From malaria parasite point of view – Plasmodium falciparum evolution

COMMENTARY ON THE LAW

From malaria parasite point of view – Plasmodium falciparum evolution

Agata Zerka 1 , Radosław Kaczmarek 1 , Ewa Jaśkiewicz 2

1. Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda PAN, Wrocław
2. Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda PAN, Wrocław; Katedra Biologii Molekularnej, Uniwersytet Zielonogórski, Zielona Góra

Published: 2015-12-31
GICID: 01.3001.0009.6622
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2015; 69 : 1519-1529

 

Abstract

Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago) than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

References

  • 1. Adams J.H., Blair P.L., Kaneko O., Peterson D.S.: An expanding eblfamily of Plasmodium falciparum. Trends Parasitol., 2001; 17: 297-299
    Google Scholar
  • 2. Allison A.C., Clyde D.F.: Malaria in African children with deficienterythrocyte glucose-6-phosphate dehydrogenase. Br. Med. J.,1961; 1: 1346-1349
    Google Scholar
  • 3. Arisue N., Hashimoto T.: Phylogeny and evolution of apicoplastsand apicomplexan parasites. Parasitol. Int., 2015; 64: 254-259
    Google Scholar
  • 4. Ashline D.J., Duk M., Lukasiewicz J., Reinhold V.N., Lisowska E.,Jaskiewicz E.: The structures of glycophorin C N-glycans, a putativecomponent of the GPC receptor site for Plasmodium falciparum EBA- 140 ligand. Glycobiology, 2015; 25: 570-581
    Google Scholar
  • 5. Ayala F.J., Escalante A.A., Rich S.M.: Evolution of Plasmodium andthe recent origin of the world populations of Plasmodium falciparum.Parasitologia, 1999; 41: 55-68
    Google Scholar
  • 6. Ayala F.J., Rich S.M.: Genetic variation and the recent worldwideexpansion of Plasmodium falciparum. Gene, 2000; 261: 161-170
    Google Scholar
  • 7. Baird J.K.: Resistance to chloroquine unhinges vivax malaria therapeutics.Antimicrob. Agents Chemother., 2011; 55: 1827-1830
    Google Scholar
  • 8. Barnes K.I., Little F., Mabuza A., Mngomezulu N., Govere J., DurrheimD., Roper C., Watkins B., White N.J.: Increased gametocytemiaafter treatment: an early parasitological indicator of emerging sulfadoxine-pyrimethamineresistance in falciparum malaria. J. Infect.Dis., 2008; 197: 1605-1613 9 Boyd M.F.: Malariology: a comprehensive survey of all aspectsof this group of disease from a global standpoint. Saunders, Philadelphia,1949
    Google Scholar
  • 9. of the Plasmodium falciparum chloroquine resistance transporteralter susceptibility to chloroquine, quinine and quinidine. Mol. Microbiol.,2007; 63: 270-282
    Google Scholar
  • 10. Bray R.S.: The malaria parasites of anthropoid apes. J. Parasitol.,1963; 49: 888-891
    Google Scholar
  • 11. Bzik D.J., Li W.B., Horii T., Inselburg J.: Molecular cloning andsequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylatesynthase gene. Proc. Natl. Acad. Sci. USA, 1987;84: 8360-8364
    Google Scholar
  • 12. Carter R., Mendis K.N.: Evolutionary and historical aspects of theburden of malaria. Clin. Microbiol. Rev., 2002; 15: 564-594
    Google Scholar
  • 13. CDC – Centers for Disease Control and Prevention: CDC – Malaria- About Malaria – History. http://www.cdc.gov/malaria/about/history/#chloroquine (30/08/2015)
    Google Scholar
