaturaseand lipogenic genes expression in their mammary gland. J. DairyRes., 2009; 76: 392-401
    Google Scholar
  • 86. Tsiplakou E., Zervas G.: The effect of dietary inclusion of olivetree leaves and grape marc on the content of conjugated linoleicacid and vaccenic acid in the milk of dairy sheep and goats. J. DairyRes., 2008; 75: 270-278
    Google Scholar
  • 87. von Roemeling C.A., Marlow L.A., Wei J.J., Cooper S.J., CaulfieldT.R., Wu K., Tan W.W., Copland J.A.: Stearoyl-CoA desaturase 1 is anovel molecular therapeutic target for clear cell renal cell carcinoma.Clin. Cancer Res., 2013; 19: 2368-2380
    Google Scholar
  • 88. Voss M.D., Zoller G., Matter H., Herling A.W., Biemer-Daub G.,Pfenninger A., Haag-Diergarten S., Keil S., Kohlmann M., SchmidtsH.L.: Discovery and pharmacological characterization of SAR707 asnovel and selective small molecule inhibitor of stearoyl-CoA desaturase(SCD1). Eur. J. Pharmacol., 2013; 707: 140-146
    Google Scholar
  • 89. Wang J., Yu L., Wang H., Gao Y., Schrementi J.P., Porter R.K.,Yurek D.A., Kuo M., Suen C.S., Cao G., Bean J.S., Kauffman R.F., QianY.: Identification and characterization of hamster stearoyl-CoA desaturaseisoforms. Lipids, 2008; 43: 197-205
    Google Scholar
  • 90. Ward R.J., Travers M.T., Richards S.E., Vernon R.G., Salter A.M.,Buttery P.J., Barber M.C.: Stearoyl-CoA desaturase mRNA is transcribedfrom a single gene in the ovine genome. Biochim. Biophys.Acta, 1998; 1391: 145-56
    Google Scholar
  • 91. Wei Y., Wang D., Gentile C.L., Pagliassotti M.J.: Reduced endoplasmicreticulum luminal calcium links saturated fatty acid-mediatedendoplasmic reticulum stress and cell death in liver cells. Mol. Cell.Biochem., 2009; 33: 31-40
    Google Scholar
  • 92. Wei Y., Wang D., Pagliassotti M.J.: Saturated fatty acid-mediatedendoplasmic reticulum stress and apoptosis are augmented bytrans-10, cis-12 conjugated linoleic acid in liver cells. Mol. Cell. Biochem.,2007; 303: 105-113
    Google Scholar
  • 93. Wei Y., Wang D., Topczewski F., Pagliassotti M.J.: Saturated fattyacids induce endoplasmic reticulum stress and apoptosis independentlyof ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab.,2006; 291: E275-E281
    Google Scholar
  • 94. Wynn R.J., Daniel Z.C., Flux C.L., Craigon J., Salter A.M., ButteryP.J.: Effect of feeding rumen-protected conjugated linoleic acid oncarcass characteristics and fatty acid composition of sheep tissues.J. Anim. Sci., 2006; 84: 3440-3450
    Google Scholar
  • 95. Yakan A., Unal N.: Meat production traits of a new sheep breedcalled Bafra in Turkey 2. Meat quality characteristics of lambs. Trop.Anim. Health Prod., 2010; 42: 743-750
    Google Scholar
  • 96. Zhang C.L., Gao X.Y., Shao R.Y., Wang Y.H., Fang X.T., Chen H.:Stearoyl-CoA desaturase (SCD) gene polymorphism in goat breeds.Biochem. Genet., 2010; 48: 822-828
    Google Scholar
  • 97. Zhang L., Ge L., Parimoo S., Stenn K., Prouty S.M.: Human stearoyl-CoAdesaturase: alternative transcripts generated from a singlegene by usage of tandem polyadenylation sites. Biochem. J.,1999; 340: 255-264
    Google Scholar
  • 98. Zulkifli R.M., Parr T., Salter A.M., Brameld J.M.: Regulation ofovine and porcine stearoyl coenzyme A desaturase gene promotersby fatty acids and sterols. J. Anim. Sci., 2010; 88: 2565-2575
    Google Scholar

Full text

Skip to content