Astrocytes in ischemic stroke – a potential target for neuroprotective strategies

COMMENTARY ON THE LAW

Astrocytes in ischemic stroke – a potential target for neuroprotective strategies

Bożena Gabryel 1 , Daniela Kasprowska 1 , Alicja Kost 1 , Krzysztof Łabuzek 2 , Tomasz Urbanek 3

1. Zakład Farmakologii Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny
2. Klinika Chorób Wewnętrznych i Farmakologii Klinicznej Katedry Farmakologii, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny
3. Katedra i Klinika Chirurgii Ogólnej i Naczyń, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny

Published: 2015-04-03
DOI: 10.5604/17322693.1147866
GICID: 01.3001.0009.6512
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 384-397

 

Abstract

Ischemic stroke is one of the leading causes of adult death and disability worldwide. Present applied therapeutic strategies do not give satisfactory results. It is often emphasized that pharmacological actions aimed at reducing the area of ischemic brain injury should protect astrocytes forming together with neurons and the endothelium neurovascular unit. Astrocytes contribute importantly to proper neuronal function during both physiological and pathological conditions. In ischemic stroke, astrocytes are involved in regulation of water and ion homeostasis, cerebral blood flow, maintenance of the blood-brain barrier, and control of the extracellular level of glutamate, as well as being a source of neuroprotectants. On the other hand, astrocytes may also contribute to enlarged ischemic area due to their participation in inflammatory processes and production of potential neurotoxic substances. Herein we review experimental and clinical data concerning adaptive and pathological roles of astrocytes during both early and late phases of ischemia. Especially, we emphasize specific features of astrocytes that might become a potential target of therapeutic strategies for ischemic stroke.

References

  • 1. Adams J.C., Lawler J.: The thrombospondins. Int. J. Biochem. CellBiol., 2004; 36: 961-968
    Google Scholar
  • 2. Adibhatla R.M., Hatcher J.F.: Tissue plasminogen activator (tPA)and matrix metalloproteinases in the pathogenesis of stroke: therapeuticstrategies. CNS Neurol. Disord. Drug Targets, 2008; 7: 243-253
    Google Scholar
  • 3. Almeida A., Delgado-Esteban M., Bolaños J.P., Medina J.M.: Oxygenand glucose deprivation induces mitochondrial dysfunctionand oxidative stress in neurones but not in astrocytes in primaryculture. J. Neurochem., 2002; 81: 207-217
    Google Scholar
  • 4. Aoki C., Kaneko T., Starr A., Pickel V.M.: Identification of mitochondrialand non-mitochondrial glutaminase within select neuronsand glia of rat forebrain by electron microscopic immunocytochemistry.J. Neurosci. Res., 1991; 28: 531-548
    Google Scholar
  • 5. Aoki E., Semba R., Mikoshiba K., Kashiwamata S.: Predominantlocalization in glial cells of free L-arginine. Immunocytochemicalevidence. Brain Res., 1991; 547: 190-192
    Google Scholar
  • 6. Argaw A.T., Asp L., Zhang J., Navrazhina K., Pham T., MarianiJ.N., Mahase S., Dutta D.J., Seto J., Kramer E.G., Ferrara N., SofroniewM.V., John G.R.: Astrocyte-derived VEGF-A drives blood-brain barrierdisruption in CNS inflammatory disease. J. Clin. Invest., 2012;122: 2454-2468
    Google Scholar
  • 7. Asahi M., Asahi K., Jung J.C., del Zoppo G.J., Fini M.E., Lo E.H.: Rolefor matrix metalloproteinase 9 after focal cerebral ischemia: effectsof gene knockout and enzyme inhibition with BB-94. J. Cereb. BloodFlow Metab., 2000; 20: 1681-1689
