Immune system and influenza virus

COMMENTARY ON THE LAW

Immune system and influenza virus

Anna Wierzbicka-Woś 1 , Beata Tokarz-Deptuła 2 , Wiesław Deptuła 1

1. Katedra Mikrobiologii, Wydział Biologii, Uniwersytet Szczeciński
2. Katedra Immunologii, Wydział Biologii, Uniwersytet Szczeciński

Published: 2015-02-15
DOI: 10.5604/17322693.1140337
GICID: 01.3001.0009.6493
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 214-220

 

Abstract

Influenza viruses are a significant cause of respiratory infections, causing 3-5 million clinical infections and 250-500 thousand deaths per year. Infections caused by the influenza virus induce a host immune response at the non-specific and specific level (defined as natural and acquired), which leads to limitation of virus replication. Moreover the elements of immunological memory are induced so that they can protect against subsequent infection by the influenza virus. However, there is still no effective way for the total elimination of this virus, and the only effective method to combat this pathogen appears to be vaccination, which through immune system activation greatly limits its spread.The present paper presents the immune reaction at different levels in response to the influenza virus after entering the body and the mechanisms of the influenza virus for avoiding reactions of the immune system, which correspond to its high variability at the molecular level. Moreover, in this paper we describe various methods of stimulating the organism’s immune systems with different generations of vaccines and their effectiveness in the fight against this pathogen.

