Clathrin-independent endocytosis – role in disease processes and pharmaceutical aspects
Bogusława Konopska 1 , Krzysztof Gołąb 1 , Jakub Gburek 1Abstract
Clathrin-independent endocytosis (CIE) is the process of cellular uptake of various particles, including pathogens, without the coat protein clathrin. It occurs commonly in mammalian cells and is regulated by protein-lipid composition of the cell membranes. Understanding of different routes of CIE allowed the identification of novel molecular mechanisms involved in uptake of molecules and cell signaling and explained their role in pathological processes. In this paper we characterize diseases associated with genetic defects of proteins involved in CIE and the relationship between expression of these proteins and pathology of atherosclerosis, hypercholesterolemia, diabetes and neoplasia. The role of CIE in bacterial, viral, fungal, and protozoal infections is also presented. In the second part we describe the plausible use of clathrin-independent endocytosis in increasing drug absorption, their penetration through biological membranes, and the design of specific nanocarriers for selective cell uptake.
References
- 1. Aït-Slimane T., Galmes R., Trugnan G., Maurice M.: Basolateralinternalization of GPI-anchored proteins occurs via a clathrin-independentflotillin-dependent pathway in polarized hepatic cells.Mol. Biol. Cell., 2009; 20: 3792-3800
Google Scholar - 2. Ba Q., Zhou N., Duan J., Chen T., Hao M., Yang X., Li J., Yin J., ChuR., Wang H.: Dihydroartemisinin exerts its anticancer activity troughdepleting cellular iron via transferrin receptor-1. PLoS One,2012; 7: e42703
Google Scholar - 3. Briand N., Dugail I., Le Lay S.: Cavin proteins: new players in thecaveolae field. Biochimie, 2011; 93: 71-77
Google Scholar - 4. Canton I., Battaglia G.: Endocytosis at the nanoscale. Chem. Soc.Rev., 2012; 41: 2718-2739
Google Scholar - 5. Chang S.H., Feng D., Nagy J.A., Sciuto T.E., Dvorak A.M., DvorakH.F.: Vascular permeability and pathological angiogenesis in caveolin-1-nullmice. Am. J. Pathol., 2009; 175: 1768-1776
Google Scholar - 6. Chaudhary N., Gomez G.A., Howes M.T., Lo H.P., McMahon K.A.,Rae J.A., Schieber N.L., Hill M.M., Gaus C., Yap A.S., Parton R.G.: Endocyticcrosstalk: cavins, caveolins, and caveolae regulate clathrin–independent endocytosis. PLoS Biol., 2014; 12: e1001832
Google Scholar - 7. Chi P.I., Liu H.J.: Molecular signaling and cellular pathways forvirus entry. ISRN Virology, 2013, 2013; ID 306595
Google Scholar - 8. Collins R.F., Touret N., Kuwata H., Tandon N.N., Grinstein S., TrimbleW.S.: Uptake of oxidized low density lipoprotein by CD36 occursby an actin-dependent pathway distinct from macropinocytosis. J.Biol. Chem., 2009; 284: 30288-30297
Google Scholar - 9. Coppens I., Sinai A.P., Joiner K.A.: Toxoplasma gondii exploitshost low density lipoprotein receptor-mediated endocytosis forcholesterol acquisition. J. Cell Biol., 2000; 149: 167-180
Google Scholar - 10. Damm E-M., Pelkmans L., Kartenbeck J., Mezzacasa A., KurzchaliaT., Helenius A.: Clathrin- and caveolin-1-independent endocytosis:entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol.,2005; 168: 477-488
Google Scholar - 11. de Vries E., Tscherne D.M., Wienholts M.J., Cobos-Jiménez V.,Scholte F., García-Sastre A., Rottier P.J., de Haan C.A.: Dissection ofthe influenza A virus endocytic routes reveals macropinocytosisas an alternative entry pathway. PLoS Pathog., 2011; 7: e1001329
