Amylin under examination. Fibrillation – cytotoxic pancreatic polypeptide aggregation
Małgorzata Marszałek 1Abstract
In patients or animals affected by type 2 diabetes mellitus (DM2, non-insulin dependent diabetes mellitus [NIDDM]), some pathological deposits, called amyloid, are observed among cells of islets of Langerhans. Among other constituents, the deposits consist of an insoluble, fibrillar form of polypeptide neurohormone called amylin, produced by pancreatic beta cells. It is thought that formation of fibrillar deposits of misfolded and aggregated polypeptide is highly toxic to beta cells and leads to cell dysfunction, cell loss, pancreas destruction and progress of the disease. Due to the extreme insolubility of this polypeptide and its instant fibrillation, amylin constitutes a methodological problem, and there is a need for a special methodology in experiments. Some mechanisms and factors that govern amylin fibrillization are rather poorly understood. This article presents amylin as a fibrillating molecule and some methods and methodological aspects and problems that emerge at successive steps during the fibrillation process, including hypothesized cytotoxicity mechanisms of this polypeptide.
References
- 1. Abedini A., Raleigh D.P.: Incorporation of pseudoproline derivativesallows the facile synthesis of human IAPP, a highly amyloidogenicand aggregation-prone polypeptide. Org. Lett., 2005; 7: 693-696 2 Abedini A., Raleigh D.P.: A critical assessment of the role of helicalintermediates in amyloid formation by natively unfolded proteinsand polypeptides. Protein Eng. Des. Sel., 2009; 22: 453-459
Google Scholar - 2. diabetes, and the toxic oligomer hypothesis. Endocr. Rev., 2008;29: 303-316
Google Scholar - 3. Andersen C.B., Hicks M.R., Vetri V., Vandahl B., Rahbek-NielsenH., Thøgersen H., Thøgersen I.B., Enghild J.J., Serpell L.C., RischelC., Otzen D.E.: Glucagon fibril polymorphism reflects differences inprotofilament backbone structure. J. Mol. Biol., 2010; 397: 932-946
Google Scholar - 4. Brender J.R., Lee E.L., Hartman K., Wong P.T., Ramamoorthy A.,Steel D.G., Gafni A.: Biphasic effects of insulin on islet amyloid polypeptidemembrane disruption. Biophys. J., 2011; 100: 685-692
Google Scholar - 5. Buck M.: Trifluoroethanol and colleagues: cosolvents come ofage. Recent studies with peptides and proteins. Q. Rev. Biophys.,1998; 31: 297-355
Google Scholar - 6. Charge S.B., de Koning E.J., Clark A.: Effect of pH and insulin onfibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry,1995; 34: 14588-14593
Google Scholar - 7. Clark A., Badman M.K., Lowndes S.A., Morris J.F.: Aggregatedhuman islet amyloid polypeptide is not cytotoxic to mouse islets invitro. Diabetologia, 1995; 38 (Suppl. 1): A91
Google Scholar - 8. Clark A., Nilsson M.R.: Islet amyloid: a complication of islet dysfunctionor an aetiological factor in type 2 diabetes? Diabetologia,2004; 47: 157-169
Google Scholar - 9. Cort J., Liu Z., Lee G., Harris S.M., Prickett K.S., Gaeta L.S., AndersenN.H.: β-structure in human amylin and 2 designer β-peptides:CD and NMR spectroscopic comparisons suggest soluble β-oligomersand the absence of significant populations of β-strand dimers. Biochem.Biophys. Res. Commun., 1994; 204: 1088-1095
Google Scholar - 10. de Jong K.L., Incledon B., Yip C.M., DeFelippis M.R.: Amyloidfibrils of glucagon characterized by high-resolution atomic forcemicroscopy. Biophys. J., 2006; 91: 1905-1914
Google Scholar - 11. de Koning E.J., Hoppener J.W., Verbeek J.S., Oosterwijk C., vanHulst K.L., Baker C.A., Lips C.J., Morris J.F., Clark A.: Human islet amyloidpolypeptide accumulates at similar sites in islets of transgenicmice and humans. Diabetes, 1994; 43: 640-644