  • 14. Chou H.H., Takematsu H., Diaz S., Iber J., Nickerson E., WrightK.L., Muchmore E.A., Nelson D.L., Warren S.T., Varki A.: A mutationin human CMP-sialic acid hydroxylase occurred after the Homo–Pan divergence. Proc. Natl. Acad. Sci. USA, 1998; 95: 11751-11756
    Google Scholar
  • 15. Coatney G.R., Collins W.E., Warren M., Contacos P.G.: The PrimateMalarias. U.S. Government Printing Office, Washington DC, 1971
    Google Scholar
  • 16. Collins W.E., Skinner J.C., Pappaioanou M., Broderson J.R., MehaffeyP.: The sporogonic cycle of Plasmodium reichenowi. J. Parasitol.,1986; 72: 292-298
    Google Scholar
  • 17. Cooper R.A., Lane K.D., Deng B., Mu J., Patel J.J., Wellems T.E.,Su X., Ferdig M.T.: Mutations in transmembrane domains 1, 4 and
    Google Scholar
  • 18. Cowman A.F., Morry M.J., Biggs B.A., Cross G.A., Foote S.J.: Aminoacid changes linked to pyrimethamine resistance in the dihydrofolatereductase-thymidylate synthase gene of Plasmodium falciparum.Proc. Natl. Acad. Sci. USA, 1988; 85: 9109-9113
    Google Scholar
  • 19. Cui L., Mharakurwa S., Ndiaye D., Rathod P.K., Rosenthal P.J.:Antimalarial drug resistance: literature review and activities andfindings of the ICEMR network. Am. J. Trop. Med. Hyg., 2015; 93(Suppl. 3): 57-68
    Google Scholar
  • 20. Czerwiński M.: Grupy krwi – minusy i plusy. Czy antygeny grupowekrwi chronią nas przed chorobami zakaźnymi? Postępy Hig.Med. Dośw., 2015; 69: 703-722
    Google Scholar
  • 21. Délicat-Loembet L., Rougeron V., Ollomo B., Arnathau C., RocheB., Elguero E., Moukodoum N.D., Okougha A.P., Mve Ondo B., BoundengaL., Houzé S., Galan M., Nkoghé D., Leroy E.M., Durand P., PaupyC., Renaud F., Prugnolle F.: No evidence for ape Plasmodium infectionsin humans in Gabon. PLoS One, 2015; 10: e0126933
    Google Scholar
  • 22. Duval L., Fourment M., Nerrienet E., Rousset D., Sadeuh S.A.,Goodman S.M., Andriaholinirina N.V., Randrianarivelojosia M., PaulR.E., Robert V., Ayala F.J., Ariey F.: African apes as reservoirs of Plasmodiumfalciparum and the origin and diversification of the Laveraniasubgenus. Proc. Natl. Acad. Sci. USA, 2010; 107: 10561-10566
    Google Scholar
  • 23. Enserink M.: Malaria treatment: ACT two. Science, 2007; 318: 560-563
    Google Scholar
  • 24. Escalante A.A., Ayala F.J.: Phylogeny of the malarial genus Plasmodium,derived from rRNA gene sequences. Proc. Natl. Acad. Sci.USA, 1994; 91: 11373-11377
    Google Scholar
  • 25. Escalante A.A., Barrio E., Ayala F.J.: Evolutionary origin of humanand primate malarias: evidence from the circumsporozoite proteingene. Mol. Biol. Evol., 1995; 12: 616-626
    Google Scholar
  • 26. Escalante A.A., Freeland D.E., Collins W.E., Lal A.A.: The evolutionof primate malaria parasites based on the gene encoding cytochromeb from the linear mitochondrial genome. Proc. Natl. Acad. Sci.USA, 1998; 95: 8124-8129
    Google Scholar
  • 27. Gaur D., Chitnis C.E.: Molecular interactions and signaling mechanismsduring erythrocyte invasion by malaria parasites. Curr.Opin. Microbiol., 2011; 14: 422-428
    Google Scholar
  • 28. Gaur D., Mayer D.C., Miller L.H.: Parasite ligand–host receptorinteractions during invasion of erythrocytes by Plasmodium merozoites.Int. J. Parasitol., 2004; 34: 1413-1429
    Google Scholar