Google Scholar - 12. Delmas D., Aires V., Colin D.J., Limagne E., Scagliarini A., CotteA.K., Ghiringhelli F.: Importance of lipid microdomains, rafts, inabsorption, delivery, and biological effects of resveratrol. Ann. N.Y.Acad. Sci., 2013; 1290: 90-97
Google Scholar - 13. DeWever J., Frerart F., Bouzin C., Baudelet C., Ansiaux R., SonveauxP., Gallez B., Dessy C., Feron O.: Caveolin-1 is critical for the maturationof tumour blood vessels through the regulation of both endothelial tubeformation and mural cell recruitment. Am. J. Pathol., 2007; 171: 1619-1628
Google Scholar - 14. Doherty G.J., McMahon H.T.: Mechanisms of endocytosis. Annu.Rev. Biochem., 2009; 78: 857-902
Google Scholar - 15. Duncan R., Richardson S.C.: Endocytosis and intracellular traffickingas gateways for nanomedicine delivery: opportunities andchallenges. Mol. Pharm., 2012; 9: 2380-2402 16 Eierhoff T., Stechmann B., Rӧmer W.: Pathogen and toxin entry- how pathogens and toxins induce and harness endocytoticmechanisms. W: Molecular regulation of endocytosis, Wyd. BrianCeresa, 2012, 251-276
Google Scholar - 16. by actin-dependent, clathrin- and lipid raft-independent endocytosis.PLoS Pathog., 2012; 8: e1002657
Google Scholar - 17. Elsadek B., Kratz F.: Impact of albumin of drug delivery – Newapplications on the horizon. J. Control. Release, 2012; 157: 4-28
Google Scholar - 18. Ewers H., Römer W., Smith A.E., Bacia K., Dmitrieff S., Chai W.,Mancini R., Kartenbeck J., Chambon V., Berland L., Oppenheim A.,Schwarzmann G., Feizi T., Schwille P., Sens P., Helenius A., JohannesL.: GM1 structure determines SV40-induced membrane invaginationand infection. Nat. Cell Biol., 2010; 12: 11-18; sup 1-12
Google Scholar - 19. Gadjeva M., Paradis-Bleau C., Priebe G.P., Fichorova R., Pier G.B.:Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J.Immunol., 2010; 184: 296-302
Google Scholar - 20. Galbiati F., Volonte D., Chu J.B., Li M., Fine S.W., Fu M., BermudezJ., Pedemonte M., Weidenheim K.M., Pestell R.G., Minetti C., LisantiM.P.: Transgenic overexpression of caveolin-3 in skeletal muscle fibresinduces a Duchenne-like muscular dystrophy phenotype. Proc.Natl. Acad. Sci. USA, 2000; 97: 9689-9694
Google Scholar - 21. Gallicchio M.A., Bach L.A.: Uptake of advanced glycation endproducts by proximal tubule epithelial cells via macropinocytosis.Biochim. Biophys. Acta, 2013; 1833: 2922-2932
Google Scholar - 22. Ham H., Sreelatha A., Orth K.: Manipulation of host membranesby bacterial effectors. Nat. Rev. Microbiol., 2011; 9: 635-646
Google Scholar - 23. Horonchik L., Wessling-Resnick M.: The small-molecule irontransport inhibitor ferristatin/NSC306711 promotes degradation ofthe transferrin receptor. Chem. Biol., 2008; 15: 647-653
Google Scholar - 24. Howes M.T., Mayor S., Parton R.G.: Molecules, mechanisms, andcellular roles of clathrin-independent endocytosis. Curr. Opin. CellBiol., 2010; 22: 519-527
Google Scholar - 25. Hsu J., Rappaport J., Muro S.: Specific binding, uptake, and transportof ICAM-1-targeted nanocarriers across endothelial and subendothelialcell components of the blood-brain barrier. Pharm. Res.,2014; 31: 1855-1866
Google Scholar - 26. Jones A.R, Shusta E.V.: Blood-brain barrier transport of therapeuticsvia receptor mediation. Pharm. Res., 2007; 24: 1759-1771
