Cystathionine γ-lyase
Halina Jurkowska 1 , Marta Kaczor-Kamińska 1 , Patrycja Bronowicka-Adamska 1 , Maria Wróbel 1Abstract
γ-Cystathionase (CTH, EC: 4.4.1.1), an enzyme widely distributed in the world of prokaryotic and eukaryotic organisms, catalyzes the formation and transformations of sulfane sulfur-containing compounds and plays a pivotal role in the L-cysteine desulfuration pathway. Human, tetrameric CTH is composed of two dimers and each monomer binds pyridoxal phosphate (PLP). The gene, located on the short arm of chromosome 1, consists of 13 exons and 12 introns. As a result of alternative splicing, three isoforms of human CTH arise. Analysis of genetic variations of the CTH encoding gene showed a large number of polymorphisms. A decrease of the expression of CTH entails a drop in the level of cysteine , glutathione (GSH), taurine and hydrogen sulfide (H2S) in the cells and, more importantly, leads to cystathioninuria. H2S, endogenously formed by CTH, affects the vasodilation and regulation of blood pressure. CTH knockout mice have decreased levels of H2S, hypertension, and reduced capacity for vascular endothelium relaxation. Overexpression of the gene encoding CTH in the cells leads to increased production of H2S. H2S plays a role in protection of neurons against oxidative stress, and stimulates an increase in γ-glutamylcysteine synthetase and thereby an increase in the level of GSH. Sulfurtransferases, including CTH, can locally prevent oxidative stress due to reversible oxidation of – SH groups in the presence of increased levels of reactive oxygen species, and reduction in the presence of GSH and/or reduced thioredoxin.
References
- 1. Adams H., Teertstra W., Koster M., Tommassen J.: PspE (phage–shock protein E) of Escherichia coli is a rhodanese. FEBS Lett., 2002;518: 173-176
Google Scholar - 2. Agboola F.K., Fagbohunka B.S., Adenuga G.A.: Activities of thiosulphateand 3-mercaptopyruvate-cyanide-sulphurtransferases inpolutry birds and fruit bat. J. Biol. Sci., 2006; 6: 833-839
Google Scholar - 3. Bellomo G., Orrenius S.: Altered thiol and calcium homeostasis inoxidative hepatocellular injury. Hepatology, 1985; 5: 876-882
Google Scholar - 4. Bełtowski J.: Siarkowodór jako biologicznie aktywny mediatorw układzie krążenia. Postępy Hig. Med. Dośw., 2004; 58: 285-291
Google Scholar - 5. Binkley F.: Enzymatic cleavage of thioethers. J. Biol. Chem., 1950;186: 287-296
Google Scholar - 6. Boyles A.L., Wilcox A.J., Taylor J.A., Shi M., Weinberg C.R., MeyerK., Fredriksen A., Ueland P.M., Johansen A.M., Drevon C.A., JugessurA., Trung T.N., Gjessing H.K., Vollset S.E., Murray J.C., Christensen K.,Lie R.T.: Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A: a pathway-wide association study.Genet. Epidemiol., 2009; 33: 347-255
Google Scholar - 7. Cavallini D., Mondovi B., De Marco C., Scioscia-Santoro A.: Themechanism of desulphydration of cysteine. Enzymologia, 1962; 24,253-260
Google Scholar - 8. Chatagner F., Jolles-Bergeret B., Trautmann O.: Tyroid hormonesand desulfuration enzymes of L-cysteine in the rat liver. Biochim.Biophys. Acta, 1962; 59: 744-746
Google Scholar - 9. Chawla R.K., Lewis F.W., Kutner M.H., Bate D.M., Roy R.G., RudmanD.: Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology,1984; 87: 770-776