  • 29. Hill A.V., Allsopp C.E., Kwiatkowski D., Anstey N.M., Twumasi P.,Rowe P.A., Bennett S., Brewster D., McMichael A.J., Greenwood B.M.:Common west African HLA antigens are associated with protectionfrom severe malaria. Nature, 1991; 352: 595-600
    Google Scholar
  • 30. Holmes E.C.: Malaria: the gorilla connection. Nature, 2010; 467:404-405
    Google Scholar
  • 31. Hughes A.L., Verra F.: Malaria parasite sequences from chimpanzeesupport the co-speciation hypothesis for the origin of virulenthuman malaria (Plasmodium falciparum). Mol. Phylogenet.Evol., 2010; 57: 135-143
    Google Scholar
  • 32. Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J.: A commonred algal origin of the apicomplexan, dinoflagellate, and heterokontplastids. Proc. Natl. Acad. Sci. USA, 2010; 107: 10949-10954
    Google Scholar
  • 33. Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolísko M.,Mylnikov A.P., Keeling P.J.: Factors mediating plastid dependency andthe origins of parasitism in apicomplexans and their close relatives.Proc. Natl. Acad. Sci. USA, 2015; 112: 10200-10207
    Google Scholar
  • 34. Jaśkiewicz E., Graczyk J., Rydzak J.: Białka biorące udział w procesieinwazji erytrocytów ludzkich przez zarodźce malarii. PostępyHig. Med. Dośw., 2010; 64: 617-626
    Google Scholar
  • 35. Jiang L., Duriseti S., Sun P., Miller L.H.: Molecular basis of bindingof the Plasmodium falciparum receptor BAEBL to erythrocytereceptor glycophorin C. Mol. Biochem. Parasitol., 2009; 168: 49-54
    Google Scholar
  • 36. Jongwutiwes S., Putaporntip C., Iwasaki T., Sata T., Kanbara H.:Naturally acquired Plasmodium knowlesi malaria in human, Thailand.Emerg. Infect. Dis., 2004; 10: 2211-2213
    Google Scholar
  • 37. Kantele A., Marti H., Felger I., Müller D., Jokiranta T.S.: Monkeymalaria in a European traveler returning from Malaysia. Emerg. Infect.Dis., 2008; 14: 1434-1436
    Google Scholar
  • 38. Keeling P.J., Rayner J.C.: The origins of malaria: there are morethings in heaven and earth …. Parasitology, 2015; 142 (Suppl. S1):S16-S25
    Google Scholar
  • 39. Krief S., Escalante A.A., Pacheco M.A., Mugisha L., André C., HalbwaxM., Fischer A., Krief J.M., Kasenene J.M., Crandfield M., CornejoO.E., Chavatte J.M., Lin C., Letourneur F., Grüner A.C., et al.: On thediversity of malaria parasites in African apes and the origin of Plasmodiumfalciparum from bonobos. PLoS Pathog, 2010; 6: e1000765
    Google Scholar
  • 40. Le Van Kim C., Piller V., Cartron J.P., Colin Y.: Glycophorins Cand D are generated by the use of alternative translation initiationsites. Blood, 1996; 88: 2364-2365
    Google Scholar
  • 41. Lin D.H., Malpede B.M., Batchelor J.D., Tolia N.H.: Crystal andsolution structures of Plasmodium falciparum erythrocyte-bindingantigen 140 reveal determinants of receptor specificity during erythrocyteinvasion. J. Biol. Chem., 2012; 287: 36830-36836
    Google Scholar
  • 42. Liu W., Li Y., Learn G.H., Rudicell R.S., Robertson J.D., Keele B.F.,Ndjango J.B., Sanz C.M., Morgan D.B., Locatelli S., Gonder M.K., KranzuschP.J., Walsh P.D., Delaporte E., Mpoudi-Ngole E. i wsp.: Originof the human malaria parasite Plasmodium falciparum in gorillas.Nature, 2010; 467: 420-425
    Google Scholar
  • 43. Liu W., Li Y., Shaw K.S., Learn G.H., Plenderleith L.J., MalenkeJ.A., Sundararaman S.A., Ramirez M.A., Crystal P.A., Smith A.G.,Bibollet-Ruche F., Ayouba A., Locatelli S., Esteban A., Mouacha F.i wsp.: African origin of the malaria parasite Plasmodium vivax. Nat.Commun., 2014; 5: 3346
