Mitogen-activated protein kinases in atherosclerosis

COMMENTARY ON THE LAW

Mitogen-activated protein kinases in atherosclerosis

Dorota Bryk 1 , Wioletta Olejarz 1 , Danuta Zapolska-Downar 1

1. Katedra Biochemii i Chemii Klinicznej Warszawskiego Uniwersytetu Medycznego

Published: 2014-01-16
DOI: 10.5604/17322693.1085463
GICID: 01.3001.0003.1174
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 10-22

 

Abstract

Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis.

References

  • 1. Adler H.S., Kubsch S., Graulich E., Ludwig S., Knop J., Steinbrink K.:Activation of MAP kinase p38 is critical for the cell-cycle-controlledsuppressor function of regulatory T cells. Blood, 2007; 109: 4351-4359
    Google Scholar
  • 2. Ashwell J.D.: The many paths to p38 mitogen-activated protein kinaseactivation in the immune system. Nat. Rev. Immunol., 2006; 6: 532-540
    Google Scholar
  • 3. Bao X.M., Wu C.F., Lu G.P.: Atorvastatin attenuates homocysteine–induced apoptosis in human umbilical vein endothelial cells via inhibitingNADPH oxidase-related oxidative stress-triggered p38MAPKsignaling. Acta Pharmacol. Sin., 2009; 30: 1392-1398
    Google Scholar
  • 4. Bao X.M., Wu C.F., Lu G.P.: Atorvastatin inhibits homocysteine-inducedoxidative stress and apoptosis in endothelial progenitor cellsinvolving Nox4 and p38MAPK. Atherosclerosis, 2010; 210: 114-121
    Google Scholar
  • 5. Branger J., van den Blink B., Weijer S., Madwed J., Bos C.L., GuptaA., Yong C.L., Polmar S.H., Olszyna D.P., Hack C.E., van DeventerS.J., Peppelenbosch M.P., van der Poll T.: Anti-inflammatory effectsof a p38 mitogen-activated protein kinase inhibitor during humanendotoxemia. J. Immunol., 2002; 168: 4070-4077
    Google Scholar
  • 6. Chae Y.J., Kim C.H., Ha T.S., Hescheler J., Ahn H.Y., Sachinidis A.:Epigallocatechin-3-O-gallate inhibits the angiotensin II-inducedadhesion molecule expression in human umbilical vein endothelialcell via inhibition of MAPK pathways. Cell. Physiol. Biochem.,2007; 20: 859-866
    Google Scholar
  • 7. Chang X., Liu F., Wang X., Lin A., Zhao H., Su B.: The kinases MEKK2and MEKK3 regulate transforming growth factor-β-mediated helperT cell differentiation. Immunity, 2011; 34: 201-212
    Google Scholar
  • 8. Chang Y.L., Chen C.L., Kuo C.L., Chen B.C., You J.S.: Glycyrrhetinicacid inhibits ICAM-1 expression via blocking JNK and NF-κB pathwaysin TNF-α-activated endothelial cells. Acta Pharmacol. Sin.,2010; 31: 546-553
    Google Scholar
  • 9. Chiu J.J., Chien S.: Effects of disturbed flow on vascular endothelium:pathophysiological basis and clinical perspectives. Physiol.Rev., 2011; 91: 327-387
    Google Scholar
  • 10. Cook R., Wu C.C., Kang Y.J., Han J.: The role of the p38 pathwayin adaptive immunity. Cell. Mol. Immunol., 2007; 4: 253-259
    Google Scholar
  • 11. Costanzo A., Moretti F., Burgio V.L., Bravi C., Guido F., LevreroM., Puri P.L.: Endothelial activation by angiotensin II through NFκBand p38 pathways: involvement of NFκB-inducible kinase (NIK), freeoxygen radicals, and selective inhibition by aspirin. J. Cell. Physiol.,2003; 195: 402-410
    Google Scholar