Google Scholar - 10. Chiku T., Padovani D., Zhu W., Singh S., Vitvitsky V., BanerjeeR.: H2S biogenesis by human cystathionine γ-lyase leads to thenovel sulfur metabolites lanthionine and homolanthionine and isresponsive to the grade of hyperhomocysteinemia. J. Biol. Chem.,2009; 284: 11601-11612
Google Scholar - 11. Cooper A.J.: Biochemistry of sulfur-containing amino acids.Annu. Rev. Biochem., 1983; 52: 187-222
Google Scholar - 12. Czubak J., Wróbel M., Jurkowska H.: Cystathionine γ-lyase (EC4.4.1.1): an enzymatic assay of α-ketobutyrate using lactate dehydrogenase.Acta Biol. Cracov., 2002; 44: 113-117
Google Scholar - 13. Dobric N., Limsowtin G.K., Hillier A.J., Dudman N.P., DavidsonB.E.: Identification and characterization of a cystathionine β/γ-lyasefrom Lactococcuc lactis ssp. cremoris MG 1363. FEMS Microbiol. Lett.,2000; 182: 249-254
Google Scholar - 14. Dominy J.E., Stipanuk M.H.: New roles for cysteine and transsulfurationenzymes: production of H2S, a neuromodulator and smoothmuscle relaxant. Nutr. Rev., 2004; 62: 348-353
Google Scholar - 15. Donald L.J., Wang H.S., Hamerton J.L.: Assignment of the genefor cystathionase (CYS) to human chromosome 16. (Abstract) Cytogenet.Cell Genet., 1982; 32: 268
Google Scholar - 16. Erickson P.F., Maxwell I.H., Su L.J., Baumann M., Glode L.M.: Sequenceof cDNA for rat cystathionine gamma-lyase and comparison ofdeduced amino acid sequence with related Escherichia coli enzymes.Biochem. J., 1990; 269: 335-340
Google Scholar - 17. Fernandez J., Horvath A.: The role of tyroid hormones in transsulphuration.I. Inhibition of cystathionase by thyroxine. Enzymologia,1963; 26: 113-124
Google Scholar - 18. Fiorucci S., Antonelli E., Distrutti E., Rizzo G., Mencarelli A.,Orlandi S., Zanardo R., Renga B., Di Sante M., Morelli A., Cirino G.,Wallace J.L.: Inhibition of hydrogen sulfide generation contributesto gastric injury cause by anti-inflammatory non-steroidal drugs.Gastroenterology, 2005; 129: 1210-1224
Google Scholar - 19. Fiorucci S., Distrutti E., Cirino G., Wallace J.L.: The emergingroles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology,2006; 131: 259-271
Google Scholar - 20. Flannigan K.L., Ferraz J.G., Wang R., Wallace J.L.: Enhanced synthesisand diminished degradation of hydrogen sulfide in experimentalcolitis: a site-specific, pro-resolution mechanism. PLOS One,2013; 8: e71962
Google Scholar - 21. Fu M., Zhang W., Yang G., Wang R.: Is cystathionine gamma-lyaseprotein expressed in the heart? Biochem. Biophys. Res. Commun.,2012; 428: 469-474
Google Scholar - 22. Gaull G., Sturman J.A., Räihä N.C.: Development of mammaliansulfur metabolism: absence of cystathionase in human fetal tissues.Pediatr. Res., 1972; 6: 538-547
Google Scholar - 23. Hortowitz J.H., Rypins E.B., Henderson J.M., Heymsfield S.B.,Moffit S.D., Bain R.P., Chawla R.K., Bleier J.C., Rudman D.: Evidencefor impairment of transsulfuration pathway in cirrhosis. Gastroenterology,1981; 81: 668-675
Google Scholar - 24. Ischii I., Akahoshi N., Yu X-N., Kobayashi Y., Namekata K., KomakiG.: Murine cystathionine γ-lyase: complete cDNA and genomicsequences, promoter activity, tissue distribution and developmentalexpression. Biochem. J., 2004; 381: 113-123
