Heat shock protein HSP60 and the perspective for future using as vaccine antigens
Joanna Bajzert 1 , Tadeusz Stefaniak 1Abstract
Heat Shock Proteins (HSPs) are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte) and the innate (macrophages, monocytes, dendritic cells) immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.
References
- 1. Asea A., Kraeft S.K., Kurt-Jones E.A., Stevenson M.A., Chen L.B.,Finberg R.W., Koo G.C., Calderwood S.K.: Hsp70 stimulates cytokineproduction through a CD14-dependent pathway, demonstrating itsdual role as a chaperone and cytokine. Nat. Med., 2000; 6: 435-442
Google Scholar - 2. Bai Y., Li L.R., Wang J.D., Chen Y., Jin J.F., Zhang Z.S., Zhou D.Y.,Zhang Y.L.: Expression of Helicobacter pylori Hsp60 protein and itsimmunogenicity. World. J. Gastroenterol., 2003; 9: 2711-2714
Google Scholar - 3. Bansal A., Paliwal P.K., Sagi S.S., Sairam M.: Effect of adjuvants onimmune response and protective immunity elicited by recombinantHsp60 (GroEL) of Salmonella typhi against S. typhi infection. Mol. Cell.Biochem., 2010; 337: 213-221
Google Scholar - 4. Bartlett A.I., Radford S.E.: An expanding arsenal of experimentalmethods yields an explosion of insights into protein folding mechanisms.Nat. Struct. Mol. Biol., 2009; 16: 582-588
Google Scholar - 5. Benčina D., Slavec B., Narat M.: Antibody response to GroEL variesin patients with acute Mycoplasma pneumoniae infection. FEMSImmunol. Med. Microbiol., 2005; 43: 399-406
Google Scholar - 6. Benkirane R., Gottschalk M.G., Dubreuil J.D.: Identification ofa Streptococcus suis 60-kDa heat-shock protein using western blotting.FEMS Microbiol. Lett., 1997; 153: 379-385
Google Scholar - 7. Bharadwaj S., Ali A., Ovsenek N.: Multiple components of theHSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol., 1999; 19: 8033-8041
Google Scholar - 8. Biswas C., Sriram U., Ciric B., Ostrovsky O., Gallucci S., ArgonY.: The N-terminal fragment of grp94 is sufficient for peptide presentationvia professional antigen-presenting cells. Int. Immunol.,2006; 18: 1147-1157
Google Scholar - 9. Blander S.J., Horwitz M.A.: Major cytoplasmic membrane proteinof Legionella pneumophila, a genus common antigen and member ofthe hsp60 family of heat shock proteins, induces protective immunityin a guinea pig model of Legionnaires’ disease. J. Clin. Invest.,1993; 91: 717-723
Google Scholar - 10. Bolhassani A., Rafati S.: Heat-shock proteins as powerful weaponsin vaccine development. Expert Rev. Vaccines, 2008; 7: 1185-1199
Google Scholar - 11. Bolhassani A., Zahedifard F., Taghikhani M., Rafati S.: Enhancedimmunogenicity of HPV16E7 accompanied by Gp96 as an adjuvantin two vaccination strategies. Vaccine, 2008; 26: 3362-3370
Google Scholar - 12. Bonato V.L., Lima V.M., Tascon R.E., Lowrie D.B., Silva C.L.: Identificationand characterization of protective T cells in hsp65 DNA–vaccinated and Mycobacterium tuberculosis-infected mice. Infect.Immun., 1998; 66: 169-175
Google Scholar - 13. Burkholder K.M., Bhunia A.K.: Listeria monocytogenes uses Listeriaadhesion protein (LAP) to promote bacterial transepithelialtranslocation and induces expression of LAP receptor Hsp60. Infect.Immun., 2010; 78: 5026-5073
