Hemoglobin adducts as biomarkers of human exposure to selected xenobiotics
Bożena Bukowska 1Abstract
In the living and working environments more and more new substances of anthropogenic origin exerting toxic properties appear. Simultaneously, the evaluation of human exposure is assessed. For many years adducts of hemoglobin (Hb) have been useful markers of the exposure of humans to various xenobiotics. These adducts are also termed biologically effective dose biomarkers. This paper focuses on a review of literature, mainly from the years 2010-2014, which refers to the hemoglobin adducts of toxic compounds with electrophilic properties. In the interactions of xenobiotics with hemoglobin, groups such as thiol, amino, carboxyl and hydroxyl of this hemoprotein are involved. These combinations occur most often in the reaction of xenobiotics with an N-terminal amino group of valine in Hb, imidazole nitrogen of histidine and cysteine sulfhydryl β93. Hb adducts are characterized by high availability, a long period of occurrence (up to 120 days) in the circulatory system, and high durability, and they have contact with all cells of the body. The measurement of hemoglobin adducts can be potentially used in the assessment of exposure to many xenobiotics such as acrylamide; substances present in tobacco smoke, e.g. benzo(α)pyrene and benzanthracene, ethylene oxide, aryl amines; and substances used on a large scale in industry such as glycidol and naphthalene and its derivatives. Recently the possibility of determination of hemoglobin adducts with estrogen metabolites has been postulated as indicators informing about heightened risk of breast cancer. Protein adducts are used as an alternative to DNA adducts for different classes of electrophilic substances.
References
- 1. Bakhiya N., Abraham K., Gurtler R., Appel K.E., Lampen A.: Toxicologicalassessment of 3-chloropropane-1,2-diol and glycidol fattyacid esters in food. Mol. Nutr. Food Res., 2011; 55: 509-521
Google Scholar - 2. Bolognesi C., Baur X., Marczynski B., Norppa H., Sepai O., SabbioniG.: Carcinogenic risk of toluene diisocyanate and 4,4’-methylenediphenyldiisocyanate: epidemiological and experimental evidence.Crit. Rev. Toxicol., 2001; 31: 737-772
Google Scholar - 3. Bono R., Vincenti M., Schiliro T., Traversi D., Pignata C., ScursatoneE., Dotti G., Gilli G.: Cotinine and N-(2-hydroxyethyl)valine asmarkers of passive exposure to tobacco smoke in children. J. Expo.Anal. Environ. Epidemiol., 2005; 15: 66-73
Google Scholar - 4. Brisson B., Ayotte P., Normandin L., Gaudreau É, Bienvenu J.F.,Fennell T.R., Blanchet C., Phaneuf D., Lapointe C., Bonvalot Y., GagnéM., Courteau M., Snyder R.W., Bouchard M.: Relation betweendietary acrylamide exposure and biomarkers of internal dose in Canadianteenagers. J. Expo. Sci. Environ. Epidemiol., 2014; 24: 215-221
Google Scholar - 5. Brody J.G., Moysich K.B., Humblet O., Attfield K.R., Beehler G.P.,Rudel R.A.: Environmental pollutants and breast cancer: epidemiologicstudies. Cancer, 2007; 109: 2667-2711
Google Scholar - 6. Carere A.: Genotoxicity and carcinogenicity of acrylamide: a criticalreview. Ann. Ist. Super. Sanita, 2006; 42: 144-155
Google Scholar - 7. Cavalieri E., Rogan E.: Unbalanced metabolism of endogenousestrogens in the etiology and prevention of human cancer. J. SteroidBiochem. Mol. Biol., 2011; 125: 169-180
Google Scholar - 8. Cheng S.H., Tsou M.H., Liu M.C., Jian J.J., Cheng J.C., Leu S.Y., HsiehC.Y., Huang A.T.: Unique features of breast cancer in Taiwan. BreastCancer Res. Treat., 2000; 63: 213-223