Google Scholar - 25. Kamoun P.: H2S, a new neuromodulator. Med. Sci., 2004; 20:697-700
Google Scholar - 26. Kimura H.: Hydrogen sulfide as a biological mediator. Antioxid.Redox Signal., 2005; 7: 778-780
Google Scholar - 27. Kimura H., Shibuya N., Kimura Y.: Hydrogen sulfide is a signalingmolecule and a cytoprotectant. Antioxid. Redox Signal., 2012;17: 45-57
Google Scholar - 28. Kimura Y., Kimura H.: Hydrogen sulfide protects neurons fromoxidative stress. FASEB J., 2004; 18: 1165-1168
Google Scholar - 29. Koj A.: Mechanism of thiosulfate oxidation in animal tissues.Postępy Biochem., 1969; 15: 357-369
Google Scholar - 30. Koj A., Frendo J.: The activity of cysteine desulphhydrase andrhodanase in animal tissues. Acta Biochim. Pol., 1962; 9: 373-379
Google Scholar - 31. Kraus J.P., Hašek J., Kožich V., Collard R., Venezia S., Janošíková B.,Wang J., Stabler S.P., Allen R.H., Jakobs C., Finn C.T., Chien Y.H., HwuW.L., Hegele R., Mudd S.H.: Cystationine γ-lyase: clinical, metabolic,genetic, and structural studies. Mol. Genet. Metab., 2010; 97: 250-259
Google Scholar - 32. Kreuger K., Koch K., Jűhling A., Tepel M., Scholze A.: Low expressionof thiosulfurtransferase (rhodanese) predicts mortality in hemodialysispatients. Clin. Biochem., 2010; 43: 95-101
Google Scholar - 33. Lemieux B., Auray-Blais C., Giguere R., Shapcott D., Scriver C.R.:Newborn urine screening experience with over one million infantsin the Quebec network of genetic medicine. J. Inherit. Metab. Dis.,1988; 11: 45-55
Google Scholar - 34. Levonen A.L., Lapatto R., Saksela M., Raivio K.O.: Human cystathionineγ-lyase: developmental and in vitro expression of twoisoforms. Biochem. J., 2000; 347: 291-295
Google Scholar - 35. Li Y., Zhao Q., Liu X.L., Wang L.Y., Lu X.F., Li H.F., Chen S.F., HuangJ.F., Gu D.F.: Relationship between cystathionine gamma-lyase genepolymorphism and essential hypertension in Northern Chinese Hanpopulation. Chin. Med. J., 2008; 121: 716-720
Google Scholar - 36. Lu Y., O’Dowd B.F., Orrego H., Israel Y.: Cloning and nucleotidesequence of human liver cDNA encoding for cystathionine γ-lyase.Biochem. Biophys. Res. Commun., 1992; 189: 749-758
Google Scholar - 37. Łowicka E., Bełtowski J.: Hydrogen sulfide (H2S) – the thirdgas of interest for pharmacologist. Pharmacol. Rep., 2007; 59: 4-24
Google Scholar - 38. Mani S., Yang G., Wang R.: A critical life-supporting role for cystathionineγ-lyase in the absence of dietary cysteine supply. FreeRadic. Biol. Med., 2011; 50: 1280-1287
Google Scholar - 39. Martin J.A., Sastre J., De la Asuncion J.G., Pallardó F.V., Viña J.:Hepatic γ-cystathionase deficiency in patients with AIDS. JAMA,2001; 285: 1444-1445
Google Scholar - 40. Matsuo Y., Greenberg D.M.: A crystalline enzyme that cleaveshomoserine and cystathionine. J. Biol. Chem., 1958; 230: 545-560
Google Scholar - 41. Medeiros J.V., Soares P.M., de Castro Brito G.A., de Souza M.H.: Immunohistochemicalapproach reveals localization of cystathionine-γ-lyase and cystathionine-β-synthetase in ethanol-induced gastricmucosa damage in mice. Arq. Gastroenterol., 2013; 50: 157-160