Google Scholar - 12. Deng S., Vatamaniuk M., Huang X., Doliba N., Lian M.M., FrankA., Velidedeoglu E., Desai N.M., Koeberlein B., Wolf B., Barker C.F.,Naji A., Matschinsky F.M., Markmann J.F.: Structural and functionalabnormalities in the islets isolated from type 2 diabetic subjects.Diabetes, 2004; 53: 624-632
Google Scholar - 13. Domanov Y.A., Kinnunen P.K.: Islet amyloid polypeptide formsrigid lipid-protein amyloid fibrils on supported phospholipid bilayers.J. Mol. Biol., 2008; 376: 42-54
Google Scholar - 14. Engel M.F., Khemtemourian L., Kleijer C.C., Meeldijk H.J., JacobsJ., Verkleij A.J., de Kruijff B., Killian J.A., Hoppener J.W.: Membranepermeabilization by islet amyloid polypeptide. Chem. Phys. Lipids,2009; 160: 1-10
Google Scholar - 15. Engel M.F., Khemtemourian L., Whoppener J.: Membrane damageby human islet amyloid polypeptide through fibril growthat the membrane. Proc. Natl. Acad. Sci. USA, 2008; 105: 6033-6038
Google Scholar - 16. Fändrich M.: On the structural definition of amyloid fibrils andother polypeptide aggregates. Cell. Mol. Life Sci., 2007; 64: 2066-2078
Google Scholar - 17. Fink A.L.: Natively unfolded proteins. Curr. Opin. Struct. Biol.,2005; 15: 35-41
Google Scholar - 18. Gast K., Siemer A., Zirwer D., Damaschun G.: Fluoroalcohol-inducedstructural changes of proteins: some aspects of cosolvent–protein interactions. Eur. Biophys. J., 2001; 30: 273-283
Google Scholar - 19. Goldsbury C., Baxa U., Simon M.N., Steven A.C., Engel A., WallJ.S., Aebi U., Muller S.A.: Amyloid structure and assembly: insightsfrom scanning transmission electron microscopy. J. Struct. Biol.,2011; 173: 1-13
Google Scholar - 20. Goldsbury C.S., Cooper G.J., Goldie K.N., Muller S.A., Saafi E.L.,Gruijters W.T., Misur M.P., Engel A., Aebi U., Kistler J.: Polymorphicfibrillar assembly of human amylin. J. Struct. Biol., 1997; 119: 17-27
Google Scholar - 21. Goldsbury C., Green J.: Time-lapse atomic force microscopy inthe characterization of amyloid-like fibril assembly and oligomericintermediates. Methods Mol. Biol., 2005; 299: 103-128
Google Scholar - 22. Green J.D., Goldsbury C., Kistler J., Cooper G.J., Aebi U.: Humanamylin oligomer growth and fibril elongation define two distinctphases in amyloid formation. J. Biol. Chem., 2004; 279: 12206-12212
Google Scholar - 23. Green J.D., Kreplak L., Goldsbury C., Li Blatter X., Stolz M., CooperG.S., Seelig A., Kistler J., Aebi U.: Atomic force microscopy revealsdefects within mica supported lipid bilayers induced by the amyloidogenichuman amylin peptide. J. Mol. Biol., 2004; 342: 877-887
Google Scholar - 24. Groenning M.: Binding mode of thioflavin T and other molecularprobes in the context of amyloid fibrils – current status. J. Chem.Biol., 2010; 3: 1-18
Google Scholar - 25. Haataja L., Gurlo T., Huang C.J., Butler P.C.: Islet amyloid in type
Google Scholar - 26. Higham C.E., Jaikaran E.T., Fraser P.E., Gross M., Clark A.: Preparationof synthetic human islet amyloid polypeptide (IAPP) in astable conformation to enable study of conversion to amyloid-likefibrils. FEBS Lett., 2000; 470: 55-60
Google Scholar - 27. Huang C.J., Lin C.Y., Haataja L., Gurlo T., Butler A.E., Rizza R.A.,Butler P.C.: High expression rates of human islet amyloid polypeptideinduce endoplasmic reticulum stress mediated β-cell apoptosis,a characteristic of humans with type 2 but not type 1 diabetes.Diabetes, 2007; 56: 2016-2027