    Google Scholar
  • 8. Asano T., Mori T., Shimoda T., Shinagawa R., Satoh S., Yada N.,Katsumata S., Matsuda S., Kagamiishi Y., Tateishi N.: Arundic acid (ONO-2506) ameliorates delayed ischemic brain damage by preventingastrocytic overproduction of S100B. Curr. Drug Targets CNS Neurol. Disord.,2005; 4: 127-142
    Google Scholar
  • 9. Aschner M.: Astrocytic functions and physiological reactions to injury:the potential to induce and/or exacerbate neuronal dysfunction.A forum position paper. Neurotoxicology, 1998; 19: 7-18
    Google Scholar
  • 10. Bakken I.J., White L.J., Unsgard G., Aasly J., Sonnenwald U.: [U-13C]glutamate metabolism in astrocytes during hypoglycemia and hypoxia.J. Neurosci. Res., 1998; 51: 636-645
    Google Scholar
  • 11. Barker J.E., Heales S.J.R., Cassidy A., Bolanos J.P., Land J.M., ClarkJ.B.: Depletion of brain glutathione results in a decrease of glutathionereductase activity: an enzyme susceptible to oxidative damage. BrainRes., 1996; 716: 118-122
    Google Scholar
  • 12. Barreto G., White R.E., Ouyang Y., Xu L., Giffard R.G.: Astrocytes:targets for neuroprotection in stroke. Cent. Nerv. Syst. Agents Med.Chem., 2011; 11: 164-173
    Google Scholar
  • 13. Beneviste E.N.: Astrocyte-microglia interactions. W: Astrocytes:Pharmacology and Function, red.: Murphey S. Academic Press, SanDiego, 1993, 355-383
    Google Scholar
  • 14. Benfenati V., Nicchia G.P., Svelto M., Rapisarda C., Frigeri A., FerroniS.: Functional down-regulation of volume-regulated anion channelsin AQP4 knockdown cultured rat cortical astrocytes. J. Neurochem.,2007; 100: 87-104
    Google Scholar
  • 15. Berezowski V., Fukuda A.M., Cecchelli R., Badaut J.: Endothelial cellsand astrocytes: a concerto en duo in ischemic pathophysiology. Int. J. CellBiol., 2012; 2012: 176287
    Google Scholar
  • 16. Bernardi P.: The permeability transition pore. Control points ofa cyclosporin A-sensitive mitochondrial channel involved in cell death.Biochim. Biophys. Acta, 1996; 1275: 5-9
    Google Scholar
  • 17. Bhattacharya P., Pandey A.K., Paul S., Patnaik R., Yavagal D.R.: Aquaporin-4inhibition mediates piroxicam-induced neuroprotection againstfocal cerebral ischemia/reperfusion injury in rodents. PLoS One,2013; 8: e73481
    Google Scholar
  • 18. Boison D., Chen J.F., Fredholm B.B.: Adenosine signaling and functionin glial cells. Cell Death Differ., 2010; 17: 1071-1082
    Google Scholar
  • 19. Bourke R.S., Kimelberg H.K., Daze M., Church G.: Swelling and ionuptake in cat cerebrocortical slices: control by neurotransmitters andion transport mechanisms. Neurochem. Res., 1983; 8: 5-24
    Google Scholar
  • 20. Bresgen N., Jaksch H., Bauer H.C., Eckl P., Krizbai I., Tempfer H.:Astrocytes are more resistant than cerebral endothelial cells towardgeno – and cytotoxicity mediated by short-term oxidative stress.J. Neurosci. Res., 2006; 84: 1821-1828
    Google Scholar
  • 21. Brines M., Cerami A.: Erythropoietin-mediated tissue protection:reducing collateral damage from the primary injury response. J. Intern.Med., 2008; 264: 405-432
    Google Scholar
  • 22. Cesar M., Hamprecht B.: Immunocytochemical examination ofneural rat and mouse primary cultures using monoclonal antibodiesraised against pyruvate carboxylase. J. Neurochem., 1995; 64: 2312-2318
    Google Scholar
  • 23. Chen Y., Swanson R.A.: Astrocytes and brain injury. J. Cereb. BloodFlow Metab., 2003; 23: 137-149
    Google Scholar
  • 24. Chouchane M., Costa M.R.: Cell therapy for stroke: use of local astrocytes.Front. Cell. Neurosci., 2012; 6: 49
    Google Scholar