  • 12. Cuschieri J., Maier R.V.: Mitogen-activated protein kinase(MAPK). Crit. Care Med., 2005; 33 (Suppl. 12): S417-S419
    Google Scholar
  • 13. Dodeller F., Schulze-Koops H.: The p38 mitogen-activated proteinkinase signaling cascade in CD4 T cells. Arthritis Res. Ther.,2006; 8: 205
    Google Scholar
  • 14. Domoto K., Taniguchi T., Takaishi H., Takahashi T., Fujioka Y.,Takahashi A., Ishikawa Y., Yokoyama M.: Chylomicron remnantsinduce monocyte chemoattractant protein-1 expression via p38MAPK activation in vascular smooth muscle cells. Atherosclerosis,2003; 171: 193-200
    Google Scholar
  • 15. Dustin M.L.: T-cell activation through immunological synapsesand kinapses. Immunol. Rev., 2008; 221: 77-89
    Google Scholar
  • 16. Endemann D.H., Schiffrin E.L.: Endothelial dysfunction. J. Am.Sos. Nephrol., 2004; 15: 1983-1992
    Google Scholar
  • 17. Fanjul-Fernández M., Folgueras A.R., Cabrera S., López-Otín C.:Matrix metalloproteinases: evolution, gene regulation and functionalanalysis in mouse models. Biochim. Biophys. Acta, 2010; 1803:3-19
    Google Scholar
  • 18. Gabryšová L., Christensen J.R., Wu X., Kissenpfennig A., MalissenB., O’Garra A.: Integrated T-cell receptor and costimulatory signalsdetermine TGF-β-dependent differentiation and maintenanceof Foxp3+ regulatory T cells. Eur. J. Immunol., 2011; 41: 1242-1248
    Google Scholar
  • 19. Galkina E., Ley K.: Vascular adhesion molecules in atherosclerosis.Arterioscler. Thromb. Vasc. Biol., 2007; 27: 2292-2301
    Google Scholar
  • 20. Guma M., Firestein G.S.: c-Jun N-Terminal kinase in inflammationand rheumatic diseases. Open Rheumatol. J., 2012; 6: 220-231
    Google Scholar
  • 21. Hansson G.K., Libby P.: The immune response in atherosclerosis:a double-edged sword. Nat. Rev. Immunol., 2006; 6: 508-519
    Google Scholar
  • 22. Hill J.M., Zalos G., Halcox J.P., Schenke W.H., Waclawiw M.A., QuyyumiA.A., Finkel T.: Circulating endothelial progenitor cells, vascularfunction, and cardiovascular risk. N. Engl. J. Med., 2003; 348: 593-600
    Google Scholar
  • 23. Hommes D.W., Peppelenbosch M.P., van Deventer S.J.: Mitogenactivated protein (MAP) kinase signal transduction pathways andnovel anti-inflammatory targets. Gut, 2003; 52: 144-151
    Google Scholar
  • 24. Hu Y., Cheng L., Hochleitner B.W., Xu Q.: Activation of mitogen–activated protein kinases (ERK/JNK) and AP-1 transcription factorin rat carotid arteries after balloon injury. Arterioscler. Thromb.Vasc. Biol., 1997; 17: 2808-2816
    Google Scholar
  • 25. Jagavelu K., Tietge U.J., Gaestel M., Drexler H., Schieffer B., BavendiekU.: Systemic deficiency of the MAP kinase-activated proteinkinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ.Res., 2007; 101: 1104-1112
    Google Scholar
  • 26. Ju H., Behm D.J., Nerurkar S., Eybye M.E., Haimbach R.E., OlzinskiA.R., Douglas S.A., Willette R.N.: p38 MAPK inhibitors amelioratetarget organ damage in hypertension: Part 1. p38 MAPK-dependentendothelial dysfunction and hypertension. J. Pharmacol. Exp. Ther.,2003; 307: 932-938
    Google Scholar