Google Scholar - 9. Cipierre C., Haÿs S., Maucort-Boulch D.M., Steghens J.P., PicaudJ.V.: Malondialdehyde adduct to hemoglobin: a new marker of oxidativestress suitable for full-term and preterm neonates. Oxid. Med.Cell. Longev., 2013; 2013: 694014
Google Scholar - 10. European Food Safety Authority 11thScientific Colloquium:Acrylamide carcinogenicity – new evidence in relation to dietaryexposure. Summ. Rep., 2008;11: 1-27
Google Scholar - 11. Fajdek A., Wróblewska A., Milchert E.: Znaczenie i zastosowaniaglicydolu. Chemik, 2010; 64: 362-375
Google Scholar - 12. Florek E.: Skład chemiczny i kancerogeny dymu tytoniowego.Alkoholizm i Narkomania, 1999; 3: 333-347
Google Scholar - 13. Gan J., Skipper P.L., Gago-Dominguez M., Arakawa K., Ross R.K.,Yu M.C., Tannenbaum S.R.: Alkylaniline-hemoglobin adducts andrisk of non-smoking-related bladder cancer. J. Natl. Cancer Inst.,2004; 96: 1425-1431
Google Scholar - 14. Gawlik M., Brandys J.: Benzo(α)piren a procesy jednoelektronowegoutleniania w organizmie. Bromat. Chem. Toksykol., 2008;41: 1016-1022
Google Scholar - 15. Glycidol. Some Industrial Chemicals. IARC Monogr. Eval. Carcinog.Risks Hum., 2000; 77: 469-486
Google Scholar - 16. Gries W., Leng G.: Analytical determination of specific 4,4′-methylenediphenyl diisocyanate hemoglobin adducts in human blood.Anal. Bioanal. Chem., 2013; 405: 7205-7213
Google Scholar - 17. Grosicka-Maciąg E.: Biologiczne skutki stresu oksydacyjnegowywołanego działaniem pestycydów. Postępy Hig. Med. Dośw., 2011,65: 357-366
Google Scholar - 18. Hagmar L., Törnqvist M., Nordander C., Rosén I., Bruze M., KautiainenA., Magnusson A.L., Malmberg B., Aprea P., Granath F., AxmonA.: Health effects of occupational exposure to acrylamide using hemoglobinadducts as biomarkers of internal dose. Scand. J. WorkEnviron. Health, 2001; 27: 219-226
Google Scholar - 19. Hecht S.S., Carmella S.G., Foiles P.G., Murphy S.E., Peterson L.A.:Tobacco-specific nitrosamine adducts: studies in laboratory animalsand humans. Environ. Health Perspect., 1993; 99: 57-63
Google Scholar - 20. Hoffmann D., Hecht S.S.: Advances in tobacco carcinogenesis.Handbook of Experimental Pharmacology, 1990; 94: 63-102
Google Scholar - 21. Honda H., Fujii K., Yamaguchi T., Ikeda N., Nishiyama N., KasamatsuT.: Glycidol exposure evaluation of humans who have ingesteddiacylglycerol oil containing glycidol fatty acid esters using hemoglobinadducts. Food Chem. Toxicol., 2012; 50: 4163-4168
Google Scholar - 22. Honda H., Onishi M., Fujii K., Ikeda N., Yamaguchi T., FujimoriT., Nishiyama N., Kasamatsu T.: Measurement of glycidol hemoglobinadducts in humans who ingest edible oil containing smallamounts of glycidol fatty acid esters. Food Chem. Toxicol., 2011;49: 2536-2540
Google Scholar - 23. Honda H., Törnqvist M., Nishiyama N., Kasamatsu T.: Characterizationof glycidol-hemoglobin adducts as biomarkers of exposureand in vivo dose. Toxicol. Appl. Pharmacol., 2014; 275: 213-220
Google Scholar - 24. Indulski J.A.: Biomarkery i ocena ryzyka. Pojęcia i zasady. Kryteriazdrowotne środowiska, tom 155, Instytut Medycyny Pracy,Łódź 1995
Google Scholar - 25. Johanson G., Ernstgård L., Gullstrand E., Löf A., Osterman-GolkarS., Williams C.C., Sumner S.C.: Styrene oxide in blood, hemoglobinadducts, and urinary metabolites in human volunteers exposedto 13C8-styrene vapors. Toxicol. Appl. Pharmacol., 2000; 168: 36-49
Google Scholar - 26. Kapka-Skrzypczak L., Cyranka M., Kruszewski M., Turski W.A.:Środki ochrony roślin a zdrowie rolników – Biomarkery oraz moż-liwości ich wykorzystania do oceny ekspozycji na pestycydy. MedycynaOgólna i Nauki o Zdrowiu (MONZ), 2011; 17: 28-32