  • 25. Chu K., Lee S.T., Sinn D.I., Ko S.Y., Kim E.H., Kim J.M., Kim S.J., ParkD.K., Jung K.H., Song E.C., Lee S.K., Kim M., Roh J.K.: Pharmacologicalinduction of ischemic tolerance by glutamate transporter-1 (EAAT2)upregulation. Stroke, 2007; 38: 177-182
    Google Scholar
  • 26. Cunha R.A.: Neuroprotection by adenosine in the brain: from A1 receptoractivation to A2A receptor blockade. Purinergic Signaling, 2005;1: 111-134
    Google Scholar
  • 27. Daskalopoulos R., Korcok J., Tao L., Wilson J.X.: Accumulation of intracellularascorbate from dehydroascorbic acid by astrocytes is decreasedafter oxidative stress and restored by propofol. Glia, 2002; 39: 124-132
    Google Scholar
  • 28. del Zoppo G.J.: The neurovascular unit, matrix proteases, and innateinflammation. Ann. N. Y. Acad. Sci., 2010; 1207: 46-49
    Google Scholar
  • 29. Dong Q.P., He J.Q., Chai Z.: Astrocytic Ca2+ waves mediate activationof extrasynaptic NMDA receptors in hippocampal neurons to aggravatebrain damage during ischemia. Neurobiol. Dis., 2013; 58: 68-75
    Google Scholar
  • 30. Donnan G.A., Fisher M., Macleod M., Davis S.M.: Stroke. Lancet,2008; 371: 1612-1623
    Google Scholar
  • 31. Ehrenreich H., Hasselblatt M., Dembowski C., Cepek L., Lewczuk P.,Stiefel M., Rustenbeck H.H., Breiter N., Jacob S., Knerlich F., Bohn M.,Poser W., Rüther E., Kochen M., Gefeller O., et al.: Erythropoietin therapyfor acute stroke is both safe and beneficial. Mol. Med., 2002; 8: 495-505
    Google Scholar
  • 32. Ehrenreich H., Weissenborn K, Prange H, Schneider D, Weimar C,Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, JähnigP, Herrmann M, Knauth M, Bähr M, Heide W, et al.: EPO Stroke TrialGroup. Recombinant human erythropoietin in the treatment of acuteischemic stroke. Stroke, 2009; 40: e647-e656
    Google Scholar
  • 33. Emsley H.C., Smith C.J., Georgiou R.F., Vail A., Hopkins S.J., RothwellN.J., Tyrrell P.J.: Acute Stroke Investigators. A randomised phase II studyof interleukin-1 receptor antagonist in acute stroke patients. J. Neurol.Neurosurg. Psychiatry, 2005; 76: 1366-1372
    Google Scholar
  • 34. Endres M., Wang Z.Q., Namura S., Waeber C., Moskowitz M.A.: Ischemicbrain injury is mediated by activation of poly (ADP-ribose) polymerase.J. Cereb. Blood Flow Metab., 1997; 17: 1143-1151
    Google Scholar
  • 35. Faulkner J.R., Herrmann J.E., Woo M.J., Tansey K.E., Doan N.B., SofroniewM.V.: Reactive astrocytes protect tissue and preserve functionafter spinal cord injury. J. Neurosci., 2004; 24: 2143-2155
    Google Scholar
  • 36. Foerch C., Singer O.C., Neumann-Haefelin T., du Mesnil de RochemontR., Steinmetz H., Sitzer M.: Evaluation of serum S100B as a surrogatemarker for long-term outcome and infarct volume in acute middlecerebral artery infarction. Arch. Neurol., 2005; 62: 1130-1134
    Google Scholar
  • 37. Fogal B., Li J., Lobner D., McCullough L.D., Hewett S.J.: System xc –activity and astrocytes are necessary for interleukin-1β-mediated hypoxicneuronal injury. J. Neurosci., 2007; 27: 10094-10105
    Google Scholar
  • 38. Fukuda A.M., Badaut J.: Aquaporin 4: a player in cerebral edema andneuroinflammation. J. Neuroinflammation, 2012; 9: 279
    Google Scholar
  • 39. Gabryel B., Małecki A.: Ebselen attenuates oxidative stress in ischemicastrocytes depleted of glutathione. Comparison with glutathioneprecursors. Pharmacol. Rep., 2006; 58: 381-392
    Google Scholar
  • 40. Galeffi F., Turner D.A.: Exploiting metabolic differences in gliomatherapy. Curr. Drug Discov. Technol., 2012; 9: 280-293
    Google Scholar
