Mitoxantrone – an anthraquinone antibiotic with antitumor activity applied for the treatment of multiple sclerosis

COMMENTARY ON THE LAW

Mitoxantrone – an anthraquinone antibiotic with antitumor activity applied for the treatment of multiple sclerosis

Marzena Szwed 1

1. Katedra Termobiologii, Instytut Biofizyki, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2014-02-21
DOI: 10.5604/17322693.1091102
GICID: 01.3001.0003.1195
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 198-208

 

Abstract

Mitoxantrone is an antineoplastic agent approved for clinical use in the secondary progressive phase of multiple sclerosis (MS). Several scientific reports indicate that mitoxantrone acts through the induction of short-term cell lysis at high concentrations and long-term induction of programmed cell death at lower concentrations of antigen-presenting cells. In this paper, we present the potential cytotoxic effects of mitoxantrone on the cells of the immune system, whose activity is associated with their degenerative effects on axonal myelin sheaths. The article also evaluates the results from the hospital treatment of patients diagnosed with MS. The presented data indicate that, apart from the cytostatic properties, mitoxantrone also exhibits side effects of its clinical application. This drug has high cardiotoxicity, and is associated with decreased left ventricular ejection fraction and increased risk of congestive heart failure. Therefore researchers are currently looking for new substances that can reduce the toxic effects of mitoxantrone in healthy tissues, resulting in the generation of reactive oxygen species during its metabolism.

