Cystathionine γ-lyase

COMMENTARY ON THE LAW

Cystathionine γ-lyase

Halina Jurkowska 1 , Marta Kaczor-Kamińska 1 , Patrycja Bronowicka-Adamska 1 , Maria Wróbel 1

1. Katedra Biochemii Lekarskiej, Uniwersytet Jagielloński, Collegium Medicum, Kraków

Published: 2014-01-15
DOI: 10.5604/17322693.1085372
GICID: 01.3001.0003.1173
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2014; 68 : 1-9

 

Abstract

γ-Cystathionase (CTH, EC: 4.4.1.1), an enzyme widely distributed in the world of prokaryotic and eukaryotic organisms, catalyzes the formation and transformations of sulfane sulfur-containing compounds and plays a pivotal role in the L-cysteine desulfuration pathway. Human, tetrameric CTH is composed of two dimers and each monomer binds pyridoxal phosphate (PLP). The gene, located on the short arm of chromosome 1, consists of 13 exons and 12 introns. As a result of alternative splicing, three isoforms of human CTH arise. Analysis of genetic variations of the CTH encoding gene showed a large number of polymorphisms. A decrease of the expression of CTH entails a drop in the level of cysteine , glutathione (GSH), taurine and hydrogen sulfide (H2S) in the cells and, more importantly, leads to cystathioninuria. H2S, endogenously formed by CTH, affects the vasodilation and regulation of blood pressure. CTH knockout mice have decreased levels of H2S, hypertension, and reduced capacity for vascular endothelium relaxation. Overexpression of the gene encoding CTH in the cells leads to increased production of H2S. H2S plays a role in protection of neurons against oxidative stress, and stimulates an increase in γ-glutamylcysteine synthetase and thereby an increase in the level of GSH. Sulfurtransferases, including CTH, can locally prevent oxidative stress due to reversible oxidation of – SH groups in the presence of increased levels of reactive oxygen species, and reduction in the presence of GSH and/or reduced thioredoxin.