  • 41. Giffard R.G., Swanson R.A.: Ischemia-induced programmed celldeath in astrocytes. Glia, 2005; 50: 299-306
    Google Scholar
  • 42. Girvin A.M., Gordon K.B., Welsh C.J., Clipstone N.A., Miller S.D.: Differentialabilities of central nervous system resident endothelial cellsand astrocytes to serve as inducible antigen-presenting cells. Blood,2002; 99: 3692-3701
    Google Scholar
  • 43. Gonzalez F.F., Abel R., Almli C.R., Mu D., Wendland M., Ferriero D.M.:Erythropoietin sustains cognitive function and brain volume after neonatalstroke. Dev. Neurosci., 2009; 31: 403-411
    Google Scholar
  • 44. Grenz A., Homann D., Eltzschig H.K.: Extracellular adenosine: a safetysignal that dampens hypoxia-induced inflammation during ischemia.Antioxid. Redox Signal., 2011; 15: 2221-2234
    Google Scholar
  • 45. Hall E.D.: Cerebral ischaemic, free radicals and antioxidant protection.Biochem. Soc. Trans., 1993; 21: 334-339
    Google Scholar
  • 46. Hertz L., Xu J., Song D., Du T., Yan E., Peng L.: Brain glycogenolysis,adrenoceptors, pyruvate carboxylase, Na+,K+-ATPase and Marie E.Gibbs’ pioneering learning studies. Front. Integr. Neurosci., 2013; 7: 20
    Google Scholar
  • 47. Hu J., Castets F., Guevara J.L., Van Eldik L.J.: S100β stimulates induciblenitric oxide synthase activity and mRNA levels in rat corticalastrocytes. J. Biol. Chem., 1996; 271: 2543-2547
    Google Scholar
  • 48. Huang J., Agus D.B., Winfree C.J., Kiss S., Mack W.J., McTaggart R.A., Choudhri T.F., Kim L.J., Mocco J., Pinsky D.J., Fox W.D., Israel R.J., BoydT.A., Golde D.W., Connolly E.S.Jr.: Dehydroascorbic acid, a blood-brainbarrier transportable form of vitamin C, mediates potent cerebroprotectionin experimental stroke. Proc. Natl. Acad. Sci. USA, 2001; 98:11720-11724
    Google Scholar
  • 49. Iadecola C., Alexander M.: Cerebral ischemia and inflammation.Curr. Opin. Neurol., 2001; 14: 89-94
    Google Scholar
  • 50. Iadecola C., Zhang F., Casey R., Nagayama M., Ross M.E.: Delayedreduction of ischemic brain injury and neurological deficits in micelacking the inducible nitric oxide synthase gene. J. Neurosci.: 1997;17: 9157-9164
    Google Scholar
  • 51. Jerndal M., Forsberg K., Sena E.S., Macleod M.R., O’Collins V.E., LindenT., Nilsson M., Howells D.W.: A systematic review and meta-analysisof erythropoietin in experimental stroke. J. Cereb. Blood Flow Metab.,2010; 30: 961-968
    Google Scholar
  • 52. Jiang P., Chen C., Wang R., Chechneva O.V., Chung S.H., Rao M.S.,Pleasure D.E., Liu Y., Zhang Q., Deng W.: hESC-derived Olig2+ progenitorsgenerate a subtype of astroglia with protective effects against ischaemicbrain injury. Nat. Commun., 2013; 4: 2196
    Google Scholar
  • 53. Kader A., Frazzini V.I., Solomon R.A., Trifiletti R.R.: Nitric oxideproduction during focal cerebral ischemia in rats. Stroke, 1993; 24:1709-1716
    Google Scholar
  • 54. Kato S., Aoyama M., Kakita H., Hida H., Kato I., Ito T., Goto T., HusseinM.H., Sawamoto K., Togari H., Asai K.: Endogenous erythropoietinfrom astrocyte protects the oligodendrocyte precursor cell againsthypoxic and reoxygenation injury. J. Neurosci. Res., 2011; 89: 1566-1574
    Google Scholar
  • 55. Kim J.H., Lee Y.W., Park K.A., Lee W.T., Lee J.E.: Agmatine attenuatesbrain edema through reducing the expression of aquaporin-1 after cerebralischemia. J. Cereb. Blood Flow Metab. 2010; 30: 943-949
    Google Scholar
  • 56. Kokocińska D., Gruenpeter P., Jałowiecki P., Partyka R.,Wieczorek P.,Michalecki Ł., Chanek I., Jarząb J., Cierpka L.: The usefulness of assessingthe serum levels of S-100 protein in patients with ischemic stroke. ActaAngiol., 2005; 11: 105-113