Google Scholar - 27. Konieczko K., Pałaszewska-Tkacz A., Czerczak S.: Czynniki chemiczneo działaniu rakotwórczym lub mutagennym w środowiskupracy w Polsce w latach 2008-2010. Med. Pr., 2013; 64: 181-192
Google Scholar - 28. Licznerska B., Baer-Dubowska W.: Intrakrynologia estrogenówa terapia i chemioprewencja w nowotworach piersi. Postępy Hig.Med. Dośw., 2010; 64: 220-230
Google Scholar - 29. Lin C., Hsieh W.C., Chen D.R., Kuo S.J., Yu W.F, Hu S.W., Sue H.J.,Ko M.H., Juan C.H., Chung K.S., Lin P.H.: Hemoglobin adducts as biomarkersof estrogen homeostasis: Elevation of estrogenquinonesas a risk factor for developing breast cancer in Taiwanese Women.Toxicol. Lett., 2014; 225: 386-391
Google Scholar - 30. Mayer J., Warburton D., Jeffrey A.M., Pero R., Walles S., AndrewsL., Toor M., Latriano L., Wazneh L., Tang D., Tsai W.Y., Kuroda M.,Perera F.: Biologic markers in ethylene oxide-exposed workers andcontrols. Mutat Res., 1991; 248: 163-176
Google Scholar - 31. Mielżyńska D.: Narażenie na substancje o działaniu kacerogennym– biomarkery narażenia: Instytut Medycyny Pracy i ZdrowiaŚrodowiskowego, Sosnowiec. http://www.ietu.katowice.pl/wpr/Dokumenty/Materialy_szkoleniowe/Szkol2/09-mielzynska.pdf(27.05.2014)
Google Scholar - 32. Moorman W.J., Reutman S.S., Shaw P.B., Blade L.M., Marlow D.,Vesper H., Clark J.C., Schrader S.M.: Occupational exposure to acrylamidein closed system production plants: air levels and biomonitoring.J. Toxicol. Environ. Health A, 2012; 75: 100-111
Google Scholar - 33. Murata M., Kawanishi S.: Mechanisms of oxidative DNA damageinduced by carcinogenic arylamines. Front. Biosci., 2011; 16:1132-1143
Google Scholar - 34. Myers S.R., Pinorini M.T.: Hemoglobin adducts of benzo[a]pyrenein tobacco smokers: characterization of benzo[a]pyrene adductsin maternal and fetal blood samples. Polycyclic Aromatic Compounds,2000; 21: 167-186
Google Scholar - 35. Piekoszewski W., Florek E.: Markery narażenia na dym tytoniowy.Katedra i Zakład Toksykologii Akademia Medyczna im. KarolaMarcinkowskiego, Poznań 2001
Google Scholar - 36. Pieri M., Miraglia N., Genovese G., Guadagni R., Acampora A.,Sannolo N.: New perspectives in hemoglobin adducts analysis: selectivedigestion with Calpain I. Prevent Res., 2014; 3: 121-130
Google Scholar - 37. Pingot D., Pyrzanowski K., Michałowicz J., Bukowska B.: Toksycznośćakrylamidu i jego metabolitu glicydamidu. Medycyna Pracy,2013; 64: 259-271
Google Scholar - 38. Pyrzanowski K., Michałowicz J., Pingot D., Bukowska B.: Charakterystykametod biologicznych, chemicznych i fizycznych ograniczającychobecność akrylamidu w żywności. Bromat. Chem. Toksykol.,2013; 46: 216-224
Google Scholar - 39. Reisser M., Schmidt B.F., Brown W.E.: Synthesis, characterizationand solvolysis of mono- and bis-S-(glutathionyl) adducts ofmethylene-bis-(phenylisocyanate) (MDI). Chem. Res. Toxicol., 2002;15: 1235-1241
Google Scholar - 40. Robert A., Ducos P., Francin J.M., Marsan P.: Biological monitoringof workers exposed to 4,4’-methylenediphenyl diisocyanate(MDI) in 19 French polyurethane industries. Int. Arch. Occup. Environ.Health, 2007; 80: 412-422
Google Scholar - 41. Scherer G., Frank S., Riedel K., Meger-Kossien I., Renner T.: Biomonitoringof exposure to polycyclic aromatic hydrocarbons of nonoccupationallyexposed persons. Cancer Epidemiol., BiomarkersPrev., 2000; 9: 373-380