References

  • 1. Bayas A.: Improving adherence to injectable disease-modifyingdrugs in multiple sclerosis. Expert Opin. Drug Deliv., 2013; 10: 285-287
    Google Scholar
  • 2. Bjartmar C., Trapp B.D.: Axonal and neuronal degeneration inmultiple sclerosis: mechanisms and functional consequences. Curr.Opin. Neurol., 2001; 14: 271-278
    Google Scholar
  • 3. Bukowska B.: Glutation: biosynteza, czynniki indukujące orazstężenia w wybranych jednostkach chorobowych. Med. Pracy, 2004;55: 501-509
    Google Scholar
  • 4. Capkun-Niggli G., Lahoz R., Verdun E., Dickinson S., Lowy A.,Nordstrom B., Dahlke F.: PRM43 – medical and pharmacy claimsbasedalgorithms for identifying relapses in patients with multiplesclerosis. Value Health, 2013; 16: A582
    Google Scholar
  • 5. Chan A., Lo-Coco F.: Mitoxantrone-related acute leukemia in MS:an open or closed book? Neurology, 2013; 80: 1529-1533
    Google Scholar
  • 6. Chan A., Weilbach F.X., Toyka K.V., Gold R.: Mitoxantrone inducescell death in peripheral blood leukocytes of multiple sclerosis patients.Clin. Exp. Immunol., 2005; 139: 152-158
    Google Scholar
  • 7. Chanvillard C., Millward J.M., Lozano M., Hamann I., Paul F., ZippF., Dörr J., Infante-Duarte C.: Mitoxantrone induces natural killer cellmaturation in patients with secondary progressive multiple sclerosis.PLoS One, 2012; 7: e39625
    Google Scholar
  • 8. Chen R.F., Chou C.L., Wang M.R., Chen C.F., Liao J.F., Ho L.K., TaoC.W., Huang H.S.: Small-molecule anthracene-induced cytotoxicityand induction of apoptosis through generation of reactive oxygenspecies. Biol. Pharm. Bull., 2004; 27: 838-845
    Google Scholar
  • 9. Edan G., Le Page E.: Induction therapy for patients with multiplesclerosis: why? when? how? CNS Drugs, 2013; 27: 403-409
    Google Scholar
  • 10. Esposito F., Radaelli M., Martinelli V., Sormani M.P., MartinelliBoneschi F., Moiola L., Rocca M.A., Rodegher M., Comi G.: Comparativestudy of mitoxantrone efficacy profile in patients with relapsing-remittingand secondary progressive multiple sclerosis. Mult.Scler., 2010; 16: 1490-1499
    Google Scholar
  • 11. Filippi M., Bozzali M., Rovaris M., Gonen O., Kesavadas C., GhezziA., Martinelli V., Grossman R.I., Scotti G., Comi G., Falini A.: Evidencefor widespread axonal damage at the earliest clinical stage of multiplesclerosis. Brain, 2003; 126: 433-437
    Google Scholar
  • 12. Fox E.J.: Mechanism of action of mitoxantrone. Neurology, 2004; 63 (Suppl. 6): S15-S18
    Google Scholar
  • 13. Gbadamosi J., Buhmann C., Tessmer W., Moench A., Haag F.,Heesen C.: Effects of mitoxantrone on multiple sclerosis patients’lymphocyte subpopulations and production of immunoglobulin,TNF-alpha and IL-10. Eur. Neurol., 2003; 49: 137-141
    Google Scholar
  • 14. Goffette S., van Pesch V., Vanoverschelde J.L., Morandini E.,Sindic C.J.: Severe delayed heart failure in three multiple sclerosispatients previously treated with mitoxantrone. J. Neurol., 2005;252: 1217-1222
    Google Scholar
  • 15. Goodin D.S.: Therapeutic developments in multiple sclerosis.Expert Opin. Investig. Drugs, 2000; 9: 655-670
    Google Scholar
  • 16. Gyan E., Damotte D., Courby S., Sénécal D., Quittet P., SchmidtTanguyA., Banos A., Le Gouill S., Lamy T., Fontan J., Maisonneuve H.,Alexis M., Dreyfus F., Tournilhac O., Laribi K., Solal-Céligny P., ArakelyanN., Cartron G., Gressin R.; GOELAMS Group.: High response rateand acceptable toxicity of a combination of rituximab, vinorelbine,ifosfamide, mitoxantrone and prednisone for the treatment of diffuselarge B-cell lymphoma in first relapse: results of the R-NIMPGOELAMS study. Br. J. Haematol., 2013; 162: 240-249
    Google Scholar
  • 17. Hartung H.P., Bar-Or A., Zoukos Y.: What do we know aboutthe mechanism of action of disease-modifying treatments in MS? J.Neurol., 2004; 251 (Suppl. 5): v12-v29
    Google Scholar
  • 18. Hemmer B., Archelos J.J., Hartung H.P.: New concepts in the immunopathogenesisof multiple sclerosis. Nat. Rev. Neurosci., 2002;3: 291-301
    Google Scholar
  • 19. Heussinger N., Kontopantelis E., Rompel O., Paulides M., TrollmannR.: Predicting multiple sclerosis following isolated optic neuritisin children. Eur. J. Neurol., 2013; 20: 1292-1296