    Google Scholar
  • 57. Kreft M., Bak L.K., Waagepetersen H.S., Schousboe A.: Aspects ofastrocyte energy metabolism, amino acid neurotransmitter homoeostasisand metabolic compartmentation. ASN Neuro., 2012; 4, e00086
    Google Scholar
  • 58. Lam A.G., Koppal T., Akama K.T., Guo L., Craft J.M., Samy B., SchavockyJ.P., Watterson D.M., Van Eldik L.J.: Mechanism of glial activationby S100B: involvement of the transcription factor NFκB. Neurobiol.Aging, 2001; 22: 765-772
    Google Scholar
  • 59. Lapchak P.A., Zivin J.A.: Ebselen, a seleno-organic antioxidant, isneuroprotective after embolic strokes in rabbits: synergism with low–dose tissue plasminogen activator. Stroke, 2003; 34: 2013-2018
    Google Scholar
  • 60. Latini S., Pedata F.: Adenosine in the central nervous system: releasemechanisms and extracellular concentrations. J. Neurochem.,2001; 79: 463-484
    Google Scholar
  • 61. Lau A., Tymianski M.: Glutamate receptors, neurotoxicity and neurodegeneration.Pflugers Arch., 2010; 460: 525-542
    Google Scholar
  • 62. Lazo J.S., Kondo Y., Dellapiazza D., Michalska A.E., Choo K.H., PittB.R.: Enhanced sensitivity to oxidative stress in cultured embryoniccells from transgenic mice deficient in metallothionein I and II genes.J. Biol. Chem., 1995; 270: 5506-5510
    Google Scholar
  • 63. Lee K.S., Tetzlaff W., Kreutzberg G.W.: Rapid down regulation ofhippocampal adenosine receptors following brief anoxia. Brain Res.,1986; 380: 155-158
    Google Scholar
  • 64. Lee S.G., Su Z.Z., Emdad L., Gupta P., Sarkar D., Borjabad A., VolskyD.J., Fisher P.B.: Mechanism of ceftriaxone induction of excitatory aminoacid transporter-2 expression and glutamate uptake in primary humanastrocytes. J. Biol. Chem., 2008; 283: 13116-13123
    Google Scholar
  • 65. Li L., Jiang J.: Regulatory factors of mesenchymal stem cell migrationinto injured tissues and their signal transduction mechanisms.Front. Med., 2011; 5: 33-39
    Google Scholar
  • 66. Liauw J., Hoang S., Choi M., Eroglu C., Choi M., Sun G.H., Percy M., Wildman-TobrinerB., Bliss T., Guzman R.G., Barres B.A., Steinberg G.K.: Thrombospondins 1 and 2 are necessary for synaptic plasticity and functionalrecovery after stroke. J. Cereb. Blood Flow Metab., 2008; 28: 1722-1732
    Google Scholar
  • 67. Lin J.H., Lou N., Kang N., Takano T., Hu F., Han X., Xu Q., Lovatt D.,Torres A., Willecke K., Yang J., Kang J., Nedergaard M.: A central role ofconnexin 43 in hypoxic preconditioning. J. Neurosci., 2008; 28: 681-695
    Google Scholar
  • 68. Lin T.N., Kim G.M., Chen J.J., Cheung W.M., He Y.Y., Hsu C.Y.: Differentialregulation of thrombospondin-1 and thrombospondin-2 afterfocal cerebral ischemia/reperfusion. Stroke, 2003; 34: 177-186
    Google Scholar
  • 69. Lively S., Moxon-Emre I., Schlichter L.C.: SC1/hevin and reactivegliosis after transient ischemic stroke in young and aged rats. J. Neuropathol.Exp. Neurol., 2011; 70: 913-929
    Google Scholar
  • 70. Lukaszevicz A.C., Sampaïo N., Guégan C., Benchoua A., CouriaudC., Chevalier E., Sola B., Lacombe P., Onténiente B.: High sensitivity ofprotoplasmic cortical astroglia to focal ischemia. J. Cereb. Blood FlowMetab., 2002; 22: 289-298
    Google Scholar
  • 71. Manley G.T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A.W.,Chan P., Verkman A.S.: Aquaporin-4 deletion in mice reduces brainedema after acute water intoxication and ischemic stroke. Nat. Med.,2000; 6: 159-163
    Google Scholar