  • 27. Kajimoto K., Miyauchi K., Kasai T., Shimada K., Kojima Y., ShimadaA., Niinami H., Amano A., Daida H.: Short-term 20-mg atorvastatintherapy reduces key inflammatory factors including c-JunN-terminal kinase and dendritic cells and matrix metalloproteinaseexpression in human abdominal aortic aneurysmal wall. Atherosclerosis,2009; 206: 505-511
    Google Scholar
  • 28. Kim H.S., Ullevig S.L., Zamora D., Lee C.F., Asmis R.: Redox regulationof MAPK phosphatase 1 controls monocyte migration andmacrophage recruitment. Proc. Natl. Acad. Sci. USA, 2012; 109:E2803-E2812
    Google Scholar
  • 29. Kondoh K., Nishida E.: Regulation of MAP kinases by MAP kinasephosphatases. Biochim. Biophys. Acta, 2007; 1773: 1227-1237
    Google Scholar
  • 30. Kumar S., Boehm J., Lee J.C.: p38 MAP kinases: key signallingmolecules as therapeutic targets for inflammatory diseases. Nat.Rev. Drug Discov., 2003; 2: 717-726
    Google Scholar
  • 31. Kyotani Y., Zhao J., Tomita S., Nakayama H., Isosaki M., Uno M.,Yoshizumi M.: Olmesartan inhibits angiotensin II-Induced migrationof vascular smooth muscle cells through Src and mitogen-activatedprotein kinase pathways. J. Pharmacol. Sci., 2010; 113: 161-168
    Google Scholar
  • 32. Lai K., Wang H., Lee W.S., Jain M.K., Lee M.E., Haber E.: Mitogen–activated protein kinase phosphatase-1 in rat arterial smooth musclecell proliferation. J. Clin. Invest., 1996; 98: 1560-1567
    Google Scholar
  • 33. Libby P.: Inflammation and cardiovascular disease mechanisms.Am. J. Clin. Nutr., 2006; 83: 456-460
    Google Scholar
  • 34. Libby P., Aikawa M., Schönbeck U.: Cholesterol and atherosclerosis.Biochim. Biophys. Acta, 2000; 1529: 299-309
    Google Scholar
  • 35. Libby P., DiCarli M., Weissleder R.: The vascular biology of atherosclerosisand imaging targets. J. Nucl. Med., 2010; 51 (Suppl. 1):33S-37S
    Google Scholar
  • 36. Libby P., Ridker P.M., Hansson G.K.: Progress and challenges intranslating the biology of atherosclerosis. Nature, 2011; 473: 317-325
    Google Scholar
  • 37. Lin S.J., Shyue S.K., Hung Y.Y., Chen Y.H., Ku H.H., Chen J.W.,Tam K.B., Chen Y.L.: Superoxide dismutase inhibits the expressionof vascular cell adhesion molecule-1 and intracellular cell adhesionmolecule-1 induced by tumor necrosis factor-α in human endothelialcells through the JNK/p38 pathways. Arterioscler. Thromb. Vasc.Biol., 2005; 25: 334-340
    Google Scholar
  • 38. Lutgens E., Gijbels M., Smook M., Heeringa P., Gotwals P., KotelianskyV.E., Daemen M.J.: Transforming growth factor-β mediatesbalance between inflammation and fibrosis during plaque progression.Arterioscler. Thromb. Vasc. Biol., 2002; 22: 975-982
    Google Scholar
  • 39. Mallat Z., Ait-Oufella H., Tedgui A.: Regulatory T cell responses:potential role in the control of atherosclerosis. Curr. Opin. Lipidol.,2005; 16: 518-524
    Google Scholar
  • 40. Mallat Z., Besnard S., Duriez M., Deleuze V., Emmanuel F., BureauM.F., Soubrier F., Esposito B., Duez H., Fievet C., Staels B., DuvergerN., Scherman D., Tedgui A.: Protective role of interleukin-10 inatherosclerosis. Circ. Res., 1999; 85: e17-e24
    Google Scholar
  • 41. Matsuyama W., Kamohara H., Galligan C., Faure M., Yoshimura T.:Interaction of discoidin domain receptor 1 isoform b (DDR1b) withcollagen activates p38 mitogen-activated protein kinase and promotesdifferentiation of macrophages. FASEB J., 2003; 17: 1286-1288