Google Scholar - 42. Mikami Y., Shibuya N., Kimura Y., Nagahara N., Ogasawara Y.,Kimura, H.: Thioredoxin and dihydrolipoic acid are required for3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide.Biochem. J., 2011; 439, 479-485
Google Scholar - 43. Mok Y.Y., Atan M.S., Yoke Ping C., Zhong Jing W., Bhatia M., MoochhalaS.M., Moore P.K.: Role of hydrogen sulfide in haemorrhagicshock in the rat: protective effect of inhibitors of hydrogen sulphidebiosynthesis. Br. J. Pharmacol., 2004: 143: 881-889
Google Scholar - 44. Mudd S.H., Levy H.L., Kraus J.P.: Disorders of Transsulfuration.W: The Metabolic and Molecular Bases of Inherited Disease, wyd. 8, tom 2, red.: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle, McGraw-Hill,New York, 2001: 2040-2043
Google Scholar - 45. Nagahara N., Katayama A.: Post-translational regulation of mercaptopyruvatesulfurtransferase via a low redox potential cysteine–sulfenate in the maintenance of redox homeostasis. J. Biol. Chem.,2005; 280, 34569-34576
Google Scholar - 46. Nagahara N., Nishino T.: Role of amino acid residues in the activesite of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning,overexpression, and site-directed mutagenesis. J. Biol. Chem., 1996;271: 27395-27401
Google Scholar - 47. Nagahara N., Okazaki T., Nishino T.: Cytosolic metcaptopyruvatesulfurtransferase is evolutionary related to mitochondrial rhodanese.Striking similarity in active site amino acid sequence andthe increase in the mercaptopyruvate sulfurtransferase activity ofrhodanese by site-directed mutagenesis. J. Biol. Chem., 1995; 270:16230-16235
Google Scholar - 48. Ogasawara Y., Ishii K., Tanabe S.: Enzymatic assay ofγ-cystathionase activity using pyruvate oxidase-peroxidase sequentialreaction. J. Biochem. Biophys. Methods, 2002; 51: 139-150
Google Scholar - 49. Ogasawara Y., Isoda S., Tanabe S.: Tissue and subcellular distributionof bound and acid – labile sulfur, and the enzymic capacityfor sulfide production in the rat. Biol. Pharm. Bull., 1994;17: 1535-1542
Google Scholar - 50. Ogasawara Y., Lacourciere G.M., Ishii K., Stadtman T.C.: Characterizationof potential selenium-binding proteins in the selenophosphatesynthetase system. Proc. Natl. Acad. Sci. USA, 2005;102: 1012-1016
Google Scholar - 51. Patel P., Vatish M., Heptinstall J., Wang R., Carson R.J.: The endogenousproduction of hydrogen sulphide in intrauterine tissues.Reprod. Biol. Endocrinol., 2009; 7: 10
Google Scholar - 52. Pinto J.T., Krasnikov B.F., Cooper A.J.: Redox-sensitive proteinsare potential targets of garlic-derived mercaptocysteine derivatives.J. Nutr., 2006; 136, 835S-841S
Google Scholar - 53. Porter D.W., Nealley E.W., Baskin S.I.: In vivo detoxication ofcyanide by cystathionine γ-lyase. J. Biochem. Pharmacol., 1996; 52:941-944
Google Scholar - 54. Rao A.M., Drake M.R., Stipanuk M.H.: Role of transsulfurationpathway and of γ-cystathionase activity in the formation of cysteineand sulfate from methionine in rat hepatocytes. J. Nutr., 1990;120: 837-845
Google Scholar - 55. Sabelli R., Iorio E., De Martino A., Podo F., Ricci A., Viticchie G.,Rotilio G., Paci M., Melino S.: Rhodanese-thioredoxin system andallyl sulfur compounds. J., 2008; 275, 3884-3899