  • 72. Marti H.H.: Erythropoietin and the hypoxic brain. J. Exp. Biol., 2004;207: 3233-3242
    Google Scholar
  • 73. Martin D.L.: Synthesis and release of neuroactive substances byglial cells. Glia, 1992; 5: 81-94
    Google Scholar
  • 74. Masutani H., Bai J., Kim Y.C., Yodoi J.: Thioredoxin as a neurotrophiccofactor and an important regulator of neuroprotection. Mol. Neurobiol.,2004; 29: 229-242
    Google Scholar
  • 75. Matsui T., Mori T., Tateishi N., Kagamiishi Y., Satoh S., Katsube N.,Morikawa E., Morimoto T., Ikuta F., Asano T.: Astrocytic activation anddelayed infarct expansion after permanent focal ischemia in rats. Part I:enhanced astrocytic synthesis of S-100β in the periinfarct area precedesdelayed infarct expansion. J. Cereb. Blood. Flow Metab 2002; 22: 711-722
    Google Scholar
  • 76. Mishima K., Tanaka T., Pu F., Egashira N., Iwasaki K., Hidaka R.,Matsunaga K., Takata J., Karube Y., Fujiwara M.: Vitamin E isoformsα-tocotrienol and g-tocopherol prevent cerebral infarction in mice.Neurosci. Lett., 2003; 337: 56-60
    Google Scholar
  • 77. Murphy T.H., Corbett D.: Plasticity during stroke recovery: fromsynapse to behaviour. Nat. Rev. Neurosci., 2009; 10: 861-872
    Google Scholar
  • 78. Okuno K., Taya K., Marmarou C.R., Ozisik P., Fazzina G., KleindienstA., Gulsen S., Marmarou A.: The modulation of aquaporin-4 by usingPKC-activator (phorbol myristate acetate) and V1a receptor antagonist(SR49059) following middle cerebral artery occlusion/reperfusion inthe rat. Acta Neurochir. Suppl., 2008; 102: 431-436
    Google Scholar
  • 79. Orita T., Akimura T., Nishizaki T., Kamiryo T., Ikeyama Y., Aoki H.,Ito H.: Transferrin receptors in injured brain. Acta Neuropathol., 1990;79: 686-688
    Google Scholar
  • 80. Ou-Yang Y.B., Kristian T., Mellergard P., Siesjö B.K.: The influence ofpH on glutamate – and depolarization-induced increases of intracellularcalcium concentration in cortical neurones in primary culture. BrainRes., 1994; 646: 65-72
    Google Scholar
  • 81. Panickar K.S., Norenberg M.D.: Astrocytes in cerebral ischemic injury:morphological and general considerations. Glia, 2005; 50: 287-298
    Google Scholar
  • 82. Papadopoulos M.C., Verkman A.S.: Potential utility of aquaporinmodulators for therapy of brain disorders. Prog. Brain Res. 2008; 170:589-601
    Google Scholar
  • 83. Park S.K., Lin H.L., Murphy S.: Nitric oxide regulates nitric oxidesynthase-2 gene expression by inhibiting NF-κB binding to DNA. Biochem.J., 1997; 322: 609-613
    Google Scholar
  • 84. Pedata F., Melani A., Pugliese A.M., Coppi E., Cipriani S., Traini C.:The role of ATP and adenosine in the brain under normoxic and ischemicconditions. Purinergic Signal., 2007; 3: 299-310
    Google Scholar
  • 85. Pelvig D.P., Pakkenberg H., Stark A.K., Pakkenberg B.: Neocortical glialcell numbers in human brains. Neurobiol. Aging, 2008; 29: 1754-1762
    Google Scholar
  • 86. Pettigrew L.C., Kasner S.E., Albers G.W., Gorman M, Grotta JC, ShermanDG, Funakoshi Y, Ishibashi H.; Arundic Acid (ONO-2506) StrokeStudy Group: Safety and tolerability of arundic acid in acute ischemicstroke. J. Neurol. Sci., 2006; 251: 50-56
    Google Scholar
  • 87. Pignataro G., Simon R.P., Boison D.: Transgenic overexpression ofadenosine kinase aggravates cell death in ischemia. J. Cereb. Blood FlowMetab., 2007; 27: 1-5
    Google Scholar
  • 88. Prusiński A., Domżał T.M., Kozubski W., Szczudlik A.: Niedokrwienneudary mózgu. Wyd. alfa-medica Press, Bielsko-Biała 1999
    Google Scholar
  • 89. Radi R., Beckman J.S., Bush K.M., Freeman B.A.: Peroxynitrite oxidationof sulphydryls. The cytotoxic potential of superoxide and nitricoxide. J. Biol. Chem., 1991; 266: 4244-4250