    Google Scholar
  • 44. Lobo C.A., Rodriguez M., Reid M., Lustigman S.: Glycophorin Cis the receptor for the Plasmodium falciparum erythrocyte bindingligand PfEBP-2 (baebl). Blood, 2003; 101: 4628-4631
    Google Scholar
  • 45. Maier A.G., Duraisingh M.T., Reeder J.C., Patel S.S., Kazura J.W.,Zimmerman P.A., Cowman A.F.: Plasmodium falciparum erythrocyteinvasion through glycophorin C and selection for Gerbich negativityin human populations. Nat. Med., 2003; 9: 87-92
    Google Scholar
  • 46. Martin M.J., Rayner J.C., Gagneux P., Barnwell J.W., Varki A.: Evolutionof human-chimpanzee differences in malaria susceptibility:relationship to human genetic loss of N-glycolylneuraminic acid.Proc. Natl. Acad. Sci. USA, 2005; 102: 12819-12824
    Google Scholar
  • 47. Martin R.E., Marchetti R.V., Cowan A.I., Howitt S.M., Bröer S.,Kirk K.: Chloroquine transport via the malaria parasite’s chloroquineresistance transporter. Science, 2009; 325: 1680-1682
    Google Scholar
  • 48. Martinsen E.S., Perkins S.L., Schall J.J.: A three-genome phylogenyof malaria parasites (Plasmodium and closely related genera):evolution of life-history traits and host switches. Mol. Phylogenet.Evol., 2008; 47: 261-273
    Google Scholar
  • 49. Mayer D.C., Jiang L., Achur R.N., Kakizaki I., Gowda D.C., MillerL.H.: The glycophorin C N-linked glycan is a critical component ofthe ligand for the Plasmodium falciparum erythrocyte receptor BAEBL.Proc. Natl. Acad. Sci. USA, 2006; 103: 2358-2362
    Google Scholar
  • 50. Miller L.H., Ackerman H.C., Su X.Z., Wellems T.E.: Malaria biologyand disease pathogenesis: insights for new treatments. Nat.Med., 2013; 19: 156-167
    Google Scholar
  • 51. Muchmore E.A., Diaz S., Varki A.: A structural difference betweenthe cell surfaces of humans and the great apes. Am. J. Phys.Anthropol., 1998; 107: 187-198
    Google Scholar
  • 52. Narum D.L., Fuhrmann S.R., Luu T., Sim B.K.: A novel Plasmodiumfalciparum erythrocyte binding protein-2 (EBP2/BAEBL) involvedin erythrocyte receptor binding. Mol. Biochem. Parasitol.,2002; 119: 159-168
    Google Scholar
  • 53. Noedl H., Se Y., Sriwichai S., Schaecher K., Teja-Isavadharm P.,Smith B., Rutvisuttinunt W., Bethell D., Surasri S., Fukuda M.M., SocheatD., Thap L.C.: Artemisinin resistance in Cambodia: a clinicaltrial designed to address an emerging problem in Southeast Asia.Clin. Infect. Dis., 2010; 51: e82-e89
    Google Scholar
  • 54. Nosten F., White N.J.: Artemisinin-based combination treatmentof Falciparum malaria. Am. J. Trop. Med. Hyg., 2007; 77 (Suppl.6): 181-192
    Google Scholar
  • 55. Nzila A.: The past, present and future of antifolates in the treatmentof Plasmodium falciparum infection. J. Antimicrob. Chemother.,2006; 57: 1043-1054
    Google Scholar
  • 56. Ollomo B., Durand P., Prugnolle F., Douzery E., Arnathau C., NkogheD., Leroy E., Renaud F.: A new malaria agent in African hominids.PLoS Pathog., 2009; 5: e1000446
    Google Scholar
  • 57. Ollomo B., Karch S., Bureau P., Elissa N., Georges A.J., Millet P.:Lack of malaria parasite transmission between apes and humans inGabon. Am. J. Trop. Med. Hyg., 1997; 56: 440-445
    Google Scholar
