The role of resveratrol in the regulation of cell metabolism – a review

COMMENTARY ON THE LAW

The role of resveratrol in the regulation of cell metabolism – a review

Marek Pieszka 1 , Paulina Szczurek 1 , Katarzyna Ropka-Molik 2 , Maria Oczkowicz 2 , Magdalena Pieszka 3

1. Dział Żywienia Zwierząt i Paszoznawstwa, Instytut Zootechniki PIB, Balice
2. Dział Genomiki i Biologii Molekularnej Zwierząt, Instytut Zootechniki PIB, Balice
3. Instytut Nauk o Zwierzętach, Uniwersytet Rolniczy w Krakowie

Published: 2016-02-25
DOI: 10.5604/17322693.1195844
GICID: 01.3001.0009.6791
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 117-123

 

Abstract

Moderate wine drinking is associated with reduced risk of cardiovascular, cerebrovascular and peripheral vascular disease, and reduced risk of cancer. This phenomenon is called the “French paradox”, since it was observed for the first time in France – a country famous for its wine production. In the literature, the cardioprotective effect of wine is very well described and attributed mainly to contained therein resveratrol. Recently, it has been demonstrated that resveratrol extends the lifespan of yeast through activation of the SirT1 longevity gene, which is also responsible for the longevity caused by caloric restriction. Furthermore, resveratrol exhibits high biological activity, affecting cell structures and contributing to their protection. This paper summarizes the available reports on functional and molecular aspects of resveratrol, wines and grapes as a result of the activation of longevity genes.