Google Scholar - 14. Chen D.X., Su Y.R., Shao G.Z., Qian Z.C.: Purification of heat shockprotein 70-associated tumor peptides and its antitumor immunityon hepatoma in mice. World J. Gastroenterol., 2004; 10: 361-365
Google Scholar - 15. Chen W., Syldath U., Bellmann K., Burkart V., Kolb H.: Human60-kDa heat-shock protein: a danger signal to the innate immunesystem. J. Immunol., 1999; 162: 3212-3219
Google Scholar - 16. Cohen – Sfady M., Nussbaum G., Pevsner-Fischer M., Mor F.,Carmi P., Zanin-Zhorov A., Lider O., Cohen I.R.: Heat shock protein 60 activates B cells via TLR4-MyD88 pathway. J. Immunol., 2005;175: 3594-3602
Google Scholar - 17. Davey M.E., O’toole G.A.: Microbial biofilms: from ecology tomolecular genetics. Microbiol. Mol. Biol. Rev., 2000; 64: 847-867
Google Scholar - 18. de Bastos Ascenço Soares R., Gomez F.J., de Almeida Soares C.M.,Deepe G.S.Jr.: Vaccination with heat shock protein 60 induces a protectiveimmune response against experimental Paracoccidioides brasiliensispulmonary infection. Infect. Immun., 2008; 76: 4214-4221
Google Scholar - 19. de Graaf R., Kloppenburg G., Kitslaar P.J., Bruggeman C.A., StassenF.: Human heat shock protein 60 stimulates vascular smooth musclecell proliferation trough Toll-like receptors 2 and 4. MicrobesInfect., 2006; 8: 1859-1865
Google Scholar - 20. Deepe G.S.Jr., Gibbons R.S.: Cellular and molecular regulation ofvaccination with heat shock protein 60 from Histoplasma capsulatum.Infect. Immun., 2002; 70: 3759-3767
Google Scholar - 21. Dobson C.M., Karplus M.: The fundamentals of protein folding:Bringing together theory and experiment. Curr. Opin. Struct. Biol.,1999; 9: 92-101
Google Scholar - 22. Douglas N.R., Reissmann S., Zhang J., Chen B., Jakana J., KumarR., Chiu W., Frydman J.: Dual action of ATP hydrolysis couples lidclosure to substrate release into the group II chaperonin chamber.Cell, 2011; 144: 240-252
Google Scholar - 23. Dybdahl B., Wahba A., Lien E., Flo T.H., Waage A., Qureshi N.,Sellevold O.F., Espevik T., Sundan A.: Inflammatory response afteropen heart surgery: release of heat-shock protein 70 and signalingthrough toll-like receptor-4. Circulation, 2002; 105: 685-690
Google Scholar - 24. Dziewanowska K., Carson A.R., Patti J.M., Deobald C.F., BaylesK.W., Bohach G.A.: Staphylococcal fibronectin binding protein interactswith heat shock protein 60 and integrins: role in internalizationby epithelial cells. Infect. Immun., 2000; 68: 6321-6328
Google Scholar - 25. Ensgraber M., Loos M.: A 66-kilodalton heat shock protein ofSalmonella typhimurium is responsible for binding of the bacteriumto intestinal mucus. Infect. Immun., 1992; 60: 3072-3078
Google Scholar - 26. Eton O., Ross M.I., East M.J., Mansfield P.F., Papadopoulos N.,Ellerhorst J.A., Bedikian A.Y., Lee J.E.: Autologous tumor-derivedheat-shock protein peptide complex-96 (HSPPC-96) in patients withmetastatic melanoma. J. Transl. Med., 2010; 8: 9
Google Scholar - 27. Ferrarini M., Heltai S., Zocchi M.R., Rugarli C.: Unusual expressionand localization of heat-shock proteins in human tumor cells.Int. J. Cancer, 1992; 51: 613-619
Google Scholar - 28. Fink A.L.: Chaperone-mediated protein folding. Physiol. Rev.,1999; 79: 425-449