Google Scholar - 27. Kastl L., Sasse D., Wulf V., Hartmann R., Mircheski J., Ranke C.,Carregal-Romero S., Martínez-López J.A., Fernández-Chacón R., ParakW.J., Elsasser H.P., Rivera Gil P.: Multiple internalization pathwaysof polyelectrolyte multilayer capsules into mammalian cells.ACS Nano, 2013; 7: 6605-6618
Google Scholar - 28. Konopska B., Gołąb K., Gburek J.: Endocytoza niezależna od klatryny– co wiemy, co przypuszczamy, co pozostaje zagadką. PostępyBiol. Kom., 2014; 41: 265-284
Google Scholar - 29. Korhonen J.T., Puolakkainen M., Häivälä R., Penttilä T., HaveriA., Markkula E., Lahesmaa R.: Flotillin-1 (Reggie-2) contributes toChlamydia pneumoniae growth and is associated with bacterial inclusion.Infect. Immun., 2012; 80: 1072-1078
Google Scholar - 30. Korhonen J.T., Puolakkainen M., Haveri A., Tammiruusu A., SarvasM., Lahesmaa R.: Chlamydia pneumoniae entry into epithelial cells byclathrin-independent endocytosis. Microb. Pathog., 2012; 52: 157-164
Google Scholar - 31. Kuliczkowska-Płaksej J., Bednarek-Tupikowska G., Płaksej R.,Filus A.: Receptor CD36 – występowanie, regulacja ekspresji orazrola w patogenezie miażdżycy. Część I. Postępy Hig. Med. Dośw.,2006; 60: 142-151
Google Scholar - 32. Kumari S., Mg S., Mayor S.: Endocytosis unplugged: multipleways to enter the cell. Cell Res., 2010; 20: 256-275
Google Scholar - 33. Laurenzana A., Fibbi G., Chilla A., Margheri G., Del Rosso T., RovidaE., Del Rosso M., Margheri F.: Lipid rafts: integrated platformsfor vascular organization offering therapeutic opportunities. Cell.Mol. Life Sci., 2015; 72: 1537-1557
Google Scholar - 34. Lin, M.I., Yu J., Murata T., Sessa W.C.: Caveolin-1-deficient micehave increased tumor microvascular permeability, angiogenesis, andgrowth. Cancer Res., 2007; 67: 2849-2856
Google Scholar - 35. Machado F.S., Rodriguez N.E., Adesse D., Garzoni L.R., Esper L.,Lisanti M.P., Burk R.D., Albanese C., Van Doorslaer K., Weiss L.M.,Nagajyoyhi F., Nosanchuk J.D., Wilson M.E., Tanowitz H.B.: Recentdevelopments in the interactions between caveolin and pathogens.Adv. Exp. Med. Biol., 2012; 729: 65-82
Google Scholar - 36. Maldonado-Báez L., Williamson C., Donaldson J.G.: Clathrin-independentendocytosis: a cargo-centric view. Exp. Cell Res., 2013;319: 2759-2769
Google Scholar - 37. Malik A.B.: Targeting endothelial cell surface receptors: novelmechanisms of microvascular endothelial barrier transport. J. Med.Sci., 2009; 2: 13-17
Google Scholar - 38. Matsuda M., Suzuki R., Kataoka C, Watashi K., Aizaki H., KatoN., Matsuura Y., Suzuki T., Wakita T.: Alternative endocytosis pathwayfor productive entry of hepatitis C virus. J. Gen. Virol., 2014;95: 2658-2667
Google Scholar - 39. Maza P.K., Straus A.H., Toledo M.S., Takahashi H.K., Suzuki E.:Interaction of epithelial cell membrane rafts with Paracoccidioidesbrasiliensis leads to fungal adhesion and Src-family kinase activation.Microbes Infect., 2008; 10: 540-547
Google Scholar - 40. Mercer J., Helenius A.: Virus entry by macropinocytosis. Nat.Cell Biol., 2009; 11: 510-520
Google Scholar - 41. Michel V., Bakovic M.: Lipid rafts in health and disease. Biol.Cell, 2007; 99: 129-140
Google Scholar - 42. Mosesson Y., Mills G.B., Yarden Y.: Derailed endocytosis: an emergingfeature of cancer. Nat. Rev. Cancer, 2008; 8: 835-850