References

  • 1. Aluyen J.K., Ton Q.N., Tran T., Yang A.E., Gottlieb H.B., Bellanger,R.A.: Resveratrol: potential as anticancer agent. J. Diet. Suppl.,2012; 9: 45-56
    Google Scholar
  • 2. Artero A., Artero A., Tarín J.J., Cano A.: The impact of moderatewine consumption on health. Maturitas, 2015; 80: 3-13
    Google Scholar
  • 3. Barger J.L., Kayo T., Vann J.M., Arias E.B., Wang J., Hacker T.A.,Wang Y., Raederstorff D., Morrow J.D., Leeuwenburgh C., AllisonD.B., Saupe K.W., Cartee G.D., Weindruch R., Prolla T.A.: A low doseof dietary resveratrol partially mimics caloric restriction and retardsaging parameters in mice. PLoS One, 2008; 3: e2264
    Google Scholar
  • 4. Bastianetto S., Ménard C., Quirion R.: Neuroprotective action ofresveratrol. Biochim. Biophys. Acta, 2015; 1852: 1195-1201
    Google Scholar
  • 5. Baur J.A., Pearson K.J., Price N.L., Jamieson H.A., Lerin C., Kalra A.,Prabhu V.V., Allard J.S., Lopez-Lluch G., Lewis K., Pistell P.J., PoosalaS., Becker K.G., Boss O., Gwinn D. i wsp.: Resveratrol improves healthand survival of mice on a high-calorie diet. Nature, 2006; 444: 337-342
    Google Scholar
  • 6. Bhullar K.S., Hubbard B.P.: Lifespan and healthspan extension byresveratrol. Biochim. Biophys. Acta, 2015; 1852: 1209-1218
    Google Scholar
  • 7. Blüher M., Kahn B.B., Kahn C.R.: Extended longevity in mice lackingthe insulin receptor in adipose tissue. Science, 2003; 299: 572-574
    Google Scholar
  • 8. Bradamante S., Piccinini F., Barenghi L., Bertelli A.A., De Jonge R.,Beemster P., De Jong J.W.: Does resveratrol induce phar-macologicalpreconditioning? Int. J. Tissue React., 2000; 22: 1-4
    Google Scholar
  • 9. Brasnyó P., Molnár G.A., Mohás M., Markó L., Laczy B., Cseh, J.,Mikolás E., Szijártó I.A., Mérei A., Halmai R., Mészáros L.G., SümegiB., Wittmann I.: Resveratrol improves insulin sensitivity, reducesoxidative stress and activates the Akt pathway in type 2 diabeticpatients. Br. J. Nutr., 2011; 106: 383-389
    Google Scholar
  • 10. Celotti E., Ferrarini R., Zironi R., Conte L.S.: Resveratrol contentof some wines obtained from dried Valpolicella grapes: Recioto Amarone.J. Chromatogr. A., 1996; 730: 47-52
    Google Scholar
  • 11. Chang H.C., Guarente L.: SIRT1 and other sirtuins in metabolism.Trends Endocrinol. Metab,, 2014; 25: 138-145
    Google Scholar
  • 12. Chiva-Blanch G., Arranz S., Lamuela-Raventos R.M., Estruch R.:Effects of wine, alcohol and polyphenols on cardiovascular diseaserisk factors: evidences from human studies. Alcohol Alcohol., 2013;48: 270-277
    Google Scholar
  • 13. Dal-Pan A., Pifferi F., Marchal J., Picq J.L., Aujard F., RESTRIKALConsortium: Cognitive performances are selectively enhanced duringchronic caloric restriction or resveratrol supplementation ina primate. PloS One, 2011; 6: e16581
    Google Scholar
  • 14. Dang W.: The controversial world of sirtuins. Drug Discov. Today:Technol., 2014; 12: e9-e17
    Google Scholar
  • 15. Delmas D., Solary E., Latruffe N.: Resveratrol, a phytochemicalinducer of multiple cell death pathways: apoptosis, autophagy andmitotic catastrophe. Curr. Med. Chem., 2011; 18: 1100-1121
    Google Scholar
  • 16. Dudley J., Das S., Mukherjee S., Das D.K.: Resveratrol, a uniquephytoalexin present in red wine, delivers either survival signal ordeath signal to the ischemic myocardium depending ondose. J. Nutr.Biochem., 2009; 20: 443-452
    Google Scholar
  • 17. Fontana L., Partridge L., Longo V.D.: Extending healthy life span– from yeast to humans. Science, 2010; 328: 321-326
    Google Scholar