Google Scholar - 29. Flohé S.B., Brüggemann J., Lendemans S., Nikulina M., MeierhoffG., Flohé S., Kolb H.: Human heat shock protein 60 induces maturationof dendritic cells versus a Th1-promoting phenotype. J. Immunol.,2003; 170: 2340-2348
Google Scholar - 30. Frisk A., Ison C.A., Lagergard T.: GroEL heat shock protein of Haemophilusducreyi: association with cell surface and capacity to bindto eukaryotic cells. Infect. Immun., 1998; 66: 1252-1257
Google Scholar - 31. Frydman J., Nimmesgern E., Erdjument-Bromage H., Wall J.S.,Tempst P., Hartl F.U.: Function in protein folding of TRiC, a cytosolicring complex containing TCP-1 and structurally related subunits.EMBO J., 1992; 11: 4767-4778
Google Scholar - 32. Fujiwara K., Ishihama Y., Nakahigashi K., Soga T., Taguchi H.:A systematic survey of in vivo obligate chaperonin-dependent substrates.EMBO J., 2010; 29: 1552-1564
Google Scholar - 33. Gallaher T.K., Wu S., Webster P., Aguilera R.: Identification ofbiofilm proteins in non-typeable Haemophilus influenzae. BMC Microbiol.,2006; 6: 65
Google Scholar - 34. Gao B., Tsan M.F.: Endotoxin contamination in recombinanthuman heat shock protein 70 (Hsp70) preparation is responsiblefor the induction of tumor necrosis factor α release by murine macrophages.J. Biol. Chem., 2003; 278: 174-179
Google Scholar - 35. Gao B., Tsan M.F.: Recombinant human heat shock protein 60does not induce the release of tumor necrosis factor α from murinemacrophages. J. Biol. Chem., 2003; 278: 22523-22529
Google Scholar - 36. Gao Y.L., Brosnan C.F., Raine C.S: Experimental autoimmuneencephalomyelitis. Qualitative and semiquantitative differences inheat shock protein 60 expression in the central nervous system. J.Immunol., 1995; 154: 3548-3556
Google Scholar - 37. Garduño R.A., Faulkner G., Trevors M.A., Vats N., Hoffman P.S.:Immunolocalization of Hsp60 in Legionella pneumophila. J. Bacteriol.,1998; 180: 505-513
Google Scholar - 38. Garduño R.A., Garduño E., Hoffman P.S.: Surface-associatedHsp60 chaperonin of Legionella pneumophila mediates invasion ina HeLa cell model. Infect. Immun., 1998; 66: 4602-4610
Google Scholar - 39. Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T.: Immunologia.Wydawnictwo PWN, Warszawa 2009
Google Scholar - 40. Gomez F.J., Allendoerfer R., Deepe G.S.Jr.: Vaccination with recombinantheat shock protein 60 from Histoplasma capsulatum protectsmice against pulmonary histoplasmosis. Infect. Immun., 1995;63: 2587-2595
Google Scholar - 41. Goulhen F., Hafezi A., Uitto V.J., Hinode D., Nakamura R., GrenierD., Mayrand D.: Subcellular localization and cytotoxic activity of theGroEL-Like protein isolated from Actinobacillus actinomycetemcomitans.Infect. Immun., 1998; 66: 5307-5313
Google Scholar - 42. Habich C., Baumgart K., Kolb H., Burkart V.: The receptor for heatshock protein 60 on macrophages is saturable, specific, and distinct fromreceptors for other heat shock proteins. J. Immunol., 2002; 168: 569-576
Google Scholar - 43. Habich C., Burkart V.: Heat shock protein 60: regulatory role oninnate immune cells. Cell. Mol. Life Sci., 2007; 64: 742-751
Google Scholar - 44. Habich C., Kempe K., Burkart V., van der Zee R., Lillicrap M.,Gaston H., Kolb H.: Identification of the heat shock protein 60 epitopeinvolved in receptor binding on macrophages. FEBS Lett., 2004;568: 65-69