Google Scholar - 42. Shin A., Kang D., Choi J.Y., Lee K.M., Park S.K., Noh D.Y., AhnS.H., Yoo K.Y.: Cytochrome P450 1A1 (CYP1A1) polymorphisms and breastcancer risk in Korean women. Exp. Mol. Med., 2007; 39: 361-366
Google Scholar - 43. Sitarek K.: Naftalen. Dokumentacja dopuszczalnych wielkościnarażenia zawodowego. Podstawy i Metody Oceny Środowiska Pracy,2006; 2: 143-158
Google Scholar - 44. Sitarek K., Szymczak W.: Epoksyetan. Dokumentacja dopuszczalnychwielkości narażenia zawodowego. Podstawy i Metody OcenyŚrodowiska Pracy, 2010; 2: 79-107
Google Scholar - 45. Świerczyńska-Machura D., Pałczyński C.: Wybrane patogenetycznei kliniczne aspekty astmy wywołanej ekspozycja zawodowana diizocyjaniany. Med. Pr., 2012; 63: 97-103
Google Scholar - 46. Tao L., Day B.W., Hu B., Xiang Y.B., Wang R., Stern M.C., Gago-DominguezM., Cortessis V.K., Conti D.V., Van Den Berg D.,Pike M.C., Gao Y.T., Yu M.C., Yuan J.M.: Elevated 4-aminobiphenyland 2,6-dimethylaniline hemoglobin adducts and increasedrisk of bladder cancer among lifelong nonsmokers – the Shanghaibladder cancer study. Cancer Epidemiol. Biomarkers Prev.,2013; 22: 937-945
Google Scholar - 47. Tareke E., Lyn-Cook B., Robinson B., Ali S.: Acrylamide: a dietarycarcinogen formed in vivo? J. Agric. Food Chem., 2008; 56: 6020-6023
Google Scholar - 48. Tőrnqvist M., Paulsson B., Osterman-Golkar S.: Biomonitoringof acrylamide. W: Acrylamide and other hazardous compounds inheat-treated foods, red.: K. Skog , J. Alexander. Woodhead PublishingLimited, Cambridge 2006; 163-194
Google Scholar - 49. Tőrnqvist M., Kautiainen A.: Adducted proteins for identificationof endogenous electrophiles. Environ. Health Perspect., 1993;99: 39-44
Google Scholar - 50. Trzeciak A.: Uszkodzenia DNA w komórkach ssaków. PostępyBiologii Komórki, 2001; 28: 407-429
Google Scholar - 51. US EPA, 2010. Toxicological review of acrylamide. In Supportof Summary Information on the Integrated Risk Information System(IRIS)
Google Scholar - 52. Vikström A.C., Abramsson-Zetterberg L., Naruszewicz M., AthanassiadisI.: Granath F.N., Törnqvist M.: In vivo doses of acrylamideand glycidamide in humans after intake of acrylamide-rich food.Toxicol. Sci., 2011; 119: 41-49
Google Scholar - 53. Vikström A.C., Warholm M., Paulsson B., Axmon A., Wirfält E.,Törnqvist M.: Hemoglobin adducts as a measure of variations inexposure to acrylamide in food and comparison to questionnairedata. Food Chem. Toxicol., 2012; 50: 2531-2539
Google Scholar - 54. Waidyanatha S., Rappaport S.M.: Hemoglobin and albumin adductsof naphthalene-1,2-oxide, 1,2-naphthoquinone and 1,4-naphthoquinone in Swiss Webster mice. Chem. Biol. Interact., 2008;172: 105-114
Google Scholar - 55. Walker V.E., Fennell, T.R. Upton P.B., MacNeela J.R., SwenbergJ.A.: Molecular dosimetry of DNA and hemoglobin adducts in miceand rats exposed to ethylene oxide. Environ. Health Perspect., 1993;99: 11-17
Google Scholar - 56. Xie J., Terry K. L., Poole E.M., Wilson K.M., Rosner B.A., WillettW.C., Vesper H.W., Tworoger S.S.: Acrylamide hemoglobin adductlevels and ovarian cancer risk: a nested case-control study. CancerEpidemiol. Biomarkers Prev., 2013; 22: 653-660
Google Scholar - 57. Zahid M., Kohli E., Saeed M., Rogan E., Cavalieri E.: The greaterreactivity of estradiol-3,4-quinone vs estradiol-2,3-quinonewith DNA in the formation of depurinating adducts: implicationsfor tumor-initiating activity. Chem. Res. Toxicol., 2006; 19: 164-172
Google Scholar - 58. Żyżelewicz D., Nebesny E., Oracz J.: Akrylamid – powstawanie,właściwości fizykochemiczne i biologiczne. Bromat. Chem. Toksykol.,2010; 43: 415-427
Google Scholar