References

  • 1. Aldridge J.R.Jr, Moseley C.E., Boltz D.A., Negovetich N.J., ReynoldsC., Franks J., Brown S.A., Doherty P.C., Webster R.G., ThomasP.G.: TNF/iNOS-producing dendritic cells are necessary evil of lethalinfluenza virus infection. Proc. Natl. Acad. Sci. USA, 2009; 106:5306-5311
    Google Scholar
  • 2. Augustowicz E.: Wybrane elementy procesu wytwarzania szczepionekprzeciw grypie. Przegl. Epidemiol., 2010; 64: 373-380
    Google Scholar
  • 3. Bielawska-Pohl A., Pajtasz-Piasecka E., Duś D.: Związki komórekNK z komórkami dendrytycznymi. Postępy Hig. Med. Dośw. 2013;67: 192-200
    Google Scholar
  • 4. Brydak L.B.: Grypa. Pandemia grypy mit czy realne zagrożenie?Oficyna Wyd. Rytm, Warszawa 2008
    Google Scholar
  • 5. Coleman J.R.: The PB1-F2 protein of influenza A virus: increasingpathogenicity by disrupting alveolar macrophages. Virol. J., 2007; 4: 9
    Google Scholar
  • 6. Cox. M.M., Hashimoto Y.: A fast track influenza virus vaccineproduced in insect cells. J. Invertebr. Pathol., 2011; 107: S31-S41
    Google Scholar
  • 7. Cox M.M., Hollister J.R.: FluBlok, a next generation influenzavaccine manufactured in insect cells. Biologicals, 2009; 37: 182-189
    Google Scholar
  • 8. Cox R.J., Brokstad K.A., Ogra P.: Influenza virus: immunity andvaccination strategies. Comparision of the immune response to inactivatedand live, attenuated influenza vaccines. Scand. J. Immunol.,2004; 59: 1-15
    Google Scholar
  • 9. Deptuła W., Tokarz-Deptuła B., Stosik M.: Immunologia dla biologów.Wyd. Uniwersytet Szczeciński, 2008
    Google Scholar
  • 10. Dumit V.I., Dengjel J.: Autophagosomal protein dynamics andinfluenza virus infection. Front. Immunol., 2012; 3: 43
    Google Scholar
  • 11. GeurtsvanKessel C.H., Lambrecht B.N.: Division of labor betweendendritic cells subsets of the lung. Mucosal Immunol., 2008; 1: 442-450
    Google Scholar
  • 12. Hsu A.C., Parson K., Barr I., Lowther S., Middleton D., HansbroP.M., Wark P.A.: Critical role of constitutive type I interferon responsein bronchial epithelial cell to influenza infection. PLoS One,2012; 7: e32947
    Google Scholar
  • 13. Hulo C., Castro E., Masson P., Bougueleret L., Bairoch A., XenariosI., Le Mercier P.: ViralZone: a knowledge resource to understandvirus diversity. Nucleic Acids Res., 2011; 39: D576-D582
    Google Scholar
  • 14. Ichinohe T., Pang I.K., Kumamoto Y., Reaper D.R., Ho J.H., MurrayT.S., Iwasaki A.: Microbiota regulates immune defense againstrespiratory tract influenza A virus infection. Proc. Natl. Acad. Sci.USA, 2011; 108: 5354-5359
    Google Scholar
  • 15. Jayasekera J.P., Vinuesa C.G., Karupiah G., King N.J.: Enhancedantiviral antibody secretion and attenuated immunopathology duringinfluenza virus infection in nitric oxide synthase-2-deficientmice. J. Gen. Virol., 2006; 87: 3361-3371
    Google Scholar
  • 16. Kreijtz J.H., Fouchier R.A., Rimmelzwaan G.F.: Immune responsesto influenza virus infection. Virus Res., 2011; 162: 19-30
    Google Scholar
  • 17. La Gruta N.L., Turner J.: T cell mediated immunity to influenza:mechanisms of viral control. Trends Immunol., 2014; 35: 396-402
    Google Scholar
  • 18. McGill J., Heusel J.W., Legge K.L.: Innate immune control and regulationof influenza virus infections. J. Leuk. Biol., 2009; 86: 803-812
    Google Scholar
  • 19. Mishra N.: Emerging influenza A/H1N1: challenges and development.The Health, 2011; 1: 16- 22
    Google Scholar
  • 20. Mrukowicz J., Gładysz A., Sawiec P.: Wybrane choroby wirusowe.Grypa. W: Choroby wewnętrzne, red. A. Szczeklik, 2011
    Google Scholar
  • 21. Narasaraju T., Yang E.I., Samy R.P., Ng H.H., Poh W.P., Liew A.A.,Phoon M.C., von Rooijen N., Chow V.T.: Excessive neutrophils andneutrophil extracellular traps contribute to acute lung injury of influenzapneumonitis. Am. J. Pathol., 2011; 179: 199-210
    Google Scholar
  • 22. Niedźwiedzka-Rystwej P., Deptuła W.: Pryszczyca i ptasia grypa– groźne zoonozy. Laboratorium, 2009; 3: 50-53
    Google Scholar
  • 23. Paget C., Ivanov S., Fontaine J., Blanc F., Pichavant M., RennesonJ., Bialecki E., Pothlichet J., Vendeville C., Barba-Spaeth G., HuerreM.R., Faveeuw C., Si-Tahar M., Trottein F.: Potential role of invariantNKT cells in the control of pulmonary inflammation and CD8+ T cellresponse during acute influenza A virus H3N2 pneumonia. J. Immunol.,2011; 186: 5590- 5602
    Google Scholar
  • 24. Pang I.K., Iwasaki A.: Inflammasomes as mediators of immunityagainst influenza virus. Trends Immunol., 2011; 32: 34-41
    Google Scholar
  • 25. Pulendran B., Ahmed R.: Immunological mechanisms of vaccination.Nature Immunol., 2011; 12: 509-517
    Google Scholar
  • 26. Thompson C.M., Petiot E., Lennaertz A., Henry O., Kamen A.A.:Analytical technologies for influenza virus-like particle candidatevaccines: challenges and emerging approaches. Virol. J., 2013; 10: 141
    Google Scholar
  • 27. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H.,Chen X., Recuenco S., Gomez J., Chen L.M., Johnson A., Tao Y., DreyfusC., Yu W. i wsp.: New world bats harbor diverse influenza A viruses.PLoS Pathog., 2013; 9: e1003657
    Google Scholar
  • 28. Treanor J.J., El Sahly H., King J., Graham I., Izikson R., KohbergerR., Patriarca P., Cox M.: Protective efficacy of a trivalent recombinanthemagglutinin protein vaccine (FluBlok) against influenzain healthy adults: A randomized, placebo-controlled trail. Vaccine,2011; 29: 7733-7739
    Google Scholar
  • 29. WHO: Influenza fact sheet no. 211. http://www.who.int/mediacentre/factsheets/2003/fs211/en/(12.12.2014)
    Google Scholar
  • 30. Zammit D.J., Turner D.L., Klonowski K.D., Lefrançois L., CauleyL.S.: Residual antigen presentation after influenza virus infectionaffects CD8 T cell activation and migration. Immunity, 2006;24: 439-449
    Google Scholar

Full text

Skip to content