References

  • 1. Adams H., Teertstra W., Koster M., Tommassen J.: PspE (phage–shock protein E) of Escherichia coli is a rhodanese. FEBS Lett., 2002;518: 173-176
    Google Scholar
  • 2. Agboola F.K., Fagbohunka B.S., Adenuga G.A.: Activities of thiosulphateand 3-mercaptopyruvate-cyanide-sulphurtransferases inpolutry birds and fruit bat. J. Biol. Sci., 2006; 6: 833-839
    Google Scholar
  • 3. Bellomo G., Orrenius S.: Altered thiol and calcium homeostasis inoxidative hepatocellular injury. Hepatology, 1985; 5: 876-882
    Google Scholar
  • 4. Bełtowski J.: Siarkowodór jako biologicznie aktywny mediatorw układzie krążenia. Postępy Hig. Med. Dośw., 2004; 58: 285-291
    Google Scholar
  • 5. Binkley F.: Enzymatic cleavage of thioethers. J. Biol. Chem., 1950;186: 287-296
    Google Scholar
  • 6. Boyles A.L., Wilcox A.J., Taylor J.A., Shi M., Weinberg C.R., MeyerK., Fredriksen A., Ueland P.M., Johansen A.M., Drevon C.A., JugessurA., Trung T.N., Gjessing H.K., Vollset S.E., Murray J.C., Christensen K.,Lie R.T.: Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A: a pathway-wide association study.Genet. Epidemiol., 2009; 33: 347-255
    Google Scholar
  • 7. Cavallini D., Mondovi B., De Marco C., Scioscia-Santoro A.: Themechanism of desulphydration of cysteine. Enzymologia, 1962; 24,253-260
    Google Scholar
  • 8. Chatagner F., Jolles-Bergeret B., Trautmann O.: Tyroid hormonesand desulfuration enzymes of L-cysteine in the rat liver. Biochim.Biophys. Acta, 1962; 59: 744-746
    Google Scholar
  • 9. Chawla R.K., Lewis F.W., Kutner M.H., Bate D.M., Roy R.G., RudmanD.: Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology,1984; 87: 770-776
    Google Scholar
  • 10. Chiku T., Padovani D., Zhu W., Singh S., Vitvitsky V., BanerjeeR.: H2S biogenesis by human cystathionine γ-lyase leads to thenovel sulfur metabolites lanthionine and homolanthionine and isresponsive to the grade of hyperhomocysteinemia. J. Biol. Chem.,2009; 284: 11601-11612
    Google Scholar
  • 11. Cooper A.J.: Biochemistry of sulfur-containing amino acids.Annu. Rev. Biochem., 1983; 52: 187-222
    Google Scholar
  • 12. Czubak J., Wróbel M., Jurkowska H.: Cystathionine γ-lyase (EC4.4.1.1): an enzymatic assay of α-ketobutyrate using lactate dehydrogenase.Acta Biol. Cracov., 2002; 44: 113-117
    Google Scholar
  • 13. Dobric N., Limsowtin G.K., Hillier A.J., Dudman N.P., DavidsonB.E.: Identification and characterization of a cystathionine β/γ-lyasefrom Lactococcuc lactis ssp. cremoris MG 1363. FEMS Microbiol. Lett.,2000; 182: 249-254
    Google Scholar
  • 14. Dominy J.E., Stipanuk M.H.: New roles for cysteine and transsulfurationenzymes: production of H2S, a neuromodulator and smoothmuscle relaxant. Nutr. Rev., 2004; 62: 348-353
    Google Scholar
  • 15. Donald L.J., Wang H.S., Hamerton J.L.: Assignment of the genefor cystathionase (CYS) to human chromosome 16. (Abstract) Cytogenet.Cell Genet., 1982; 32: 268
    Google Scholar
  • 16. Erickson P.F., Maxwell I.H., Su L.J., Baumann M., Glode L.M.: Sequenceof cDNA for rat cystathionine gamma-lyase and comparison ofdeduced amino acid sequence with related Escherichia coli enzymes.Biochem. J., 1990; 269: 335-340
    Google Scholar
  • 17. Fernandez J., Horvath A.: The role of tyroid hormones in transsulphuration.I. Inhibition of cystathionase by thyroxine. Enzymologia,1963; 26: 113-124
    Google Scholar
  • 18. Fiorucci S., Antonelli E., Distrutti E., Rizzo G., Mencarelli A.,Orlandi S., Zanardo R., Renga B., Di Sante M., Morelli A., Cirino G.,Wallace J.L.: Inhibition of hydrogen sulfide generation contributesto gastric injury cause by anti-inflammatory non-steroidal drugs.Gastroenterology, 2005; 129: 1210-1224