Google Scholar - 45. Habich C., Kempe K., Gomez F.J., Lillicrap M., Gaston H., van derZee R., Kolb H., Burkart V.: Heat shock protein 60: identification ofspecific epitopes for binding to primary macrophages. FEBS Lett.,2006; 580: 115-120
Google Scholar - 46. Habich C., Kempe K., van der Zee R., Burkart V. Kolb H.: Differentheat shock protein 60 species share pro-inflammatory activitybut not binding sites on macrophages. FEBS Lett., 2003; 533: 105-109
Google Scholar - 47. Habich C., Kempe K., van der Zee R., Rümenapf R., Akiyama H.,Kolb H., Burkart V.: Heat shock protein 60: specific binding of lipopolysaccharide.J. Immunol., 2005; 174: 1298-1305
Google Scholar - 48. Hartl F.U.: Molecular chaperones in cellular protein folding.Nature, 1996; 381: 571-580
Google Scholar - 49. Hartl F.U., Bracher A., Hayer-Hartl M.: Molecular chaperones inprotein folding and proteostasis. Nature, 2011; 475: 324-332
Google Scholar - 50. Hartl F.U., Hayer-Hartl M.: Molecular chaperones in the cytosol:from nescent chain to folded protein. Science, 2002; 295: 1852-1858
Google Scholar - 51. Hartley M.G., Green M., Choules G., Rogers D., Rees D.G., NewsteadS., Sjostedt A., Titball R.W.: Protection afforded by heat shockprotein 60 from Francisella tularensis is due to copurified lipopolysaccharide.Infect. Immun., 2004; 72: 4109-4113
Google Scholar - 52. Henderson B.R., Pfister G., Boeck G., Kind M., Wick G.: Expressionlevels of heat shock protein 60 in human endothelial cells invitro are unaffected by exposure to 50 Hz magnetic fields. Cell StressChaperones, 2003; 8: 172-182
Google Scholar - 53. Hennequin C., Porcheray F., Waligora-Dupriet A.J., Collignon A.,Barc M.C., Bourlioux P., Karjalainen T.: GroEL (Hsp60) of Clostridiumdifficile is involved in cell adherence. Microbiology, 2001; 147: 87-96
Google Scholar - 54. Hightower L.E., Hendershot L.M.: Molecular chaperones andthe heat shock response at Cold Spring Harbor. Cell Stress Chaperones,1997; 2: 1-11
Google Scholar - 55. Hirata D., Hirai I., Iwamoto M., Yoshio T., Takeda A., MasuyamaJ.I., Mimori A., Kano S., Minota S.: Preferential binding withEscherichia coli hsp60 of antibodies prevalent in sera from patientswith rheumatoid arthritis. Clin. Immunol. Immunopathol., 1997;82: 141-148
Google Scholar - 56. Hu Y., Mivechi N.F.: HSF-1 interacts with Ral-binding protein 1in a stress – responsive, multiprotein complex with HSP90 in vivo. J.Biol. Chem., 2003; 278: 17299-17306
Google Scholar - 57. Huang C.Y., Chen C.A., Lee C.N., Chang M.C., Su Y.N., Lin Y.C.,Hsieh C.Y., Cheng W.F.: DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates morepotent immunotherapeutic effects than respective E6 or E7 tumorantigens. Gynecol. Oncol., 2007; 107: 404-412
Google Scholar - 58. Jaradat Z.W., Wampler J.W., Bhunia A.W.: A Listeria adhesionprotein-deficient Listeria monocytogenes strain shows reduced adhesionprimarily to intestinal cell lines. Med. Microbiol. Immunol.,2003; 192: 85-91
Google Scholar - 59. Jefferson K.K.: What drives bacteria to produce a biofilm? FEMSMicrobiol. Lett., 2004; 236: 163-173 60 Kaneda K., Masuzawa T., Yasugami K., Suzuki T., Suzuki Y., YanagiharaY.: Glycosphingolipid-binding protein of Borrelia burgdorferisensu lato. Infect. Immun., 1997; 65: 3180-3185