Google Scholar - 56. Sastre J., Martin J.A., Gómez-Cabrera M.C., Pereda J., Borrás C.,Pallardó F.V., Viña J.: Age-associated oxidative damage leads to absenceof γ-cystathionase in over 50% of rat lenses: relevance in cataractogenesis.Free Radic Biol. Med., 2005; 38: 575-582
Google Scholar - 57. Schwartz D.J., Djama O., Imlay J.A., Kiley P.: The cysteine desulfurase,IscS, has a major role in in vivo Fe-S cluster formation inEscherichia coli. Proc. Natl. Acad. Sci. USA, 2000; 97: 9009-9014
Google Scholar - 58. Shibuya N., Tanaka M., Yoshida M., Ogasawara Y., Tęgawa T.,Ishii K., Kimura H.: 3-Mercaptopyruvate sulfurtransferase produceshydrogen sulfide and bound sulfane sulfur in the brain. Antioxid.Redox Signal., 2009; 11: 703-714
Google Scholar - 59. Skarżyński B., Szczepkowski T.W., Weber M.: Thiosulphate metabolismin the animal organism. Nature, 1959; 184: 994-995
Google Scholar - 60. Skarżyński B., Szczepkowski T.W., Weber M.: The metabolic stateof thiosulfate. Nature, 1960; 189: 1007-1008
Google Scholar - 61. Steegborn C., Clausen T., Sandermann P., Jacob U., Worbs M.,Marnikovic S., Huber R., Wahl M.C.: Kinetics and inhibition of recombinanthuman cystathionine γ-lyase. J. Biol. Chem., 1999; 274:12675-12684
Google Scholar - 62. Stipanuk M.H.: Sulfur amino acid metabolism: Pathways forproduction and removal of homocysteine and cysteine. Ann. Rev.Nutr., 2004; 24: 539-577
Google Scholar - 63. Stipanuk M.H., Dominy J.E.Jr., Lee J.I., Coloso R.M.: Mammaliancysteine metabolism: new insights into regulation of cysteine metabolism.J. Nutr., 2006; 136: 1652S-1659S
Google Scholar - 64. Sun Q., Collins R., Huang S., Holmberg-Schiavone L., Anand G.S.,Tan C.H., van-den-Berg S., Deng L.W., Moore P.K., Karlberg T., SivaramanJ.: Structural basis for the inhibition mechanism of humancystathionine gamma-lyase, an enzyme responsible for the productionof H2S. J. Biol. Chem., 2008; 284: 3076-3085
Google Scholar - 65. Szczepkowski T.W., Wood J.L.: The cystathionase-rhodanesesystem. Biochim. Biophys. Acta., 1967; 139: 469-478
Google Scholar - 66. Viña J.R., Giménez A., Corbacho A., Puertes I.R., Borrás E.,García C., Barber T.: Blood sulfur-amino acid concentration reflectsan impairment of liver transsulfuration pathway in patientswith acute abdominal inflammatory processes. Br. J. Nutr.,2001; 85: 173-178
Google Scholar - 67. Vina J., Sastre J., Anton V., Bruseghini L., Esteras A., Asensi M.:Effect of aging on glutathione metabolism. Protection by antioxidants.W: Free Radical and Aging, red.: I. Emerit, B. Chance, BirkhauserVerlag, Basel, 1992
Google Scholar - 68. Walker J., Barrett J.: Cystathionine beta-synthase and gamma–cystathionase in helminthes. Parasitol. Res., 1991; 77: 709-713
Google Scholar - 69. Wang J., Hegele R.A.: Genomic basis of cystathioninuria (MIM219500) revealed by multiple mutations in cystathionine gamma–lyase (CSE). Hum. Genet., 2003; 112: 404-408
Google Scholar - 70. Wang J., Huff A., Spence J.D., Hegele R.A.: Single nucleotide polymorphismin CSE associated with variation in plasma homocysteineconcentration. Clin. Genet., 2004; 65: 483-486
Google Scholar - 71. Westley J.: Rhodanese and the sulfane pool. W: Enzymatic basisof detoxification, tom 2, red.: W.B. Jacoby, Academic Press, NewYork, 1980, 246-262