    Google Scholar
  • 19. Fiorucci S., Distrutti E., Cirino G., Wallace J.L.: The emergingroles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology,2006; 131: 259-271
    Google Scholar
  • 20. Flannigan K.L., Ferraz J.G., Wang R., Wallace J.L.: Enhanced synthesisand diminished degradation of hydrogen sulfide in experimentalcolitis: a site-specific, pro-resolution mechanism. PLOS One,2013; 8: e71962
    Google Scholar
  • 21. Fu M., Zhang W., Yang G., Wang R.: Is cystathionine gamma-lyaseprotein expressed in the heart? Biochem. Biophys. Res. Commun.,2012; 428: 469-474
    Google Scholar
  • 22. Gaull G., Sturman J.A., Räihä N.C.: Development of mammaliansulfur metabolism: absence of cystathionase in human fetal tissues.Pediatr. Res., 1972; 6: 538-547
    Google Scholar
  • 23. Hortowitz J.H., Rypins E.B., Henderson J.M., Heymsfield S.B.,Moffit S.D., Bain R.P., Chawla R.K., Bleier J.C., Rudman D.: Evidencefor impairment of transsulfuration pathway in cirrhosis. Gastroenterology,1981; 81: 668-675
    Google Scholar
  • 24. Ischii I., Akahoshi N., Yu X-N., Kobayashi Y., Namekata K., KomakiG.: Murine cystathionine γ-lyase: complete cDNA and genomicsequences, promoter activity, tissue distribution and developmentalexpression. Biochem. J., 2004; 381: 113-123
    Google Scholar
  • 25. Kamoun P.: H2S, a new neuromodulator. Med. Sci., 2004; 20:697-700
    Google Scholar
  • 26. Kimura H.: Hydrogen sulfide as a biological mediator. Antioxid.Redox Signal., 2005; 7: 778-780
    Google Scholar
  • 27. Kimura H., Shibuya N., Kimura Y.: Hydrogen sulfide is a signalingmolecule and a cytoprotectant. Antioxid. Redox Signal., 2012;17: 45-57
    Google Scholar
  • 28. Kimura Y., Kimura H.: Hydrogen sulfide protects neurons fromoxidative stress. FASEB J., 2004; 18: 1165-1168
    Google Scholar
  • 29. Koj A.: Mechanism of thiosulfate oxidation in animal tissues.Postępy Biochem., 1969; 15: 357-369
    Google Scholar
  • 30. Koj A., Frendo J.: The activity of cysteine desulphhydrase andrhodanase in animal tissues. Acta Biochim. Pol., 1962; 9: 373-379
    Google Scholar
  • 31. Kraus J.P., Hašek J., Kožich V., Collard R., Venezia S., Janošíková B.,Wang J., Stabler S.P., Allen R.H., Jakobs C., Finn C.T., Chien Y.H., HwuW.L., Hegele R., Mudd S.H.: Cystationine γ-lyase: clinical, metabolic,genetic, and structural studies. Mol. Genet. Metab., 2010; 97: 250-259
    Google Scholar
  • 32. Kreuger K., Koch K., Jűhling A., Tepel M., Scholze A.: Low expressionof thiosulfurtransferase (rhodanese) predicts mortality in hemodialysispatients. Clin. Biochem., 2010; 43: 95-101
    Google Scholar
  • 33. Lemieux B., Auray-Blais C., Giguere R., Shapcott D., Scriver C.R.:Newborn urine screening experience with over one million infantsin the Quebec network of genetic medicine. J. Inherit. Metab. Dis.,1988; 11: 45-55
    Google Scholar
  • 34. Levonen A.L., Lapatto R., Saksela M., Raivio K.O.: Human cystathionineγ-lyase: developmental and in vitro expression of twoisoforms. Biochem. J., 2000; 347: 291-295
    Google Scholar
  • 35. Li Y., Zhao Q., Liu X.L., Wang L.Y., Lu X.F., Li H.F., Chen S.F., HuangJ.F., Gu D.F.: Relationship between cystathionine gamma-lyase genepolymorphism and essential hypertension in Northern Chinese Hanpopulation. Chin. Med. J., 2008; 121: 716-720
    Google Scholar
  • 36. Lu Y., O’Dowd B.F., Orrego H., Israel Y.: Cloning and nucleotidesequence of human liver cDNA encoding for cystathionine γ-lyase.Biochem. Biophys. Res. Commun., 1992; 189: 749-758
    Google Scholar