Google Scholar - 28. Janson J., Ashley R.H., Harrison D., McIntyre S., Butler P.C.: Themechanism of islet amyloid polypeptide toxicity is membrane disruptionby intermediate-sized toxic amyloid particles. Diabetes,1999; 48: 491-498
Google Scholar - 29. Janson J., Soeller W.C., Roche P.C., Nelson R.T., Torchia A.J., KreutterD.K., Butler P.C.: Spontaneous diabetes mellitus in transgenicmice expressing human islet amyloid polypeptide. Proc. Natl. Acad.Sci. USA, 1996; 93: 7283-7288
Google Scholar - 30. Jayasinghe S.A., Langen R.: Lipid membranes modulate the structureof islet amyloid polypeptide. Biochemistry, 2005; 44: 12113-12119
Google Scholar - 31. Kayed R., Bernhagen J., Greenfield N., Sweimeh K., Brunner H.,Voelter W., Kapurniotu A.: Conformational transitions of islet amyloidpolypeptide (IAPP) in amyloid formation in vitro. J. Mol. Biol.,1999; 287: 781-796
Google Scholar - 32. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C.,Cotman C.W., Glabe C.G.: Common structure of soluble amyloid oligomersimplies common mechanism of pathogenesis. Science, 2003;300: 486-489
Google Scholar - 33. Kelenyi G.: On the histochemistry of azo group-free thiazoledyes. J. Histochem. Cytochem., 1967; 15: 172-180
Google Scholar - 34. Knight J.D., Hebda J.A., Miranker A.D.: Conserved and cooperativeassembly of membrane-bound α-helical states of islet amyloidpolypeptide. Biochemistry, 2006; 45: 9496-9508
Google Scholar - 35. Knight J.D., Miranker A.D.: Phospholipid catalysis of diabeticamyloid assembly. J. Mol. Biol., 2004; 341: 1175-1187
Google Scholar - 36. Law E., Lu S., Kieffer T.J., Warnock G.L., Ao Z., Woo Z., MarzbanL.: Differences between amyloid toxicity in alpha and beta cells inhuman and mouse islets and the role of caspase-3. Diabetologia,2010; 53: 1415-1427
Google Scholar - 37. LeVine H.3rd: Quantification of β-sheet amyloid fibril structureswith thioflavin T. Methods Enzymol., 1999; 309: 274-284
Google Scholar - 38. Lin C.Y., Gurlo T., Kayed R., Butler A.E., Haataja L., Glabe C.G.,Butler P.C.: Toxic human islet amyloid polypeptide (h-IAPP) oligomersare intracellular, and vaccination to induce anti-toxic oligomerantibodies does not prevent h-IAPP-induced β-cell apoptosis in h–IAPP transgenic mice. Diabetes, 2007; 56: 1324-1332
Google Scholar - 39. Linding R., Schymkowitz J., Rousseau F., Diella F., Serrano L.: Acomparative study of the relationship between protein structureand β-aggregation in globular and intrinsically disordered proteins.J. Mol. Biol., 2004; 342: 345-353
Google Scholar - 40. Lorenzo A., Razzaboni B., Weir G.C., Yankner B.A.: Pancreaticislet cell toxicity of amylin associated with type-2 diabetes mellitus.Nature, 1994; 368: 756-760
Google Scholar - 41. Makin O.S., Serpell L.C.: Structural characterisation of islet amyloidpolypeptide fibrils. J. Mol. Biol., 2004; 335: 1279-1288
Google Scholar - 42. Marzban L., Rhodes C.J., Steiner D.F., Haataja L., Halban P.A.,Verchere C.B.: Impaired NH2-terminal processing of human proisletamyloid polypeptide by the prohormone convertase PC2 leadsto amyloid formation and cell death. Diabetes, 2006; 55: 2192-2201
Google Scholar - 43. Marzban L., Tomas A., Becker T.C., Rosenberg L., Oberholzer J.,Fraser P.E., Halban P.A., Verchere C.B.: Small interfering RNA-mediatedsuppression of proislet amyloid polypeptide expression inhibitsislet amyloid formation and enhances survival of human islets inculture. Diabetes, 2008; 57: 3045-3055
Google Scholar - 44. Mascioni A., Porcelli F., Ilangovan U., Ramamoorthy A., VegliaG.: Conformational preferences of the amylin nucleation site in SDSmicelles: an NMR study. Biopolymers, 2003; 69: 29-41