    Google Scholar
  • 42. McKay M.M., Morrison D.K.: Integrating signals from RTKs toERK/MAPK. Oncogene, 2007; 26: 3113-3121
    Google Scholar
  • 43. McLaren J.E., Michael D.R., Ashlin T.G., Ramji D.P.: Cytokines,macrophage lipid methabolism and foam cells: implications forcardiovascular disease therapy. Prog. Lipid Res., 2011; 50: 331-347
    Google Scholar
  • 44. Montecucco F., Mach F.: Atherosclerosis is an inflammatory disease.Semin. Immunopathol., 2009; 31: 1-3
    Google Scholar
  • 45. Mor A., Luboshits G., Planer D., Keren G., George J.: Altered statusof CD4(+)CD25(+) regulatory T cells in patients with acute coronarysyndromes. Eur. Heart J., 2006; 27: 2530-2537
    Google Scholar
  • 46. Mudau M., Genis A., Lochner A., Strijdom H.: Endothelial dysfunction:the early predictor of atherosclerosis. Cardiovasc. J. Afr.,2012; 23: 222-231
    Google Scholar
  • 47. Muto A., Fitzgerald T.N., Pimiento J.M., Maloney S.P., Teso D.,Paszkowiak J.J., Westvik T.S., Kudo F.A., Nishibe T., Dardik A.: Smoothmuscle cell signal transduction: implications of vascular biologyfor vascular surgeons. J. Vasc. Surg., 2007; 45 (Suppl. A): A15-A24
    Google Scholar
  • 48. Nakagami H., Morishita R., Yamamoto K., Yoshimura S.I., TaniyamaY., Aoki M., Matsubara H., Kim S., Kaneda Y., Ogihara T.: Phosphorylationof p38 mitogen-activated protein kinase downstreamof bax-caspase-3 pathway leads to cell death induced by high D–glucose in human endothelial cells. Diabetes, 2001; 50: 1472-1481
    Google Scholar
  • 49. Packard R.R., Lichtman A.H., Libby P.: Innate and adaptive immunityin atherosclerosis. Semin. Immunopathol., 2009; 31: 5-22
    Google Scholar
  • 50. Qamirani E., Ren Y., Kuo L., Hein T.W.: C-reactive protein inhibitsendothelium-dependent NO-mediated dilation in coronary arteriolesby activating p38 kinase and NAD(P)H oxidase. Arterioscler.Thromb. Vasc. Biol., 2005; 25: 995-1001
    Google Scholar
  • 51. Rahaman S.O., Lennon D.J., Febbraio M., Podrez E.A., Hazen S.L.,Silverstein R.L.: A CD36-dependent signaling cascade is necessaryfor macrophage foam cell formation. Cell Metab., 2006; 4: 211-221
    Google Scholar
  • 52. Raman M., Chen W., Cobb M.H.: Differential regulation and propertiesof MAPKs. Oncogene, 2007; 26: 3100-3112
    Google Scholar
  • 53. Ricci R., Sumara G., Sumara I., Rozenberg I., Kurrer M., AkhmedovA., Hersberger M., Eriksson U., Eberli F.R., Becher B., BorénJ., Chen M., Cybulsky M.I., Moore K.J., Freeman M.W., Wagner E.F.,Matter C.M., Lüscher T.F.: Requirement of JNK2 for scavenger receptorA-mediated foam cell formation in atherogenesis. Science,2004; 306: 1558-1561
    Google Scholar
  • 54. Rincón M., Davis R.J.: Regulation of the immune responseby stress-activated protein kinases. Immunol. Rev., 2009; 228: 212-224
    Google Scholar
  • 55. Ross R.: Atherosclerosis – an inflammatory disease. N. Engl. J.Med., 1999; 340: 115-126
    Google Scholar
  • 56. Rubinfeld H., Seger R.: The ERK cascade: a prototype of MAPKsignaling. Mol. Biotechnol., 2005; 31: 151-174
    Google Scholar