Google Scholar - 72. Wilcken B., Smith A., Brown D.A.: Urine screening for aminoacidopathies:is it beneficial? Results of a long-term follow-up ofcases detected by screening one million babies. J. Pediat., 1980;97: 492-497
Google Scholar - 73. Williams R.A., Kelly S., Mottram J.C., Coombs G.H.: 3-mercaptopyruvatesulfurtransferase of Leishmania contains an unusual C–terminal extension and is involved in thioredoxin and antioxidantmetabolism. J. Biol. Chem., 2003; 278: 1480-1486
Google Scholar - 74. Wong L.T., Hardwick D.F., Applegarth D.A., Davidson A.G.: Reviewof metabolic screening program of Children’s Hospital, Vancouver,British Columbia. Clin. Biochem., 1979, 12: 167-172
Google Scholar - 75. Wróbel M., Czubak J., Jurkowska H.: L-cysteine desulfuration invarious human and mouse brain regions. Amino Acids, 2003; 25: 161
Google Scholar - 76. Wróbel M., Jurkowska H.: Menadione effect on L-cysteine desulfurationin U373 cells. Acta Biochim. Pol., 2007; 54, 407-411
Google Scholar - 77. Wróbel M., Jurkowska H., Śliwa L., Srebro Z.: Sulfurtransferasesand cyanide detoxification in mouse liver, kidney and brain. Toxicol.Mech. Method, 2004; 14: 331-337
Google Scholar - 78. Wróbel M., Ubuka T., Yao W.B., Abe T.: Effect of glucose-cysteineadduct on cysteine desulfuration in guinea pig tissues. Physiol.Chem. Phys. Med., 1997; 29: 11-14
Google Scholar - 79. Wróbel M., Włodek L., Srebro Z.: Sulfurtransferases activity andthe level of low-molecular-weight thiols and sulfane sulfur compoundsin cortex and brain stem of mouse. Neurobiology, 1996; 4:217-222
Google Scholar - 80. Yadav P.K., Yamada K., Chiku T., Koutmos M., Banerjee R.: Structureand kinetic analysis of H2S production by human mercaptopyruvatesulfurtransferase. J. Biol. Chem., 2013; 288: 20002-20013
Google Scholar - 81. Yamagata S., D’Andrea R.J., Fujisaki S., Isaji M., Nakamura K.:Cloning and bacterial expression of the CYS3 gene encoding cystathioninegamma-lyase of Saccharomyces cerevisiae and the physicochemicaland enzymatic properties if the protein. J. Bacteriol.,1993; 175: 4800-4808
Google Scholar - 82. Yamanishi T., Tuboi S.: The mechanism of the L-cystine cleavagereaction catalyzed by rat liver gamma-cystathionase. J. Biochem.,1981; 89: 1913-1921
Google Scholar - 83. Yang G., Cao K., Wu L., Wang R.: Cystathionine γ-lyase overexpressioninhibits cell proliferation via a H2S-dependent modulationof ERK1/2 phosphorylation and p21Cip/WAK-1. J. Biol. Chem., 2004;279: 49199-49205
Google Scholar - 84. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., MustafaA.K., Mu W., Zhang S., Snyder S.H., Wang R.: H2S as a physiologicvasorelaxant hypertension in mice with deletion of cystathionineγ-lyase. Science, 2008; 322: 587-590
Google Scholar - 85. You X.J., Xu C., Lu J.Q., Zhu X.Y., Gao L., Cui X.R., Li Y., Gu H., NiX.: Expression of cystathionine β-syntase i cystathionine γ-lyase inhuman pregnant myometrium and their role in the control of uterinecontractility. PLoS One, 2011; 6: e23788
Google Scholar - 86. Zhong G., Chen F., Cheng Y., Tang C., Du J.: The role of hydrogensulfide generation in the pathogenesis of hypertension in ratsinduced by inhibition of nitric oxide synthase. J. Hypertens., 2003;21: 1879-1885
Google Scholar