  • 58. Otto T.D., Rayner J.C., Böhme U., Pain A., Spottiswoode N., SandersM., Quail M., Ollomo B., Renaud F., Thomas A.W., Prugnolle F.,Conway D.J., Newbold C., Berriman M.: Genome sequencing of chimpanzeemalaria parasites reveals possible pathways of adaptation tohuman hosts. Nat. Commun., 2014; 5: 4754
    Google Scholar
  • 59. Outlaw D.C., Ricklefs R.E.: Rerooting the evolutionary tree ofmalaria parasites. Proc. Natl. Acad. Sci. USA, 2011; 108: 13183-13187
    Google Scholar
  • 60. Paing M.M., Tolia N.H.: Multimeric assembly of host-pathogen adhesion complexes involved in apicomplexan invasion. PLoS Pathog.,2014; 10: e1004120
    Google Scholar
  • 61. Perkins S.L., Schall J.J.: A molecular phylogeny of malarial parasitesrecovered from cytochrome b gene sequences. J. Parasitol.,2002; 88: 972-978
    Google Scholar
  • 62. Prugnolle F., Durand P., Neel C., Ollomo B., Ayala F.J., ArnathauC., Etienne L., Mpoudi-Ngole E., Nkoghe D., Leroy E., Delaporte E.,Peeters M., Renaud F.: African great apes are natural hosts of multiplerelated malaria species, including Plasmodium falciparum. Proc.Natl. Acad. Sci. USA, 2010; 107: 1458-1463
    Google Scholar
  • 63. Prugnolle F., Rougeron V., Becquart P., Berry A., Makanga B.,Rahola N., Arnathau C., Ngoubangoye B., Menard S., Willaume E.,Ayala F.J., Fontenille D., Ollomo B., Durand P., Paupy C., Renaud F.:Diversity, host switching and evolution of Plasmodium vivax infectingAfrican great apes. Proc. Natl. Acad. Sci. USA, 2013; 110: 8123-8128
    Google Scholar
  • 64. Rayner J.C., Huber C.S., Barnwell J.W.: Conservation and divergencein erythrocyte invasion ligands: Plasmodium reichenowi EBLgenes. Mol. Biochem. Parasitol., 2004; 138: 243-247
    Google Scholar
  • 65. Rich S.M., Ayala F.J.: Population structure and recent evolution ofPlasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2000; 97: 6994-7001
    Google Scholar
  • 66. Rich S.M., Leendertz F.H., Xu G., LeBreton M., Djoko C.F., AminakeM.N., Takang E.E., Diffo J.L., Pike B.L., Rosenthal B.M., FormentyP., Boesch C., Ayala F.J., Wolfe N.D.: The origin of malignant malaria.Proc. Natl. Acad. Sci. USA, 2009; 106: 14902-14907
    Google Scholar
  • 67. Rich S.M., Licht M.C., Hudson R.R., Ayala F.J.: Malaria’s Eve: evidenceof a recent population bottleneck throughout the world populationsof Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1998;95: 4425-4430
    Google Scholar
  • 68. Roos D.S.: Themes and variations in apicomplexan parasite biology.Science, 2005; 309: 72-73
    Google Scholar
  • 69. RTS,S Clinical Trials Partnership: Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants andchildren in Africa: final results of a phase 3, individually randomised,controlled trial. Lancet, 2015; 386: 31-45
    Google Scholar
  • 70. Rydzak J., Kaczmarek R., Czerwinski M., Lukasiewicz J., TyborowskaJ., Szewczyk B., Jaskiewicz E.: The baculovirus-expressed bindingregion of Plasmodium falciparum EBA-140 ligand and its glycophorinC binding specificity. PLoS One, 2015; 10: e0115437
    Google Scholar
  • 71. Rydzak J., Kmiecik A.M., Jaśkiewicz E.: Glikoforyna C erytrocytówludzkich jako receptor dla liganda EBA-140 merozoitów Plasmodiumfalciparum. Postępy Hig. Med. Dośw., 2013; 67: 1331-1339
    Google Scholar