  • 37. Łowicka E., Bełtowski J.: Hydrogen sulfide (H2S) – the thirdgas of interest for pharmacologist. Pharmacol. Rep., 2007; 59: 4-24
    Google Scholar
  • 38. Mani S., Yang G., Wang R.: A critical life-supporting role for cystathionineγ-lyase in the absence of dietary cysteine supply. FreeRadic. Biol. Med., 2011; 50: 1280-1287
    Google Scholar
  • 39. Martin J.A., Sastre J., De la Asuncion J.G., Pallardó F.V., Viña J.:Hepatic γ-cystathionase deficiency in patients with AIDS. JAMA,2001; 285: 1444-1445
    Google Scholar
  • 40. Matsuo Y., Greenberg D.M.: A crystalline enzyme that cleaveshomoserine and cystathionine. J. Biol. Chem., 1958; 230: 545-560
    Google Scholar
  • 41. Medeiros J.V., Soares P.M., de Castro Brito G.A., de Souza M.H.: Immunohistochemicalapproach reveals localization of cystathionine-γ-lyase and cystathionine-β-synthetase in ethanol-induced gastricmucosa damage in mice. Arq. Gastroenterol., 2013; 50: 157-160
    Google Scholar
  • 42. Mikami Y., Shibuya N., Kimura Y., Nagahara N., Ogasawara Y.,Kimura, H.: Thioredoxin and dihydrolipoic acid are required for3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide.Biochem. J., 2011; 439, 479-485
    Google Scholar
  • 43. Mok Y.Y., Atan M.S., Yoke Ping C., Zhong Jing W., Bhatia M., MoochhalaS.M., Moore P.K.: Role of hydrogen sulfide in haemorrhagicshock in the rat: protective effect of inhibitors of hydrogen sulphidebiosynthesis. Br. J. Pharmacol., 2004: 143: 881-889
    Google Scholar
  • 44. Mudd S.H., Levy H.L., Kraus J.P.: Disorders of Transsulfuration.W: The Metabolic and Molecular Bases of Inherited Disease, wyd. 8, tom 2, red.: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, McGraw-Hill,New York, 2001: 2040-2043
    Google Scholar
  • 45. Nagahara N., Katayama A.: Post-translational regulation of mercaptopyruvatesulfurtransferase via a low redox potential cysteine–sulfenate in the maintenance of redox homeostasis. J. Biol. Chem.,2005; 280, 34569-34576
    Google Scholar
  • 46. Nagahara N., Nishino T.: Role of amino acid residues in the activesite of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning,overexpression, and site-directed mutagenesis. J. Biol. Chem., 1996;271: 27395-27401
    Google Scholar
  • 47. Nagahara N., Okazaki T., Nishino T.: Cytosolic metcaptopyruvatesulfurtransferase is evolutionary related to mitochondrial rhodanese.Striking similarity in active site amino acid sequence andthe increase in the mercaptopyruvate sulfurtransferase activity ofrhodanese by site-directed mutagenesis. J. Biol. Chem., 1995; 270:16230-16235
    Google Scholar
  • 48. Ogasawara Y., Ishii K., Tanabe S.: Enzymatic assay ofγ-cystathionase activity using pyruvate oxidase-peroxidase sequentialreaction. J. Biochem. Biophys. Methods, 2002; 51: 139-150
    Google Scholar
  • 49. Ogasawara Y., Isoda S., Tanabe S.: Tissue and subcellular distributionof bound and acid – labile sulfur, and the enzymic capacityfor sulfide production in the rat. Biol. Pharm. Bull., 1994;17: 1535-1542
    Google Scholar
  • 50. Ogasawara Y., Lacourciere G.M., Ishii K., Stadtman T.C.: Characterizationof potential selenium-binding proteins in the selenophosphatesynthetase system. Proc. Natl. Acad. Sci. USA, 2005;102: 1012-1016
    Google Scholar
  • 51. Patel P., Vatish M., Heptinstall J., Wang R., Carson R.J.: The endogenousproduction of hydrogen sulphide in intrauterine tissues.Reprod. Biol. Endocrinol., 2009; 7: 10
    Google Scholar
  • 52. Pinto J.T., Krasnikov B.F., Cooper A.J.: Redox-sensitive proteinsare potential targets of garlic-derived mercaptocysteine derivatives.J. Nutr., 2006; 136, 835S-841S
    Google Scholar