    Google Scholar
  • 90. Rao V.L., Bowen K.K., Dempsey R.J.: Transient focal cerebral ischemiadown-regulates glutamate transporters GLT-1 and EAAC1 expressionin rat brain. Neurochem. Res., 2001; 26: 497-502
    Google Scholar
  • 91. Ruiz de Almodovar C., Lambrechts D., Mazzone M., Carmeliet P.:Role and therapeutic potential of VEGF in the nervous system. Physiol.Rev., 2009; 89: 607-648
    Google Scholar
  • 92. Ruscher K., Freyer D., Karsch M., Isaev N., Megow D., Sawitzki B.,Priller J., Dirnagl U., Meisel A.: Erythropoietin is a paracrine mediatorof ischemic tolerance in the brain: evidence from an in vitro model. J.Neurosci., 2002; 22: 10291-10301
    Google Scholar
  • 93. Sato M., Bremner I.: Oxygen free radicals and metallothionein. FreeRadic. Biol. Med., 1993; 14: 325-337
    Google Scholar
  • 94. Schwarz M.A., Lazo J.S., Yalowich J.C., Allen W.P., Whitmore M.,Bergonia H.A., Tzeng E., Billiar T.R., Robbins P.D., Lancaster J.R.: Metallothioneinprotects against the cytotoxic and DNA-damaging effects ofnitric oxide. Proc. Natl. Acad. Sci. USA, 1995; 92: 4452-4456
    Google Scholar
  • 95. Siddiq A., Ayoub I.A., Chavez J.C., Aminova L., Shah S., LaManna J.C.,Patton S.M., Connor J.R., Cherny R.A., Volitakis I., Bush A.I., LangsetmoI., Seeley T., Gunzler V., Ratan R.R.: Hypoxia-inducible factor prolyl4-hydroxylase inhibition. A target for neuroprotection in the centralnervous system. J. Biol. Chem., 2005; 280: 41732-41743
    Google Scholar
  • 96. Sofroniew M.V., Vinters H.V.: Astrocytes: biology and pathology.Acta Neuropathol., 2010; 119: 7-35
    Google Scholar
  • 97. Sohrabji F., Bake S., Lewis D.K.: Age-related changes in brain supportcells: implications for stroke severity. Neurochem. Int., 2013; 63: 291-301
    Google Scholar
  • 98. Song Y., Gunnarson E.: Potassium dependent regulation of astrocytewater permeability is mediated by cAMP signaling. PLoS One, 2012;7: e34936
    Google Scholar
  • 99. Stobart J.L., Anderson C.M.: Multifunctional role of astrocytes asgatekeepers of neuronal energy supply. Front. Cell. Neurosci., 2013; 7: 38
    Google Scholar
  • 100. Sugawara T., Fujimura M., Noshita N., Kim G.W., Saito A., Hayashi T.,Narasimhan P., Maier C.M., Chan P.H.: Neuronal death/survival signalingpathways in cerebral ischemia. NeuroRx., 2004; 1: 17-25
    Google Scholar
  • 101. Suzuki K., Nakajima K., Kawaharada U., Uehara K., Hara F., OtakiN., Kimura M., Tamura Y.: Metallothionein in the human brain. ActaHistochem. Cytochem., 1992; 25: 617-622
    Google Scholar
  • 102. Sweeney M.I., Yager J.Y., Walz W., Juurlink B.H.: Cellular mechanismsinvolved in brain ischemia. Can. J. Physiol. Pharmacol., 1995;73: 1525-1535
    Google Scholar
  • 103. Tanimura Y., Hiroaki Y., Fujiyoshi Y.: Acetazolamide reversibly inhibitswater conduction by aquaporin-4. J. Struct. Biol., 2009; 166: 16-21
    Google Scholar
  • 104. Tateishi N., Mori T., Kagamiishi Y., Satoh S., Katsube N., MorikawaE., Morimoto T., Matsui T., Asano T.: Astrocytic activation and delayedinfarct expansion after permanent focal ischemia in rats. Part II: suppressionof astrocytic activation by a novel agent (R)-(-)-2-propyloctanoicacid (ONO-2506) leads to mitigation of delayed infarct expansionand early improvement of neurologic deficits. J. Cereb. Blood Flow Metab.,2002; 22: 723-734
    Google Scholar
  • 105. Thrift A.G., Dewey H.M., Macdonell R.A., McNeil J.J., Donnan G.A.:Incidence of the major stroke subtypes: initial findings from the NorthEast Melbourne stroke incidence study (NEMESIS). Stroke, 2001; 32:1732-1738