Google Scholar - 60. acts as a receptor for the Listeria adhesion protein in Caco-2cells. Infect. Immun., 2004; 72: 931-936
Google Scholar - 61. Kaźmierczuk A., Kiliańska Z.M.: Plejotropowa aktywność białekszoku cieplnego. Postępy Hig. Med. Dośw., 2009; 63: 502-521
Google Scholar - 62. Kol A., Lichtman A.H., Finberg R.W., Libby P., Kurt-Jones E.A.:Cutting edge: heat shock protein (HSP) 60 activates the innate immuneresponse: CD14 is an essential receptor for HSP60 activationof mononuclear cells. J. Immunol., 2000; 164: 13-17
Google Scholar - 63. Lehner T., Lavery E., Smith R., van der Zee R., Mizushima Y., ShinnickT.: Association between the 65-kilodalton heat shock protein,Streptococcus sanguis, and the corresponding antibodies in Behcet’ssyndrome. Infect. Immun., 1991; 59: 1434-1441
Google Scholar - 64. Lindquist S., Craig E.A.: The heat-shock proteins. Ann. Rev. Genet.,1988; 22: 631-677
Google Scholar - 65. Lűneberg E., Műller D., Steinmetz I., Frosch M.: Monoclonalantibody against species-specific epitope of Pseudomonas aeruginosaHsp60 protein cross-reacts with Pseudomonas stutzeri and other Pseudomonasspecies. FEMS Microbiol. Lett., 1997; 154: 131-137
Google Scholar - 66. Maeda H., Miyamoto M., Kokeguchi S., Kono T., Nishimura F.,Takashiba S., Murayama Y.: Epitope mapping of heat shock protein 60 (GroEL) from Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol.,2000; 28: 219-224
Google Scholar - 67. Merbl Y., Zucker-Toledano M., Quintana F.J., Cohen I.R.: Newbornhumans manifest autoantibodies to defined self molecules detectedby antigen microarray informatics. J. Clin. Invest., 2007; 117: 712-718
Google Scholar - 68. Multhoff G., Hightower L.E.: Cell surface expression of the heatshock proteins and the immune response. Cell Stress Chaperones,1996; 1: 167-176
Google Scholar - 69. Muñoz I.G., Yébenes H., Zhou M., Mesa P., Serna M., Park A.Y.,Bragado-Nilsson E., Beloso A., de Cárcer G., Malumbres M., RobinsonC.V., Valpuesta J.M., Montoya G.: Crystal structure of the openconformation of the mammalian chaperonin CCT in complex withtubulin. Nat. Struct. Mol. Biol., 2011; 18: 14-19
Google Scholar - 70. Noll A., Autenrieth I.B.: Immunity against Yersinia enterocoliticaby vaccination with Yersinia HSP60 immunostimulating complexesor Yersinia HSP60 plus interleukin-12. Infect. Immun., 1996; 64:2955-2961
Google Scholar - 71. Noll A., Roggenkamp A., Heesemann J., Autenrieth I.B.: Protectiverole for heat shock protein-reactive αβ T cells in murine yersiniosis.Infect. Immun., 1994; 62: 2784-2791
Google Scholar - 72. Osterloh A., Kalinke U., Weiss S., Fleischer B., Breloer M.: Synergisticand differential modulation of immune responses by Hsp60and lipopolysaccharide. J. Biol. Chem., 2007; 282: 4669-4680
Google Scholar - 73. Osterloh A., Veit A., Gessner A., Fleischer B., Breloer M.: Hsp60– mediated T cell stimulation is independent of TLR4 and IL-12. Int.Immunol., 2008; 20: 433-443
Google Scholar - 74. Paliwal P.K., Bansal A., Sagi S.S., Mustoori S., Govindaswamy I.:Cloning, expression and characterization of heat shock protein 60(groEL) of Salmonella enterica serovar Typhi and its role in protectiveimmunity against lethal Salmonella infection in mice. Clin. Immunol.,2008; 126: 89-96