  • 53. Porter D.W., Nealley E.W., Baskin S.I.: In vivo detoxication ofcyanide by cystathionine γ-lyase. J. Biochem. Pharmacol., 1996; 52:941-944
    Google Scholar
  • 54. Rao A.M., Drake M.R., Stipanuk M.H.: Role of transsulfurationpathway and of γ-cystathionase activity in the formation of cysteineand sulfate from methionine in rat hepatocytes. J. Nutr., 1990;120: 837-845
    Google Scholar
  • 55. Sabelli R., Iorio E., De Martino A., Podo F., Ricci A., Viticchie G.,Rotilio G., Paci M., Melino S.: Rhodanese-thioredoxin system andallyl sulfur compounds. J., 2008; 275, 3884-3899
    Google Scholar
  • 56. Sastre J., Martin J.A., Gómez-Cabrera M.C., Pereda J., Borrás C.,Pallardó F.V., Viña J.: Age-associated oxidative damage leads to absenceof γ-cystathionase in over 50% of rat lenses: relevance in cataractogenesis.Free Radic Biol. Med., 2005; 38: 575-582
    Google Scholar
  • 57. Schwartz D.J., Djama O., Imlay J.A., Kiley P.: The cysteine desulfurase,IscS, has a major role in in vivo Fe-S cluster formation inEscherichia coli. Proc. Natl. Acad. Sci. USA, 2000; 97: 9009-9014
    Google Scholar
  • 58. Shibuya N., Tanaka M., Yoshida M., Ogasawara Y., Tęgawa T.,Ishii K., Kimura H.: 3-Mercaptopyruvate sulfurtransferase produceshydrogen sulfide and bound sulfane sulfur in the brain. Antioxid.Redox Signal., 2009; 11: 703-714
    Google Scholar
  • 59. Skarżyński B., Szczepkowski T.W., Weber M.: Thiosulphate metabolismin the animal organism. Nature, 1959; 184: 994-995
    Google Scholar
  • 60. Skarżyński B., Szczepkowski T.W., Weber M.: The metabolic stateof thiosulfate. Nature, 1960; 189: 1007-1008
    Google Scholar
  • 61. Steegborn C., Clausen T., Sandermann P., Jacob U., Worbs M.,Marnikovic S., Huber R., Wahl M.C.: Kinetics and inhibition of recombinanthuman cystathionine γ-lyase. J. Biol. Chem., 1999; 274:12675-12684
    Google Scholar
  • 62. Stipanuk M.H.: Sulfur amino acid metabolism: Pathways forproduction and removal of homocysteine and cysteine. Ann. Rev.Nutr., 2004; 24: 539-577
    Google Scholar
  • 63. Stipanuk M.H., Dominy J.E.Jr., Lee J.I., Coloso R.M.: Mammaliancysteine metabolism: new insights into regulation of cysteine metabolism.J. Nutr., 2006; 136: 1652S-1659S
    Google Scholar
  • 64. Sun Q., Collins R., Huang S., Holmberg-Schiavone L., Anand G.S.,Tan C.H., van-den-Berg S., Deng L.W., Moore P.K., Karlberg T., SivaramanJ.: Structural basis for the inhibition mechanism of humancystathionine gamma-lyase, an enzyme responsible for the productionof H2S. J. Biol. Chem., 2008; 284: 3076-3085
    Google Scholar
  • 65. Szczepkowski T.W., Wood J.L.: The cystathionase-rhodanesesystem. Biochim. Biophys. Acta., 1967; 139: 469-478
    Google Scholar
  • 66. Viña J.R., Giménez A., Corbacho A., Puertes I.R., Borrás E.,García C., Barber T.: Blood sulfur-amino acid concentration reflectsan impairment of liver transsulfuration pathway in patientswith acute abdominal inflammatory processes. Br. J. Nutr.,2001; 85: 173-178
    Google Scholar
  • 67. Vina J., Sastre J., Anton V., Bruseghini L., Esteras A., Asensi M.:Effect of aging on glutathione metabolism. Protection by antioxidants.W: Free Radical and Aging, red.: I. Emerit, B. Chance, BirkhauserVerlag, Basel, 1992
    Google Scholar
  • 68. Walker J., Barrett J.: Cystathionine beta-synthase and gamma–cystathionase in helminthes. Parasitol. Res., 1991; 77: 709-713
    Google Scholar
  • 69. Wang J., Hegele R.A.: Genomic basis of cystathioninuria (MIM219500) revealed by multiple mutations in cystathionine gamma–lyase (CSE). Hum. Genet., 2003; 112: 404-408
    Google Scholar