  • 18. Giovinazzo G., Ingrosso I., Paradiso A., De Gara L., Santino A.:Resveratrol biosynthesis: plant metabolic engineering for nutritionalimprovement of food. Plant Foods Hum. Nutr., 2012; 67: 191-199
    Google Scholar
  • 19. Gordish K.L., Beierwaltes W.H.: Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitricoxide and reactive oxygen species scavenging. Am. J. Physiol. RenalPhysiol., 2014; 306: F542-F550
    Google Scholar
  • 20. Guarente L., Picard F.: Calorie restriction – the SIR2 connection.Cell, 2005; 120: 473-482
    Google Scholar
  • 21. Hain R., Bieseler B., Kindl H., Schroder G., Stöcker R.: Expressionof a stilbene synthase gene in Nicotiana tabacum results in synthesisof the phytoalexin resveratrol. Plant. Mol. Biol., 1990; 15: 325-335
    Google Scholar
  • 22. Howitz K.T., Bitterman K.J., Cohen H.Y., Lamming D.W., Lavu S.,Wood J.G., Zipkin R.E., Chung P., Kisielewski A., Zhang L.L., SchererB., Sinclair D.A.: Small molecule activators of sirtuins extend Saccharomycescerevisiae lifespan. Nature, 2003; 425: 191-196
    Google Scholar
  • 23. Huang T.C., Lu K.T., Wo Y.Y., Wu Y.J., Yang Y.L.: Resveratrol protectsrats from Aβ-induced neurotoxicity by the reduction of iNOSexpression and lipid peroxidation. PLoS One, 2011; 6: e29102
    Google Scholar
  • 24. Hubbard B.P., Sinclair D.A.: Small molecule SIRT1 activators forthe treatment of aging and age-related diseases. Trends Pharmacol.Sci., 2014; 35: 146-154
    Google Scholar
  • 25. Janssen I., Landay A.L., Ruppert K., Powell L.H.: Moderate wineconsumption is associated with lower hemostatic and inflammatoryrisk factors over 8 years: the study of women’s health across the nation(SWAN). Nutr. Aging, 2014; 2: 91-99
    Google Scholar
  • 26. Kim S., Bi X., Czarny-Ratajczak M., Dai J., Welsh D.A., Myers L.,Welsch M.A., Cherry K.E., Arnold J., Poon L.W., Jazwinski S.M.: Telomeremaintenance genes SIRT1 and XRCC6 impact age-related declinein telomere length but only SIRT1 is associated with humanlongevity. Biogerontology, 2012; 13: 119-131
    Google Scholar
  • 27. Kisková T., Jendželovský R., Rentsen E., Maier-Salamon A.,Kokošová N., Papcová Z., Mikeš J., Orendáš P., Bojková B., KubatkaP., Svoboda M., Kajo K., Fedoročko P., Jäger W., Ekmekcioglu C., KassayováM., Thalhammer T.: Resveratrol enhances the chemopreventiveeffect of celecoxib in chemically induced breast cancer in rats.Eur. J. Cancer Prev., 2014; 23: 506-513
    Google Scholar
  • 28. Kopp P.: Resveratrol, a phytoestrogen found in red wine. A possibleexplanation for the conundrum of the ‘French paradox’? Eur.J. Endocrinol., 1998; 138: 619-620
    Google Scholar
  • 29. Lagouge M., Argmann C., Gerhart-Hines Z., Meziane H., LerinC., Daussin F., Messadeq N., Milne J., Lambert P., Elliott P., Geny B.,Laakso M., Puigserver P., Auwerx J.: Resveratrol improves mitochondrialfunction and protects against metabolic disease by activatingSIRT1 and PGC-1alpha. Cell, 2006; 127: 1109-1122 30 Lephart E.D., Sommerfeldt J.M., Andrus M.B.: Resveratrol: influenceson gene expression in human skin. J. Functional Foods,2014; 10: 377-384
    Google Scholar
  • 30. days of resveratrol supplementation on energy metabolism andmetabolic profile in obese humans. Cell Metab., 2011; 14: 612-622
    Google Scholar
  • 31. Li Y.G., Zhu W., Tao J.P., Xin P., Liu M.Y., Li J.B., Wei M.: Resveratrolprotects cardiomyocytes from oxidative stress through SIRT1and mitochondrial biogenesis signaling pathways. Biochem. Biophys.Res. Commun., 2013; 438: 270-276
    Google Scholar