Google Scholar - 43. Muro S., Wiewrodt R., Thomas A., Koniaris L., Albelda S.M., MuzykantovV.R., Koval M.: A novel endocytic pathway induced by clusteringendothelial ICAM-1 or PECAM-1. J. Cell Sci., 2003; 116: 1599-1609
Google Scholar - 44. Orth J.D., McNiven M.A.: Get off my back! Rapid receptor internalizationthrough circular dorsal ruffles. Cancer Res., 2006; 66:11094-11096
Google Scholar - 45. Otto G.P., Nichols B.J.: The roles of flotillin microdomains – endocytosisand beyond. J. Cell Sci., 2011; 124: 3933-3940
Google Scholar - 46. Parton R.G., del Pozo M.A.: Caveolae as plasma membrane sensors,protectors and organizers. Nat. Rev. Mol. Cell Biol., 2013; 14:98-112
Google Scholar - 47. Patel H.H., Murray F., Insel P.A.: Caveolae as organizers of pharmacologicallyrelevant signal transduction molecules. Annu. Rev.Pharmacol. Toxicol., 2008; 48: 359-391
Google Scholar - 48. Payne C.K, Jones S.A., Chen C., Zhuang X.: Internalization andtrafficking of cell surface proteoglycans and proteoglycan-bindingligands. Traffic, 2007; 8: 389-401
Google Scholar - 49. Plummer E.M., Manchester M.: Endocytic uptake pathways utilizedby CPMV nanoparticles. Mol. Pharm., 2013; 10: 26-32
Google Scholar - 50. Premont R.T., Schmalzigaug R.: Metastasis: wherefore arf thou?Curr. Biol., 2009; 19: R1036-R1038
Google Scholar - 51. Radin N.S.: Preventing the binding of pathogens to the hostby controlling sphingolipid metabolism. Microbes Infect., 2006; 8:938-945
Google Scholar - 52. Rahman A., Sward K.: The role of caveolin-1 in cardiovascularregulation. Acta Physiol., 2009; 195: 231-245
Google Scholar - 53. Rajab A., Straub V., McCann L.J., Seelow D., Varon R., Barresi R.,Schulze A., Lucke B., Lutzkendorf S., Karbasiyan M., Bachmann S.,Spuler S., Schuelke M.: Fatal cardiac arrhythmia and long-QT syndromein a new form of congenital generalized lipodystrophy withmuscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet.,2010; 6: e1000874
Google Scholar - 54. Rajendran L., Knölker H.J., Simons K.: Subcellular targeting strategiesfor drug design and delivery. Nat. Rev. Drug Discov., 2010; 9: 29-42
Google Scholar - 55. Rajendran L., Udayar V., Goodger Z.V.: Lipid-anchored drugs fordelivery into subcellular compartments. Trends Pharmacol. Sci.,2012; 33: 215-222
Google Scholar - 56. Roth D.M., Patel H.H.: Role of caveolae in cardiac protection.Pediatr. Cardiol., 2011; 32: 329-333
Google Scholar - 57. Sahay G., Alakhova D., Kabanov A.V.: Endocytosis of nanomedicines.J. Control. Release, 2010; 145: 182-195
Google Scholar - 58. Schelhaas M., Shah B., Holzer M., Blattmann P., Kühling L., DayP.M., Schiller J.T., Helenius A.: Entry of human papillomavirus type
Google Scholar - 59. Schmees C., Villasenor R., Zheng W., Ma H., Zerial M., HeldinC.H., Hellberg C.: Macropinocytosis of the PDGF β-receptor promotesfibroblast transformation by H-RasG12V. Mol. Biol. Cell, 2012;23: 2571-2582
Google Scholar - 60. Schweitzer J.K., Sedgwick A.E., D’Souza-Schorey C:. ARF6-mediatedendocytic recycling impacts cell movement, cell division andlipid homeostasis. Semin. Cell Dev. Biol., 2011; 22: 39-47
Google Scholar - 61. Schwencke C., Braun-Dullaeus R.C., Wunderlich C., Strasser R.H.:Caveolae and caveolin in transmembrane signaling – implicationsfor human disease. Cardiovasc. Res., 2006; 70: 42-49