  • 70. Wang J., Huff A., Spence J.D., Hegele R.A.: Single nucleotide polymorphismin CSE associated with variation in plasma homocysteineconcentration. Clin. Genet., 2004; 65: 483-486
    Google Scholar
  • 71. Westley J.: Rhodanese and the sulfane pool. W: Enzymatic basisof detoxification, tom 2, red.: W.B. Jacoby, Academic Press, NewYork, 1980, 246-262
    Google Scholar
  • 72. Wilcken B., Smith A., Brown D.A.: Urine screening for aminoacidopathies:is it beneficial? Results of a long-term follow-up ofcases detected by screening one million babies. J. Pediat., 1980;97: 492-497
    Google Scholar
  • 73. Williams R.A., Kelly S., Mottram J.C., Coombs G.H.: 3-mercaptopyruvatesulfurtransferase of Leishmania contains an unusual C–terminal extension and is involved in thioredoxin and antioxidantmetabolism. J. Biol. Chem., 2003; 278: 1480-1486
    Google Scholar
  • 74. Wong L.T., Hardwick D.F., Applegarth D.A., Davidson A.G.: Reviewof metabolic screening program of Children’s Hospital, Vancouver,British Columbia. Clin. Biochem., 1979, 12: 167-172
    Google Scholar
  • 75. Wróbel M., Czubak J., Jurkowska H.: L-cysteine desulfuration invarious human and mouse brain regions. Amino Acids, 2003; 25: 161
    Google Scholar
  • 76. Wróbel M., Jurkowska H.: Menadione effect on L-cysteine desulfurationin U373 cells. Acta Biochim. Pol., 2007; 54, 407-411
    Google Scholar
  • 77. Wróbel M., Jurkowska H., Śliwa L., Srebro Z.: Sulfurtransferasesand cyanide detoxification in mouse liver, kidney and brain. Toxicol.Mech. Method, 2004; 14: 331-337
    Google Scholar
  • 78. Wróbel M., Ubuka T., Yao W.B., Abe T.: Effect of glucose-cysteineadduct on cysteine desulfuration in guinea pig tissues. Physiol.Chem. Phys. Med., 1997; 29: 11-14
    Google Scholar
  • 79. Wróbel M., Włodek L., Srebro Z.: Sulfurtransferases activity andthe level of low-molecular-weight thiols and sulfane sulfur compoundsin cortex and brain stem of mouse. Neurobiology, 1996; 4:217-222
    Google Scholar
  • 80. Yadav P.K., Yamada K., Chiku T., Koutmos M., Banerjee R.: Structureand kinetic analysis of H2S production by human mercaptopyruvatesulfurtransferase. J. Biol. Chem., 2013; 288: 20002-20013
    Google Scholar
  • 81. Yamagata S., D’Andrea R.J., Fujisaki S., Isaji M., Nakamura K.:Cloning and bacterial expression of the CYS3 gene encoding cystathioninegamma-lyase of Saccharomyces cerevisiae and the physicochemicaland enzymatic properties if the protein. J. Bacteriol.,1993; 175: 4800-4808
    Google Scholar
  • 82. Yamanishi T., Tuboi S.: The mechanism of the L-cystine cleavagereaction catalyzed by rat liver gamma-cystathionase. J. Biochem.,1981; 89: 1913-1921
    Google Scholar
  • 83. Yang G., Cao K., Wu L., Wang R.: Cystathionine γ-lyase overexpressioninhibits cell proliferation via a H2S-dependent modulationof ERK1/2 phosphorylation and p21Cip/WAK-1. J. Biol. Chem., 2004;279: 49199-49205
    Google Scholar
  • 84. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., MustafaA.K., Mu W., Zhang S., Snyder S.H., Wang R.: H2S as a physiologicvasorelaxant hypertension in mice with deletion of cystathionineγ-lyase. Science, 2008; 322: 587-590
    Google Scholar
  • 85. You X.J., Xu C., Lu J.Q., Zhu X.Y., Gao L., Cui X.R., Li Y., Gu H., NiX.: Expression of cystathionine β-syntase i cystathionine γ-lyase inhuman pregnant myometrium and their role in the control of uterinecontractility. PLoS One, 2011; 6: e23788
    Google Scholar
  • 86. Zhong G., Chen F., Cheng Y., Tang C., Du J.: The role of hydrogensulfide generation in the pathogenesis of hypertension in ratsinduced by inhibition of nitric oxide synthase. J. Hypertens., 2003;21: 1879-1885
    Google Scholar

Full text

Skip to content