Google Scholar - 75. Parcellier A., Gurbuxani S., Schmitt E., Solary E., Garrido C.:Heat shock proteins, cellular chaperones that modulate mitochondrialcell death pathways. Biochem. Biophys. Res. Commun., 2003;304: 505-512
Google Scholar - 76. Pivovarova A.V., Mikhailova V.V., Chernik I.S., Chebotareva N.A.,Levitsky D.I., Gusev N.B.: Effects of small heat shock proteins on thethermal denaturation and aggregation of F-actin. Biochem. Biophys.Res. Commun., 2005; 331: 1548-1553
Google Scholar - 77. Poccia F., Piselli P., Di Cesare S., Bach S., Colizzi V., Mattei M., BolognesiA., Stirpe F.: Recognition and killing of tumor cells expressingheat shock protein 65kD with immunotoxins containing saporin. Br.J. Cancer, 1992; 66: 427-432
Google Scholar - 78. Pockley A.G.: Heat shock proteins in health and disease: therapeutictargets or therapeutic agents? Expert. Rev. Mol. Med., 2001;3: 1-21
Google Scholar - 79. Pockley A.G.: Heat shock proteins as a regulators of the immuneresponse. Lancet, 2003; 362: 469-476
Google Scholar - 80. Powers M.V., Workman P.: Inhibitors of the heat shock response:biology and pharmacology. FEBS Lett., 2007; 581: 3758-3769
Google Scholar - 81. Quintana F.J., Carmi P., Mor F., Cohen I.R.: Inhibition of adjuvantarthritis by a DNA vaccine encoding human heat shock protein 60.J. Immunol., 2002; 169: 3422-3428
Google Scholar - 82. Quintana F.J., Carmi P., Mor F., Cohen I.R.: DNA fragments ofthe human 60-kDa heat shock protein (HSP60) vaccinate againstadjuvant arthritis: identification of a regulatory HSP60 peptide. J.Immunol., 2003; 171: 3533-3541
Google Scholar - 83. Quintana F.J., Cohen I.R.: The HSP60 immune system network.Trends Immunol., 2011; 32: 89-95
Google Scholar - 84. Quintana F.J., Mimran A., Carmi P., Mor F., Cohen I.R.: HSP60 asa target of anti-ergotypic regulatory T cells. PLoS One, 2008; 3: e4026
Google Scholar - 85. Radford S.E.: Protein folding: progress made and promises ahead.Trends Biochem. Sci., 2000; 25: 611-618
Google Scholar - 86. Rafati S., Gholami E., Hassani N., Ghaemimanesh F., Taslimi Y.,Taheri T., Soong L.: Leishmania major heat shock protein 70 (HSP70)is not protective in murine models of cutaneous leishmaniasis andstimulates strong humoral responses in cutaneous and visceral leishmaniasispatients. Vaccine, 2007; 25: 4159-4169
Google Scholar - 87. Ramage J.M., Young J.L., Goodall J.C., Gaston J.S.: T cell responsesto heat shock protein 60: differential responses by CD4+ T cellsubsets according to their expression of CD45 isotypes. J. Immunol.,1999; 162: 704-710
Google Scholar - 88. Rambukkana A., Das P.K., Witkamp L., Yong S., Meinardi M.M.,Bos J.D.: Antibodies to mycobacterial 65-kDa heat shock protein andother immunodominant antigens in patients with psoriasis. J. Invest.Dermatol., 1993; 100: 87-92
Google Scholar - 89. Rank R.G., Dascher C., Bowlin A.K., Bavoil P.M.: Systemic immunizationwith Hsp60 alters the development of chlamydial oculardisease. Invest. Ophthalmol. Vis. Sci., 1995; 36: 1344-1351
Google Scholar - 90. Rapp U.K., Kaufmann S.H.: DNA vaccination with pg96-peptidefusion proteins induces protection against an intracellular bacterialpathogen. Int. Immunol., 2004; 16: 597-605