    Google Scholar
  • 106. Tombaugh G.C., Sapolsky R.M.: Evolving concepts about the role ofacidosis in ischemic neuropathology. J. Neurochem., 1993; 61: 793-803
    Google Scholar
  • 107. Trendelenburg G, Dirnagl U.: Neuroprotective role of astrocytesin cerebral ischemia: focus on ischemic preconditioning. Glia, 2005;50: 307-320
    Google Scholar
  • 108. Trendelenburg G., Prass K., Priller J., Kapinya K., Polley A., MuselmannC., Ruscher K., Kannbley U., Schmitt A.O., Castell S., Wiegand F.,Meisel A., Rosenthal A., Dirnagl U.: Serial analysis of gene expressionidentifies metallothionein-II as major neuroprotective gene in mousefocal cerebral ischemia. J. Neurosci., 2002; 22: 5879-5888
    Google Scholar
  • 109. Vahedi K., Hofmeijer J., Juettler E., Vicaut E., George B., Algra A.,Amelink G.J., Schmiedeck P., Schwab S., Rothwell P.M., Bousser M.G., vander Worp H.B., Hacke W., DECIMAL, DESTINY, and HAMLET investigators:Early decompressive surgery in malignant infarction of the middlecerebral artery: a pooled analysis of three randomised controlled trials.Lancet Neurol., 2007; 6: 215-222
    Google Scholar
  • 110. Villa P., Bigini P., Mennini T., Agnello D., Laragione T., Cagnotto A.,Viviani B., Marinovich M., Cerami A., Coleman T.R., Brines M., GhezziP.: Erythropoietin selectively attenuates cytokine production and inflammationin cerebral ischemia by targeting neuronal apoptosis. J.Exp. Med., 2003; 198: 971-975
    Google Scholar
  • 111. Walz W., Klimaszewski A., Paterson I.A.: Glial swelling in ischemia:a hypothesis. Dev. Neurosci., 1993; 15: 216-225
    Google Scholar
  • 112. Xu L., Sapolsky R.M., Giffard R.G.: Differential sensitivity of murineastrocytes and neurons from different brain regions to injury. Exp.Neurol., 2001; 169: 416-424
    Google Scholar
  • 113. Young J.K., Garvey J.S., Huang P.C.: Glial immunoreactivity formetallothionein in the rat brain. Glia, 1994; 4: 602-610
    Google Scholar
  • 114. Zhang Q., Chen C., Lu J., Xie M., Pan D., Luo X., Yu Z., Dong Q.,Wang W.: Cell cycle inhibition attenuates microglial proliferation andproduction of IL-1β, MIP-1α, and NO after focal cerebral ischemia in therat. Glia, 2009; 57: 908-920
    Google Scholar
  • 115. Zhang Y., Jin Y., Behr M.J., Feustel P.J., Morrison J.P., Kimelberg H.K.:Behavioral and histological neuroprotection by tamoxifen after reversiblefocal cerebral ischemia. Exp. Neurol. 2005; 196: 41-46
    Google Scholar
  • 116. Zhang Z.G., Zhang L., Jiang Q., Zhang R., Davies K., Powers C., BruggenN., Chopp M.: VEGF enhances angiogenesis and promotes blood-brainbarrier leakage in the ischemic brain. J. Clin. Invest., 2000; 106: 829-838
    Google Scholar
  • 117. Zhao B.Q., Wang S., Kim H.Y., Storrie H., Rosen B.R., Mooney D.J.,Wang X., Lo E.H.: Role of matrix metalloproteinases in delayed corticalresponses after stroke. Nat. Med., 2006; 12: 441-445
    Google Scholar
  • 118. Zhao G., Flavin M.P.: Differential sensitivity of rat hippocampaland cortical astrocytes to oxygen-glucose deprivation injury. Neurosci.Lett., 2000; 285: 177-180
    Google Scholar
  • 119. Zhao Y., Rempe D.A.: Targeting astrocytes for stroke therapy. Neurotherapeutics,2010; 7: 439-451
    Google Scholar
  • 120. Zheng Y.Y., Lan Y.P., Tang H.F., Zhu S.M.: Propofol pretreatmentattenuates aquaporin-4 over-expression and alleviates cerebral edemaafter transient focal brain ischemia reperfusion in rats. Anesth. Analg.,2008; 107: 2009-2016
    Google Scholar

Full text

Skip to content