  • 57. Saklatvala J.: The p38 MAP kinase pathway as a therapeutic targetin inflammatory disease. Curr. Opin. Pharmacol., 2004; 4: 372-377
    Google Scholar
  • 58. Saklatvala J., Dean J., Clark A.: Control of the expression of inflammatoryresponse genes. Biochem. Soc. Symp., 2003; 70: 95-106
    Google Scholar
  • 59. Sarov-Blat L., Morgan J.M., Fernandez P., James R., Fang Z., HurleM.R., Baidoo C., Willette R.N., Lepore J.J., Jensen S.E., SprecherD.L.: Inhibition of p38 mitogen-activated protein kinase reducesinflammation after coronary vascular injury in humans. Arterioscler.Thromb. Vasc. Biol., 2010; 30: 2256-2263
    Google Scholar
  • 60. Sasaki N., Yamashita T., Takeda M., Hirata K.: Regulatory T cellsin atherogenesis. J. Atheroscler. Thromb., 2012; 19: 503-515
    Google Scholar
  • 61. Schlessinger J.: Cell signaling by receptor tyrosine kinases. Cell,2000; 103: 211-225
    Google Scholar
  • 62. Schwartz S.M., Virmani R., Rosenfeld M.E.: The good smooth musclecells in atherosclerosis. Curr. Atheroscler. Rep., 2000; 2: 422-429
    Google Scholar
  • 63. Seeger F.H., Haendeler J., Walter D.H., Rochwalsky U., Reinhold J.,Urbich C., Rössig L., Corbaz A., Chvatchko Y., Zeiher A.M., DimmelerS.: p38 mitogen-activated protein kinase downregulates endothelialprogenitor cells. Circulation, 2005; 111: 1184-1191
    Google Scholar
  • 64. Seeger F.H., Sedding D., Langheinrich A.C., Haendeler J., ZeiherA.M., Dimmeler S.: Inhibition of the p38 MAP kinase in vivo improvesnumber and functional activity of vasculogenic cells and reducesatherosclerotic disease progression. Basic Res. Cardiol., 2010;105: 389-397
    Google Scholar
  • 65. Son Y., Cheong Y.K., Kim N.H., Chung H.T., Kang D.G., Pae H.O.:Mitogen-activated protein kinases and reactive oxygen species: howcan ROS activate MAPK pathways? J. Signal Transduct., 2011; 2011:792639
    Google Scholar
  • 66. Sun C., Liang C., Ren Y., Zhen Y., He Z., Wang H., Tan H., Pan X.,Wu Z.: Advanced glycation end products depress function of endothelialprogenitor cells via p38 and ERK 1/2 mitogen-activated proteinkinase pathways. Basic Res. Cardiol., 2009; 104: 42-49
    Google Scholar
  • 67. Tian X.Y., Wong W.T., Xu A., Chen Z.Y., Lu Y., Liu L.M., Lee V.W.,Lau C.W., Yao X., Huang Y.: Rosuvastatin improves endothelial functionin db/db mice: role of angiotensin II type 1 receptors and oxidativestress. Br. J. Pharmacol., 2011; 164: 598-606
    Google Scholar
  • 68. Ueno H., Pradhan S., Schlessel D., Hirasawa H., Sumpio B.E.: Nicotineenhances human vascular endothelial cell expression of ICAM-1 and VCAM-1 via protein kinase C, p38 mitogen-activated proteinkinase, NF-kappaB, and AP-1. Cardiovasc. Toxicol., 2006; 6: 39-50
    Google Scholar
  • 69. Van der Heiden K., Cuhlmann S., Luong le A., Zakkar M., EvansP.C.: Role of nuclear factor κB in cardiovascular health and disease.Clin. Sci., 2010; 118: 593-605
    Google Scholar
  • 70. Varma S., Breslin J.W., Lal B.K., Pappas P.J., Hobson R.W.2nd, DuránW.N.: p42/44MAPK regulates baseline permeability and cGMP–induced hyperpermeability in endothelial cells. Microvasc. Res.,2002; 63: 172-178
    Google Scholar
  • 71. Ventura J.J., Kennedy N.J., Flavell R.A., Davis R.J.: JNK regulatesautocrine expression of TGF-β1. Mol. Cell, 2004; 15: 269-278