Google Scholar - 91. Reiner D.S., Shinnick T.M., Ardeshir F., Gillin F.D.: Encystationof Gardia lamblia leads to expression of antigens recognized by antibodiesagainst conserved heat shock proteins. Infect. Immun.,1992; 60: 5312-5315
Google Scholar - 92. Reissmann S., Parnot C., Booth C.R., Chiu W, Frydman J.: Essentialfunction of the built-in lid in the allosteric regulation of eukaryoticor archaeal chaperonins. Nat. Struct. Mol. Biol., 2007; 14: 432-440
Google Scholar - 93. Retzlaff C., Yamamoto Y., Hoffman P.S., Friedman H., Klein T.W.:Bacterial heat shock proteins directly induce cytokine mRNA andinterleukin-1 secretion in macrophage cultures. Infect. Immun.,1994; 62: 5689-5693
Google Scholar - 94. Rico A.I., Del Real G., Soto M., Quijada L., Martinez-A. C., AlonsoC., Requena J.M.: Characterization of the immunostimulatory propertiesof Leishmania infantum HSP70 by fusion to the Escherichia colimaltose-binding protein in normal and nu/nu BALB/c mice. Infect.Immun., 1998; 66: 347-352
Google Scholar - 95. Sandal I., Hong W., Swords W.E., Inzana T.J.: Characterizationand comparison of biofilm development by pathogenic and commensalisolates of Histophilus somni. J. Bacteriol., 2007; 189: 8179-8185
Google Scholar - 96. Sandal I., Shao J.Q., Annadata S., Apicella M.A., Boye M., JensenT.K., Saunders G.K., Inzana T.J.: Histophilus somni biofilm formationin cardiopulmonary tissue of the bovine host following respiratorychallenge. Microbes. Infect., 2009; 11: 254-263
Google Scholar - 97. Srivastava P.: Roles of heat-shock proteins in innate and adaptiveimmunity. Nat. Rev. Immunol., 2002; 2: 185-194
Google Scholar - 98. Tabeta K., Yamazaki K., Hotokezaka H., Yoshie H., Hara K.: Elevatedhumoral immune response to heat shock protein 60 (hsp60) familyin periodontitis patients. Clin. Exp. Immunol., 2000; 120: 285-293
Google Scholar - 99. Tsan M.F., Gao B.: Cytokine function of heat shock proteins. Am.J. Physiol. Cell. Physiol., 2004; 286: C739-C744
Google Scholar - 100. Tsan M.F., Gao B.: Heat shock proteins and immune system. J.Leukoc. Biol., 2009; 85: 905-910
Google Scholar - 101. Wallin R.P., Lundqvist A., Moré S.H., von Bonin A., Kiessling R., Ljunggren H.G.: Heat-shock proteins as activators of the innateimmune system. Trends Immunol., 2002; 23: 130-135
Google Scholar - 102. Wampler J.L., Kim K.P., Jaradat Z., Bhunia A.K.: Heat shock protein
Google Scholar - 103. Wand-Württenberger A., Schoel B., Ivanyi J., Kaufmann S.H.:Surface expression by mononuclear phagocytes of an epitope sharedwith mycobacterial heat shock protein 60. Eur. J. Immunol.,1991; 21: 1089-1092
Google Scholar - 104. Watanabe K., Tachibana M., Tanaka S., Furuoka H., Horiuchi M.,Suzuki H., Watarai M.: Heat shock cognate protein 70 contributes toBrucella invasion into trophoblast giant cells that cause infectiousabortion. BMC Microbiol., 2008; 8: 212
Google Scholar - 105. Weeratna R., Stamler D.A., Edelstein P.H., Ripley M., Marrie T.,Hoskin D., Hoffman P.S.: Human and guinea pig immune responsesto Legionella pneumophila protein antigens OmpS and Hsp60. Infect.Immun., 1994; 62: 3454-3462
Google Scholar - 106. Westerheide S.D., Morimoto R.I.: Heat shock response modulatorsas therapeutic tools for diseases of protein conformation. J.Biol. Chem., 2005; 280: 33097-33100