  • 32. Lofrumento D.D., Nicolardi G., Cianciulli A., De Nuccio F., La PesaV., Carofiglio V., Dragone T., Calvello R., Panaro M.A.: Neuroprotectiveeffects of resveratrol in an MPTP mouse model of Parkinson’slikedisease: possible role of SOCS-1 in reducing pro-inflammatoryresponses. Innate Immun., 2014; 20: 249-260
    Google Scholar
  • 33. Ma Q., Zhang M., Wang Z., Ma Z., Sha H.: The beneficial effectof resveratrol on severe acute pancreatitis. Ann. N.Y. Acad. Sci.,2011; 1215: 96-102
    Google Scholar
  • 34. Marchal J., Pifferi F., Aujard F.: Resveratrol in mammals: effectson aging biomarkers, age‐related diseases, and life span. Ann. N.Y.Acad. Sci., 2013; 1290: 67-73
    Google Scholar
  • 35. Mattison J.A., Wang M., Bernier M., Zhang J., Park S.S., MaudsleyS., An S.S., Santhanam L., Martin B., Faulkner S., Morrell C., BaurJ.A., Peshkin L., Sosnowska D., Csiszar A. i wsp.: Resveratrol preventshigh fat/sucrose diet-induced central arterial wall inflammationand stiffening in nonhuman primates. Cell Metab., 2014; 20: 183-190
    Google Scholar
  • 36. Mbimba T., Awale P., Bhatia D., Geldenhuys W.J., Darvesh A.S.,Carroll R.T., Bishayee A.: Alteration of hepatic proinflammatory cytokinesis involved in the resveratrol-mediated chemoprevention ofchemically-induced hepatocarcinogenesis. Curr. Pharm. Biotechnol.,2012; 13: 229-234
    Google Scholar
  • 37. Meng C., Liu J.L., Du A.L.: Cardioprotective effect of resveratrolon atherogenic diet-fed rats. Inter. J. Clin. Exp. Pathol, 2014;7: 7899-7906
    Google Scholar
  • 38. Mokni M., Liman F., Elkahoui S., Amri M., Aoani E.: Strong cardioprotectiveeffect of resveratrol, a red wine polyphenol on isolatedrat hearts after ischemia/reperfusion injury. Arch. Biochem.Biophys., 2007; 457: 1-6
    Google Scholar
  • 39. Motta M.C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W.,Bultsma Y., McBurney M., Guarente L.: Mammalian SIRT1 repressesforkhead transcription factors. Cell, 2004; 116: 551-563
    Google Scholar
  • 40. Movahed A., Yu L., Thandapilly S.J., Louis X.L., Netticadan T.:Resveratrol protects adult cardiomyocytes against oxidative stressmediated cell injury. Arch. Biochem. Biophys., 2012; 527: 74-80
    Google Scholar
  • 41. Mukherjee S., Lekli I., Gurusamy N., Bertelli A.A., Das D.K.:Expression of the longevity proteins by both red and white winesand their cardioprotective components, resveratrol, tyrosol, andhydroxytyrosol. Free Radic. Biol. Med., 2009; 46: 573-578
    Google Scholar
  • 42. Nwachukwu J.C., Srinivasan S., Bruno N.E., Parent A.A., HughesT.S., Pollock J.A., Gjyshi O., Cavett V., Nowak J., Garcia-Ordonez R.D.,Houtman R., Griffin P.R., Kojetin D.J., Katzenellenbogen J.A., ConkrightM.D., Nettles K.W.: Resveratrol modulates the inflammatoryresponse via an estrogen receptor-signal integration network. Elife,2014; 3: e02057
    Google Scholar
  • 43. Orsu P., Murthy B.V., Akula A.: Cerebroprotective potential ofresveratrol trough anti-oxidant and anti-inflammatory mechanismsin rats. J. Neural. Transm., 2013; 120: 1217-1223
    Google Scholar
  • 44. Patel K.R., Scott E., Brown V.A., Gescher A.J., Steward W.P., BrownK.: Clinical trials of resveratrol. Ann. N.Y. Acad. Sci., 2011; 1215: 161-169
    Google Scholar
  • 45. Pezzuto J.M.: The phenomen of resveratrol: redefining the virtuesof promiscuity. Ann. N.Y. Acad. Sci., 2011; 1215: 123-130
    Google Scholar
  • 46. Rascon B., Hubbard B.P., Sinclair D.A., Amdam G.V.: The lifespanextension effects of resveratrol are conserved in the honey bee andmay be driven by a mechanism related to caloric restriction. Aging,2012; 4: 499-508
    Google Scholar
  • 47. Rikiishi H.: Autophagic and apoptotic effects of HDAC inhibitorson cancer cells. J. Biomed. Biotechnol., 2011; 2011: 830260