    Google Scholar
  • 20. Hsiao C.J., Li T.K., Chan Y.L., Hsin L.W., Liao C.H., Lee C.H., LyuP.C., Guh J.H.: WRC-213, an l-methionine-conjugated mitoxantronederivative, displays anticancer activity with reduced cardiotoxicityand drug resistance: identification of topoisomerase II inhibitionand apoptotic machinery in prostate cancers. Biochem. Pharmacol.,2008; 75: 847-856
    Google Scholar
  • 21. Jain K.K.: Evaluation of mitoxantrone for the treatment of multiplesclerosis. Expert Opin. Investig. Drugs, 2000; 9: 1139-1149
    Google Scholar
  • 22. Kappos L., Weinshenker B., Pozzilli C., Thompson A.J., DahlkeF., Beckmann K., Polman C., McFarland H., European (EU-SPMS) Interferonbeta-1b in Secondary Progressive Multiple Sclerosis TrialSteering Committee and Independent Advisory Board; North American(NA-SPMS) Interferon beta-1b in Secondary Progressive MultipleSclerosis Trial Steering Committee and Independent AdvisoryBoard.: Interferon beta-1b in secondary progressive MS: a combinedanalysis of the two trials. Neurology, 2004; 63: 1779-1787
    Google Scholar
  • 23. Kieseier B.C., Hemmer B., Hartung H.P.: Multiple sclerosis –novel insights and new therapeutic strategies. Curr. Opin. Neurol.,2005; 18: 211-220
    Google Scholar
  • 24. Kluza J., Marchetti P., Gallego M.A., Lancel S., Fournier C., LoyensA., Beauvillain J.C., Bailly C.: Mitochondrial proliferation during apoptosisinduced by anticancer agents: effects of doxorubicin and mitoxantroneon cancer and cardiac cells. Oncogene, 2004; 23: 7018-7030
    Google Scholar
  • 25. Koceva-Chyła A., Wiecławska B., Jóźwiak Z., Bryszewska M.:Combined effect of low-power laser irradiation and anthraquinoneanticancer drug aclarubicin on survival of immortalized cells: Comparisonwith mitoxantrone. Cell Biol. Int., 2006; 30: 645-652
    Google Scholar
  • 26. Lalive P.H.: Autoantibodies in inflammatory demyelinating diseasesof the central nervous system. Swiss Med. Wkly, 2008; 138:692-707
    Google Scholar
  • 27. Langer-Gould A., Brara S.M., Beaber B.E., Zhang J.L.: Incidenceof multiple sclerosis in multiple racial and ethnic groups. Neurology,2013; 80: 1734-1739
    Google Scholar
  • 28. Lee Y.J., Kusuhara H., Jonker J.W., Schinkel A.H., Sugiyama Y.: Investigationof efflux transport of dehydroepiandrosterone sulfate andmitoxantrone at the mouse blood-brain barrier: a minor role of breastcancer resistance protein. J. Pharmacol. Exp. Ther., 2005; 312: 44-52
    Google Scholar
  • 29. Lis J., Jarząb A., Witkowska D.: Rola mimikry molekularnejw etiologii schorzeń o charakterze autoimmunizacyjnym. PostępyHig. Med. Dośw., 2012; 66: 475-491
    Google Scholar
  • 30. Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L.: Anthracyclines:molecular advances and pharmacologic developments in antitumoractivity and cardiotoxicity. Pharmacol. Rev., 2004; 56: 185-229
    Google Scholar
  • 31. Mohammad M.G., Hassanpour M., Tsai V.W., Li H., RuitenbergM.J., Booth D.W., Serrats J., Hart P.H., Symonds G.P., Sawchenko P.E.,Breit S.N., Brown D.A.: Dendritic cells and multiple sclerosis: disease,tolerance and therapy. Int. J. Mol. Sci., 2012; 14: 547-562
    Google Scholar
  • 32. Mordente A., Meucci E., Silvestrini A., Martorana G.E., GiardinaB.: New developments in anthracycline-induced cardiotoxicity. Curr.Med. Chem., 2009; 16: 1656-1672
    Google Scholar
  • 33. Naddafi F., Reza Haidari M., Azizi G., Sedaghat R., Mirshafiey A.:Novel therapeutic approach by nicotine in experimental model ofmultiple sclerosis. Innov. Clin. Neurosci., 2013; 10: 20-25
    Google Scholar
  • 34. Nägele H., Castel M.A., Deutsch O., Wagner F.M., ReichenspurnerH.: Heart transplantation in a patient with multiple sclerosis andmitoxantrone-induced cardiomyopathy. J. Heart Lung Transplant.,2004; 23: 641-643
    Google Scholar
  • 35. Neuhaus O., Archelos J.J., Hartung H.P.: Immunomodulation inmultiple sclerosis: from immunosuppression to neuroprotection.Trends Pharmacol. Sci., 2003; 24: 131-138
    Google Scholar