  • 72. Rydzak J., Kryńska K., Suchanowska A., Kaczmarek R., ŁukasiewiczJ., Czerwiński M., Jaśkiewicz E.: Bacterially expressed truncatedF2 domain of Plasmodium falciparum EBA-140 antigen can bind to humanerythrocytes. Acta Biochim. Pol., 2012; 59: 685-691
    Google Scholar
  • 73. Salinas N.D., Paing M.M., Tolia N.H.: Critical glycosylated residuesin exon three of erythrocyte glycophorin A engage Plasmodiumfalciparum EBA-175 and define receptor specificity. MBio, 2014; 5:e01606-14
    Google Scholar
  • 74. Schaer J., Perkins S.L., Decher J., Leendertz F.H., Fahr J., WeberN., Matuschewski K.: High diversity of West African bat malariaparasites and a tight link with rodent Plasmodium taxa. Proc. Natl.Acad. Sci. USA, 2013; 110: 17415-17419
    Google Scholar
  • 75. Sharma P., Chitnis C.E.: Key molecular events during host cellinvasion by Apicomplexan pathogens. Curr. Opin. Microbiol., 2013;16: 432-437
    Google Scholar
  • 76. Sibley L.D.: How apicomplexan parasites move in and out ofcells. Curr. Opin. Biotechnol., 2010; 21: 592-598
    Google Scholar
  • 77. Silva J.C., Egan A., Arze C., Spouge J.L., Harris D.G.: A new methodfor estimating species age supports the coexistence of malaria parasitesand their mammalian hosts. Mol. Biol. Evol., 2015; 32: 1354-1364
    Google Scholar
  • 78. Singh B., Sung L.K., Matusop A., Radhakrishnan A., Shamsul S.S., Cox-Singh J., Thomas A., Conway D.J.: A large focus of naturallyacquired Plasmodium knowlesi infections in human beings. Lancet,2004; 363: 1017-1024
    Google Scholar
  • 79. Sullivan D.J.Jr., Gluzman I.Y., Russell D.G., Goldberg D.E.: On themolecular mechanism of chloroquine’s antimalarial action. Proc.Natl. Acad. Sci. USA, 1996; 93: 11865-11870
    Google Scholar
  • 80. Sundararaman S.A., Liu W., Keele B.F., Learn G.H., Bittinger K.,Mouacha F., Ahuka-Mundeke S., Manske M., Sherrill-Mix S., Li Y.,Malenke J.A., Delaporte E., Laurent C., Mpoudi Ngole E., KwiatkowskiD.P. i wsp.: Plasmodium falciparum-like parasites infecting wild apes insouthern Cameroon do not represent a recurrent source of humanmalaria. Proc. Natl. Acad. Sci. USA, 2013; 110: 7020-7025
    Google Scholar
  • 81. Tanabe K., Sakihama N., Hattori T., Ranford-Cartwright L., GoldmanI., Escalante A.A., Lal A.A.: Genetic distance in housekeepinggenes between Plasmodium falciparum and Plasmodium reichenowi andwithin P. falciparum. J. Mol. Evol., 2004; 59: 687-694
    Google Scholar
  • 82. Taylor D.W., Wells R.A., Vernes A., Rosenberg Y.J., Vogel S., DiggsC.L.: Parasitologic and immunologic studies of experimental Plasmodiumfalciparum infection in nonsplenectomized chimpanzees (Pantroglodytes). Am. J. Trop. Med. Hyg., 1985; 34: 36-44
    Google Scholar
  • 83. Tazi L., Ayala F.J.: Unresolved direction of host transfer of Plasmodiumvivax v. P. simium and P. malariae v. P. brasilianum. Infect. Genet.Evol., 2011; 11: 209-221
    Google Scholar
  • 84. Tham W.H., Healer J., Cowman A.F.: Erythrocyte and reticulocytebinding-like proteins of Plasmodium falciparum. Trends Parasitol.,2012; 28: 23-30
    Google Scholar
  • 85. Thompson J.K., Triglia T., Reed M.B., Cowman A.F.: A novel ligandfrom Plasmodium falciparum that binds to a sialic acid-containingreceptor on the surface of human erythrocytes. Mol. Microbiol.,2001; 41: 47-58
    Google Scholar
  • 86. Tolia N.H., Enemark E.J., Sim B.K., Joshua-Tor L.: Structural basisfor the EBA-175 erythrocyte invasion pathway of the malaria parasitePlasmodium falciparum. Cell, 2005; 122: 183-193