    Google Scholar
  • 72. Vermeulen L., De Wilde G., Van Damme P., Vanden Berghe W.,Haegeman G.: Transcriptional activation of the NF-κB p65 subunitby mitogen- and stress-activated protein kinase-1 (MSK1). EMBOJ., 2003; 22: 1313-1324
    Google Scholar
  • 73. Wigren M., Nilsson J., Kolbus D.: Lymphocytes in atherosclerosis.Clin. Chim. Acta, 2012; 413: 19-20
    Google Scholar
  • 74. Willette R.N., Eybye M.E., Olzinski A.R., Behm D.J., Aiyar N., ManiscalcoK., Bentley R.G., Coatney R.W., Zhao S., Westfall T.D., DoeC.P.: Differential effects of p38 mitogen-activated protein kinase andcyclooxygenase 2 inhibitors in a model of cardiovascular disease. J.Pharmacol. Exp. Ther., 2009; 330: 964-970
    Google Scholar
  • 75. Wu Y., Wang Q., Cheng L., Wang J., Lu G.: Effect of oxidized low–density lipoprotein on survival and function of endothelial progenitorcell mediated by p38 signal pathway. J. Cardiovasc. Pharmacol.,2009; 53: 151-156
    Google Scholar
  • 76. Xu H., Duan J., Wang W., Dai S., Wu Y., Sun R., Ren J.: Reactiveoxygen species mediate oxidized low-density lipoprotein-inducedendothelin-1 gene expression via extracellular signal-regulated kinasein vascular endothelial cells. J. Hypertens., 2008; 26: 956-963
    Google Scholar
  • 77. Yang W.S., Lee J.M., Han N.J., Kim Y.J., Chang J.W., Park S.K.:Mycophenolic acid attenuates tumor necrosis factor-α-induced endothelin-1production in human aortic endothelial cells. Atherosclerosis,2010; 211: 48-54
    Google Scholar
  • 78. Yu X.H., Fu Y.C., Zhang D.W., Yin K., Tang C.K.: Foam cells inatherosclerosis. Clin. Chim. Acta, 2013; 424: 245-252
    Google Scholar
  • 79. Zapolska-Downar D., Sygitowicz G., Jarosz M.: Znaczenie apoptozyw patogenezie miażdżycy. Kardiologia Polska, 2008; 66 (Suppl.3): 347-357
    Google Scholar
  • 80. Zarubin T., Han J.: Activation and signaling of the p38 MAP kinasepathway. Cell Res., 2005; 15: 11-18
    Google Scholar
  • 81. Zenz R., Eferl R., Scheinecker C., Redlich K., Smolen J., SchonthalerH.B., Kenner L., Tschachler E., Wagner E.F.: Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. ArthritisRes. Ther., 2008; 10: 201
    Google Scholar
  • 82. Zhang S., Ren J., Khan M.F., Cheng A.M., Abendschein D., MuslinA.J.: Grb2 is required for the development of neointima in responseto vascular injury. Arterioscler. Thromb. Vasc. Biol., 2003;23: 1788-1793
    Google Scholar
  • 83. Zhang Y., Herbert B.S., Rajashekhar G., Ingram D.A., Yoder M.C.,Clauss M., Rehman J.: Premature senescence of highly proliferativeendothelial progenitor cells is induced by tumor necrosis factor-αvia the p38 mitogen-activated protein kinase pathway. FASEB J.,2009; 23: 1358-1365
    Google Scholar
  • 84. Zhao M., Liu Y., Wang X., New L., Han J., Brunk U.T.: Activation ofthe p38 MAP kinase pathway is required for foam cell formation frommacrophages exposed to oxidized LDL. APMIS, 2002; 110: 458-468
    Google Scholar
  • 85. Zou Y., Qi Y., Roztocil E., Nicholl S.M., Davies M.G.: Patterns ofkinase activation induced by injury in the murine femoral artery. J.Surg. Res., 2007; 142: 332-340
    Google Scholar

Full text

Skip to content