    Google Scholar
  • 48. Rupprich N., Hildebrand H., Kindl H.: Substrate specificity invivo and in vitro in the formation of stilbenes. Biosynthesis of rhaponticin.Arch. Biochem. Biophys., 1980; 200: 72-78
    Google Scholar
  • 49. Sahin E., DePinho R.A.: Linking functional decline of telomeres,mitochondria and stem cells during ageing. Nature, 2010; 464:520-528
    Google Scholar
  • 50. Schmatz R., Mann T.R., Spanevello R., Machado M.M., ZaniniD., Pimentel V.C., Stefanello N., Martins C.C., Cardoso A.M., BagatiniM., Gutierres J., Leal C.A., Pereira L.B., Mazzanti C., Schetinger M.R., Morsch V.M.: Moderate red wine and grape juice consumptionmodulates the hydrolysis of the adenine nucleotides and decreasesplatelet aggregation in streptozotocin-induced diabetic rats. Cell Biochem. Biophys., 2013; 65: 129-143
    Google Scholar
  • 51. Sebastia N., Montoro A., Manes J., Soriano J.M.: A preliminarystudy of presence of resveratrol in skins and pulps of Europeanand Japanese plum cultivars. J. Sci. Food Agric., 2012; 92: 3091-3094
    Google Scholar
  • 52. Sharma S., Kulkarni S.K., Chopra K.: Resveratrol, a poly-phenolicphytoalexin attenuates thermal hyperalgesia and cold allodyniain STZ-induced diabetic rats. Indian J. Exp. Biol., 2006; 44: 566-569
    Google Scholar
  • 53. Smith-Vikos T., de Lencastre A., Inukai S., Shlomchik M., HoltrupB., Slack F.J.: MicroRNAs mediate dietary-restriction-inducedlongevity through PHA-4/FOXA and SKN-1/Nrf transcription factors.Curr. Biol., 2014; 24: 2238-2246
    Google Scholar
  • 54. Stiaccini G., Mannari C., Bertelli A.A., Giovannini L.: Resveratrol–poor red wines modulate SIRT1 in human renal cells. Plant FoodsHum. Nutr., 2012; 67: 289-293
    Google Scholar
  • 55. Sun A.Y., Simonyi A., Sun G.Y.: The ‘‘French Paradox’’ and beyond:neuroprotective effects of polyphenols. Free Radic. Biol. Med.,2002; 32: 314-318
    Google Scholar
  • 56. Tang P.C., Ng Y.F., Ho S., Gyda M., Chan S.W.: Resveratrol andcardiovascular health–promising therapeutic or hopeless illusion?Pharmacol. Res., 2014; 90: 88-115
    Google Scholar
  • 57. Timmers S., Auwerx J., Schrauwen P.: The journey of resveratrolfrom yeast to human. Aging, 2012; 4: 146-158
    Google Scholar
  • 58. Timmers S., Konings E., Bilet L., Houtkooper R.H., van de WeijerT., Goossens G.H., Hoeks J., van der Krieken S., Ryu D., Kersten S., Moonen-Kornips E., Hesselink M.K., Kunz I., Schrauwen-Hinderlig V.B.,Blaak E.E., Auwerx J., Schrauwen P.: Calorie restriction-like effects of
    Google Scholar
  • 59. Toliopoulos I.K., Simos Y.V., Oikonomidis S., Karkabounas S.C.:Resveratrol diminishes platelet aggregation and increases susceptibilityof K562 tumor cells to natural killer cells. Indian J. Biochem.Biophys., 2013; 50: 14-18
    Google Scholar
  • 60. Wang L.M., Wang Y.J., Cui M., Luo W.J., Wang X.J., Barber P.A.,Chen Z.Y.: A dietary polyphenol resveratrol acts to provide neuroprotectionin recurrent stroke models by regulating AMPK and SIRT1signaling, thereby reducing energy requirements during ischemia.Eur. J. Neurosci., 2013; 37: 1669-1681
    Google Scholar
  • 61. Yazir Y., Utkan T., Gacar N., Aricioglu F.: Resveratrol exerts anti–inflammatory and neuroprotective effects to prevent memory deficitsin rats exposed to chronic unpredictable mild stress. Physiol.Behav, 2015; 138: 297-304
    Google Scholar
  • 62. Yu W., Fu Y.C., Wang W.: Cellular and molecular effects of resveratrolin health and disease. J. Cell. Biochem., 2012; 113: 752-759
    Google Scholar

Full text

Skip to content