    Google Scholar
  • 87. Triglia T., Menting J.G., Wilson C., Cowman A.F.: Mutations indihydropteroate synthase are responsible for sulfone and sulfonamideresistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA,1997; 94: 13944-13949
    Google Scholar
  • 88. Varki A.: Loss of N-glycolylneuraminic acid in humans: mechanisms,consequences, and implications for hominid evolution. Am.J. Phys. Anthropol., 2001; 116 (Suppl. 33): 54-69
    Google Scholar
  • 89. Varki A.: Glycan-based interactions involving vertebrate sialic–acid-recognizing proteins. Nature, 2007; 446: 1023-1029
    Google Scholar
  • 90. Varki A., Gagneux P.: Human-specific evolution of sialic acid targets:explaining the malignant malaria mystery? Proc. Natl. Acad.Sci. USA, 2009; 106: 14739-14740
    Google Scholar
  • 91. Vythilingam I., Tan C.H., Asmad M., Chan S.T., Lee K.S., SinghB.: Natural transmission of Plasmodium knowlesi to humans by Anopheleslatens in Sarawak, Malaysia. Trans. R. Soc. Trop. Med. Hyg.,2006; 100: 1087-1088
    Google Scholar
  • 92. Wanaguru M., Crosnier C., Johnson S., Rayner J.C., Wright G.J.:Biochemical analysis of the Plasmodium falciparum erythrocyte-bindingantigen-175 (EBA175)-glycophorin-A interaction: implicationsfor vaccine design. J. Biol. Chem., 2013; 288: 32106-32117
    Google Scholar
  • 93. Wanaguru M., Liu W., Hahn B.H., Rayner J.C., Wright G.J.: RH5–basigin interaction plays a major role in the host tropism of Plasmodiumfalciparum. Proc. Natl. Acad. Sci. USA, 2013; 110: 20735-20740
    Google Scholar
  • 94. Waters A.P., Higgins D.G., McCutchan T.F.: Plasmodium falciparumappears to have arisen as a result of lateral transfer between avianand human hosts. Proc. Natl. Acad. Sci. USA, 1991; 88: 3140-3144
    Google Scholar
  • 95. Weatherall D.J.: Genetic variation and susceptibility to infection:the red cell and malaria. Br. J. Haematol., 2008; 141: 276-286
    Google Scholar
  • 96. WHO | Questions and answers on malaria vaccines. http://www.who.int/immunization/research/development/malaria_vaccine_qa/en/(05/08/2015)
    Google Scholar
  • 97. WHO | Tables of malaria vaccine projects globally. http://www.who.int/immunization/research/development/Rainbow_tables/en/(05/08/2015)
    Google Scholar
  • 98. WHO | World Malaria Report 2012. http://www.who.int/malaria/publications/world_malaria_report_2012/en/(31/08/2015)
    Google Scholar
  • 99. Wilder J.A., Hewett E.K., Gansner M.E.: Molecular evolution ofGYPC: evidence for recent structural innovation and positive selectionin humans. Mol. Biol. Evol., 2009; 26: 2679-2687
    Google Scholar
  • 100. Wilson R.J., Denny P.W., Preiser P.R., Rangachari K., Roberts K.,Roy A., Whyte A., Strath M., Moore D.J., Moore P.W., Williamson D.H.:Complete gene map of the plastid-like DNA of the malaria parasitePlasmodium falciparum. J. Mol. Biol., 1996; 261: 155-172
    Google Scholar
  • 101. Woo Y.H., Ansari H., Otto T.D., Klinger C.M., Kolisko M., MichálekJ., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., AliS., Bernal A., del Campo J., Cihlář J., Flegontov P. i wsp.: Chromeridgenomes reveal the evolutionary path from photosynthetic algae toobligate intracellular parasites. eLife, 2015; 4: e06974
    Google Scholar

Full text

Skip to content