  • 36. Neuhaus O., Kieseier B.C., Hartung H.P.: Pharmacokinetics andpharmacodynamics of the interferon-betas, glatiramer acetate, andmitoxantrone in multiple sclerosis. J. Neurol. Sci., 2007; 259: 27-37
    Google Scholar
  • 37. Neuhaus O., Kieseier B.C., Hartung H.P.: Therapeutic role of mitoxantronein multiple sclerosis. Pharmacol. Ther., 2006; 109: 198-209
    Google Scholar
  • 38. Neuhaus O., Wiendl H., Kieseier B.C., Archelos J.J., Hemmer B.,Stüve O. Hartung H.P.: Multiple sclerosis: mitoxantrone promotesdifferential effects on immunocompetent cells in vitro. J. Neuroimmunol.,2005; 168: 128-137
    Google Scholar
  • 39. Nicholas R., Rashid W.: Multiple sclerosis. Clin. Evid., 2012; 2012,pii: 1202
    Google Scholar
  • 40. Nogales-Gaete J., Aracena R., Díaz V., Zitko P., Eloiza C., CepedaZumaetaS., Agurto P., González C.: Neuropsychological assessmentof patients with relapsing remitting multiple sclerosis prior tothe use of immunomodulatory drugs. Rev. Med. Chil., 2012; 140:1437-1444
    Google Scholar
  • 41. Psotová J., Chlopcíková S., Miketová P., Simánek V. Cytoprotectivityof Prunella vulgaris on doxorubicin-treated rat cardiomyocytes.Fitoterapia, 2005; 76: 556-561
    Google Scholar
  • 42. Repetto L., Vannozzi M.O., Balleari E., Venturino A., GranettoC., Bason C., Simoni C., Prencipe E., Queirolo P., Esposito M., GhioR., Rosso R.: Mitoxantrone in elderly patients with advanced breastcancer: pharmacokinetics, marrow and peripheral hematopoieticprogenitor cells. Anticancer Res., 1999; 19: 879-884
    Google Scholar
  • 43. Rice G.P., Hartung H.P., Calabresi P.A.: Anti-α4 integrin therapyfor multiple sclerosis: mechanisms and rationale. Neurology, 2005:64: 1336-1342
    Google Scholar
  • 44. Ridge S.C., Sloboda A.E., McReynolds R.A., Levine S., OronskyA.L., Kerwar S.S.: Suppression of experimental allergic encephalomyelitisby mitoxantrone. Clin. Immunol. Immunopathol., 1985;35: 35-42
    Google Scholar
  • 45. Stankiewicz J.M., Kolb H., Karni A., Weiner H.L.: Role of immunosuppressivetherapy for the treatment of multiple sclerosis.Neurotherapeutics, 2013; 10: 77-88
    Google Scholar
  • 46. Tarasiuk J., Mazerski J., Tkaczyk-Gobis K., Borowski E.: Molecularbasis of the low activity of antitumor anthracenediones, mitoxantroneand ametantrone, in oxygen radical generation catalyzedby NADH dehydrogenase. Enzymatic and molecular modelling studies.Eur. J. Med. Chem., 2005; 40: 321-328
    Google Scholar
  • 47. Trapp B.D., Ransohoff R., Rudick R.: Axonal pathology in multiplesclerosis: relationship to neurologic disability. Curr. Opin. Neurol.,1999; 12: 295-302
    Google Scholar
  • 48. Tsang B.K., Macdonell R.: Multiple sclerosis – diagnosis, managementand prognosis. Aust. Fam. Physician, 2011; 40: 948-955
    Google Scholar
  • 49. Uchman D., Kochanowski J., Baronowska B.: Stwardnienie rozsiane– teraźniejszość i przyszłość – sukcesy i porażki. Postępy N.Med., 2012; Suppl. 3: 22-26
    Google Scholar
  • 50. Vacchelli E., Senovilla L., Eggermont A., Fridman W.H., GalonJ., Zitvogel L., Kroemer G., Galluzzi L.: Trial watch: Chemotherapywith immunogenic cell death inducers. Oncoimmunology, 2013;2: e23510
    Google Scholar
  • 51. Wan X., Zhang W., Li L., Xie Y., Li W., Huang N.: A new target foran old drug: identifying mitoxantrone as a nanomolar inhibitor ofPIM1 kinase via kinome-wide selectivity modeling. J. Med. Chem.,2013; 56: 2619-2629
    Google Scholar
  • 52. Waubant E.: Overview of treatment options in multiple sclerosis.J. Clin. Psychiatry, 2012; 73: e22
    Google Scholar
  • 53. Wiendl H., Toyka K.V., Rieckmann P., Gold R., Hartung H.P., HohlfeldR., Multiple Sclerosis Therapy Consensus Group (MSTCG): Basicand escalating immunomodulatory treatments in multiple sclerosis:current therapeutic recommendations. J. Neurol., 2008; 255: 1449-1463
    Google Scholar
  • 54. Wojtukiewicz M.Z., Omyła J., Kozłowski L., Szynaka B.: Kardiotoksycznośćantracyklin. Postępy Hig. Med. Dośw., 2000; 54: 467-485
    Google Scholar
  • 55. Zaffaroni M., Ghezzi A., Comi G.: Intensive immunosuppressionin multiple sclerosis. Neurol. Sci., 2006; 27 (Suppl. 1): S13-S17
    Google Scholar

Full text

Skip to content