Google Scholar - 107. Wick G., Jakic B., Buszko M., Wick M.C., Grundtman C.: Therole of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol.,2014; 11: 516-529
Google Scholar - 108. Wilhelm V., Soza C., Martinez R., Rosemblatt M., Burzio L.O.,Valenzuela P.D.: Production and immune response of recombinantHsp60 and Hsp70 from the salmon pathogen Piscirickettsia salmonis.Biol. Res., 2005; 38: 69-82
Google Scholar - 109. Yamaguchi H., Osaki T., Kai M., Taguchi H., Kamiya S.: Immuneresponse against a cross-reactive epitope on the heat shockprotein 60 homologue of Helicobacter pylori. Infect. Immun., 2000;68: 3448-3454
Google Scholar - 110. Yamaguchi H., Osaki T., Taguchi H., Hanawa T., Yamamoto T.,Kamiya S.: Flow cytometric analysis of the heat shock protein 60expressed on the cell surface of Helicobacter pylori. J. Med. Microbiol.,1996; 45: 270-277
Google Scholar - 111. Yamaguchi H., Osaki T., Taguchi H., Sato N., Toyoda A., TakahashiM., Kai M., Nakata N., Komatsu A., Atomi Y., Kamiya S.: Effectof bacterial flora on postimmunization gastritis following oral vaccinationof mice with Helicobacter pylori heat shock protein 60. Clin.Diagn. Lab. Immunol., 2003; 10: 808-812
Google Scholar - 112. Yi Y., Yang X., Brunham R.C.: Autoimmunity to heat shockprotein 60 and antigen-specific production of interleukin-10. Infect.Immun., 1997; 65: 1669-1674
Google Scholar - 113. Young D., Lathigra R., Hendrix R., Sweetser D., Young R.A.:Stress proteins are immune targets in leprosy and tuberculosis.Proc. Natl. Acad. Sci. USA, 1988; 85: 4267-4270
Google Scholar - 114. Zanin-Zhorov A., Bruck R., Tal G., Oren S., Aeed H., HershkovizR., Cohen I.R., Lider O.: Heat shock protein 60 inhibits Th1-mediatedhepatitis model via innate regulation of Th1/Th2 transcription factorsand cytokines. J. Immunol., 2005; 174: 3227-3236
Google Scholar - 115. Zanin-Zhorov A., Cahalon L., Tal G., Margalit R., Lider O., CohenI.R.: Heat shock protein 60 enhances CD4+CD25+ regulatory Tcell function via innate TLR2 signaling. J. Clin. Invest., 2006; 116:2022-2032
Google Scholar - 116. Zanin-Zhorov A., Nussbaum G., Franitza S., Cohen I.R., LiderO.: T cells respond to heat shock protein 60 via TLR2: activation ofadhesion and inhibition of chemokine receptors. FASEB J., 2003;17: 1567-1569
Google Scholar - 117. Zanin-Zhorov A., Tal G., Shivtiel S., Cohen M., Lapidot T., NussbaumG., Margalit R., Cohen I.R., Lider O.: Heat shock protein 60activates cytokine-associated negative regulator suppressor of cytokinesignaling 3 in T cells: effects on signaling, chemotaxis, andinflammation. J. Immunol., 2005; 175: 276-285
Google Scholar - 118. Zarankiewicz T., Madej J., Galli J., Bajzert J., Stefaniak T.: Inhibitionof in vitro Histophilus somni biofilm production by recombinantHsp60 antibodies. Pol. J. Vet. Sci., 2012; 15: 373-378
Google Scholar - 119. Zhang S.M., Sun D.C., Lou S., Bo X.C., Lu Z., Qian X.H., WangS.Q.: HBx protein of hepatitis B virus (HBV) can form complex withmitochondrial HSP60 and HSP70. Arch. Virol., 2005; 150: 1579-1590
Google Scholar - 120. Zügel U., Kaufmann S.H.: Role of heat shock proteins in protectionfrom and pathogenesis of infectious diseases. Clin. Microbiol.Rev., 1999; 12: 19-39
Google Scholar