Google Scholar - 45. Maskevich A.A., Stsiapura V.I., Kuzmitsky V.A., Kuznetsova I.M.,Povarova O.I., Uversky V.N., Turoverov K.K.: Spectral properties ofthioflavin T in solvents with different dielectric properties and in afibril-incorporated form. J. Proteome Res., 2007; 6: 1392-1401
Google Scholar - 46. Matveyenko A.V., Gurlo T., Daval M., Butler A.E., Butler P.C.:Successful versus failed adaptation to high-fat diet-induced insulinresistance; the role of IAPP-induced β-cell endoplasmic reticulumstress. Diabetes, 2009; 58: 906-916
Google Scholar - 47. Meier J.J., Kayed R., Lin C.Y., Gurlo T., Haataja L., Jayasinghe S.,Langen R., Glabe C.G., Butler P.C.: Inhibition of human IAPP fibril formationdoes not prevent β-cell death: evidence for distinct actionsof oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol.Metab., 2006; 291: E1317-E1324
Google Scholar - 48. Meng F., Marek P., Potter K.J., Verchere C.B., Raleigh D.P.: Rifampicindoes not prevent amyloid fibril formation by human isletamyloid polypeptide but does inhibit fibril thioflavin-T interactions:implications for mechanistic studies of β-cell death. Biochemistry,2008; 47: 6016-6024
Google Scholar - 49. Mirzabekov T.A., Lin M.C., Kagan B.L.: Pore formation by the cytotoxicislet amyloid peptide amylin. J. Biol. Chem., 1996; 271: 1988-1992
Google Scholar - 50. Munishkina L.A., Phelan C., Uversky V.N., Fink A.L.: Conformationalbehavior and aggregation of α-synuclein in organic solvents: modelingthe effects of membranes. Biochemistry, 2003; 42: 2720-2730
Google Scholar - 51. Nanga R.P., Brender J.R., Xu J., Veglia G., Ramamoorthy A.: Structuresof rat and human islet amyloid polypeptide IAPP1–19 in micellesby NMR spectroscopy. Biochemistry, 2008; 47: 12689-12697
Google Scholar - 52. Nilsson M.R.: Techniques to study amyloid fibril formation invitro. Methods, 2004; 34: 151-160
Google Scholar - 53. Nilsson M.R., Raleigh D.P.: Analysis of amylin cleavage productsprovides new insights into the amyloidogenic region of human amylin.J. Mol. Biol., 1999; 294: 1375-1385
Google Scholar - 54. O’Brien T.D., Butler A.E., Roche P.C., Johnson K.H., Butler P.C.:Islet amyloid polypeptide in human insulinomas: evidence for intracellularamyloidogenesis. Diabetes, 1994; 43: 329-336
Google Scholar - 55. O’Brien T.D., Butler P.C., Kreutter D.K., Kane L.A., EberhardtN.L.: Human islet amyloid polypeptide expression in COS-1 cells.A model of intracellular amyloidogenesis. Am. J. Pathol., 1995;147: 609-616
Google Scholar - 56. Padrick S.B., Miranker A.D.: Islet amyloid: phase partitioningand secondary nucleation are central to the mechanism of fibrillogenesis.Biochemistry, 2002; 41: 4694-4703
Google Scholar - 57. Park K., Verchere C.B.: Identification of a heparin binding domainin the N-terminal cleavage site of pro-islet amyloid polypeptide.Implications for islet amyloid formation. J. Biol. Chem., 2001;276: 16611-16616
Google Scholar - 58. Patil S.M., Xu S., Sheftic S.R., Alexandrescu A.T.: Dynamic α-helixstructure of micelle-bound human amylin. J. Biol. Chem., 2009; 284:11982-11991
Google Scholar - 59. Pedersen J.S.: The nature of amyloid-like glucagon fibrils. J.Diabetes Sci. Technol., 2010; 4: 1357-1367
Google Scholar - 60. Plaxco K.W., Gross M.: Cell biology. The importance of beingunfolded. Nature, 1997; 386: 657-659
Google Scholar - 61. Purcell K.F., Stikeleather J.A., Brunk S.D.: Spectroscopic studiesof hydrogen bonding: hexafluoroisopropanol. J. Mol. Spectrosc.,1969; 32: 202-213
Google Scholar - 62. Rumora L., Hadzija M., Barisic K., Maysinger D., Grubiic T.Z.:Amylin-induced cytotoxicity is associated with activation of caspase-3and MAP kinases. Biol. Chem., 2002; 383: 1751-1758