Google Scholar - 62. Scotti E., Calamai M., Goulbourne C.N., Zhang L., Hong C., LinR.R., Choi J., Pilch P.F., Fong L.G., Zou P., Ting A.Y., Pavone F.S., YoungS.G., Tontonoz P.: IDOL stimulates clathrin-independent endocytosisand multivesicular body-mediated lysosomal degradation of thelow-density lipoprotein receptor. Mol. Cell. Biol., 2013; 33: 1503-1514
Google Scholar - 63. Sellers S.L., Trane A.E., Bernatchez P.N.: Caveolin as a potentialdrug target for cardiovascular protection. Front. Physiol., 2012; 3: 280
Google Scholar - 64. Simons K., Sampaio J.L.: Membrane organization and lipid rafts.Cold Spring Harb. Perspect. Biol., 2011; 3: a004697
Google Scholar - 65. Sotgia F., Martinez-Outschoorn U.E., Howell A., Pestell R.G., PavlidesS., Lisanti M.P.: Caveolin-1 and cancer metabolism in the tumormicroenvironment: markers, models, and mechanisms. Annu.Rev. Pathol., 2012; 7: 423-467
Google Scholar - 66. Sowa G.: Caveolae, caveolins, cavins, and endothelial cell function:new insights. Front. Physiol., 2012; 2: 120
Google Scholar - 67. Srikanth C.V., Mercado-Lubo R., Hallstrom K., McCormick B.A.:Salmonella effector proteins and host-cell responses. Cell. Mol. LifeSci., 2011, 68: 3687-3697
Google Scholar - 68. Tagawa M., Ueyama T., Ogata T., Takehara N., Nakajima N., IsodonoK., Asada S., Takahashi T., Matsubara H., Oh H.: MURC, a muscle-restrictedcoiled-coil protein, is involved in the regulation of skeletalmyogenesis. Am. J. Physiol. Cell Physiol., 2008; 295: C490-C498
Google Scholar - 69. Tiruppathi C., Song W., Bergenfeldt M., Sass P., Malik A.B.: Gp60activation mediates albumin transcytosis in endothelial cells by tyrosinekinase-dependent pathway. J. Biol. Chem., 1997; 272: 25968-25975
Google Scholar - 70. Tsutsumi Y.M., Horikawa Y.T., Jennings M.M., Kidd M.W., NiesmanI.R., Yokoyama U., Head B.P., Hagiwara Y., Ishikawa Y., Miyanohara A., Patel P.M., Insel P.A., Patel H.H., Roth D.M.: Cardiac–specific overexpression of caveolin-3 induces endogenous cardiacprotection by mimicking ischemic preconditioning. Circulation,2008; 118: 1979-1988
Google Scholar - 71. Williams J.J., Palmer T.M.: Cavin-1: caveolae-dependent signallingand cardiovascular disease. Biochem. Soc. Trans., 2014; 42: 284-288
Google Scholar - 72. Wojewódzka U., Gajkowska B., Jurkiewicz J., Gniadecki R.: Mikrodomeny(rafty) lipidowe w błonach komórkowych: struktura,fizjologia i znaczenie w procesach patologicznych. Postępy Biol.Kom., 2005, 32, 293-309
Google Scholar - 73. Xia F., Li R., Wang C., Yang S., Tian L., Dong H., Pei C., He S., JiangP., Cheng H., Fang S., Li H., Xu H.: IRGM1 regulates oxidized LDLuptake by macrophage via actin-dependent receptor internalizationduring atherosclerosis. Sci. Rep., 2013; 3: 1867
Google Scholar - 74. Yang H.L., Chen W.Q., Cao X., Worschech A., Du L.F., Fang W.Y.,Xu Y.Y., Stroncek D.F., Li X., Wang E., Marincola F.M.: Caveolin-1 enhancesresveratrol-mediated cytotoxicity and transport in a hepatocellularcarcinoma model. J. Transl. Med., 2009; 7: 22
Google Scholar - 75. Yoon D.J., Liu C.T., Quinlan D.S., Nafisi P.M., Kamei D.T.: Intracellulartrafficking considerations in the development of naturalligand-drug molecular conjugates for cancer. Ann. Biomed. Eng.,2011; 39: 1235-1251
Google Scholar - 76. Zhou J.X., Liao D., Zhang S., Cheng N., He H.Q., Ye R.D.: ChemerinC9 peptide induces receptor internalization through a clathrin-independentpathway. Acta Pharmacol. Sin., 2014; 35: 653-663
Google Scholar