Google Scholar - 63. Sekhar A., Udgaonkar J.B.: Fluoroalcohol-induced modulationof the pathway of amyloid protofibril formation by barstar. Biochemistry,2011; 50: 805-819
Google Scholar - 64. Serpell L.C., Sunde M., Benson M.D., Tennent G.A., Pepys M.B.,Fraser P.E.: The protofilament substructure of amyloid fibrils. J. Mol.Biol., 2000; 300: 1033-1039
Google Scholar - 65. Serpell L.C., Sunde M., Blake C.C.: The molecular basis of amyloidosis.Cell. Mol. Life Sci., 1997; 53: 871-887
Google Scholar - 66. Tenidis K., Waldner M., Bernhagen J., Fischle W., Bergmann M.,Weber M., Merkle M.L., Voelter W., Brunner H., Kapurniotu A.: Identificationof a penta- and hexapeptide of islet amyloid polypeptide(IAPP) with amyloidogenic and cytotoxic properties. J. Mol. Biol.,2000; 295: 1055-1071
Google Scholar - 67. Treusch S., Cyr D.M., Lindquist S.: Amyloid deposits: protectionagainst toxic protein species? Cell Cycle, 2009; 8: 1668-1674
Google Scholar - 68. Uversky V.N., Fink A.L.: Conformational constraints for amyloidfibrillation: the importance of being unfolded. Biochim. Biophys.Acta, 2004; 1698: 131-153
Google Scholar - 69. Waugh D.F.: A fibrous modification of insulin. I. The heat precipitateof insulin. J. Am. Chem. Soc., 1946; 68: 247-250
Google Scholar - 70. Westermark G.T., Westermark P., Berne C., Korsgren O., NordicNetwork for Clinical Islet Transplantation: Widespread amyloid depositionin transplanted human pancreatic islets. N. Engl. J. Med.,2008; 359: 977-979
Google Scholar - 71. Westermark P., Andersson A., Westermark G.T.: Is aggregatedIAPP a cause of beta-cell failure in transplanted human pancreaticislets? Curr. Diab. Rep., 2005; 5: 184-188
Google Scholar - 72. Westermark P., Grimelius L.: The pancreatic islet cells in insularamyloidosis in human diabetic and non-diabetic adults. Acta Pathol.Microbiol. Scand. Sect A, 1973; 81: 291-300
Google Scholar - 73. Williamson J.A., Loria J.P., Miranker A.D.: Helix stabilization precedesaqueous and bilayer catalyzed fiber formation in islet amyloidpolypeptide. J. Mol. Biol., 2009; 393: 383-396
Google Scholar - 74. Williamson J.A., Miranker A.D.: Direct detection of transientα-helical states in islet amyloid polypeptide. Protein Sci., 2007; 16:110-117
Google Scholar - 75. Yanagi K., Ashizaki M., Yagi H., Sakurai K., Lee Y.H., Goto Y.: Hexafluoroisopropanolinduces amyloid fibrils of islet amyloid polypeptideby enhancing both hydrophobic and electrostatic interactions.J. Biol. Chem., 2011; 286: 23959-23966
Google Scholar - 76. Young I.D., Ailles L., Narindrasorasak S., Tan R., Kisilevsky R.: Localizationof the basement membrane heparan sulfate proteoglycanin islet amyloid deposits in type II diabetes mellitus. Arch. Pathol.Lab. Med., 1992; 116: 951-954
Google Scholar - 77. Zhang S., Liu J., Dragunow M., Cooper G.J.: Fibrillogenic amylinevokes islet β-cell apoptosis through linked activation of a caspasecascade and JNK1. J. Biol. Chem., 2003; 278: 52810-52819
Google Scholar - 78. Zraika S., Hull R.L., Udayasankar J., Aston-Mourney K., SubramanianS.L., Kisilevsky R., Szarek W.A., Kahn S.E.: Oxidative stress isinduced by islet amyloid formation and time-dependently mediatesamyloid-induced beta cell apoptosis. Diabetologia, 2009; 52: 626-635
Google Scholar - 79. Zraika S., Hull R.L., Verchere C.B., Clark A., Potter K.J., FraserP.E., Raleigh D.P., Kahn S.E.: Toxic oligomers and islet beta cell death:guilty by association or convicted by circumstantial evidence?Diabetologia, 2010; 53: 1046-1056
Google Scholar