Pancreatic cancer- mechanisms of chemoresistance
Barbara Borowa-Mazgaj 1Abstract
Despite the enormous progress made over the past decades in diagnosis, treatment and prevention of many types of tumor, the survival rate for pancreatic cancer still remains poor. Pancreatic cancer is one of the most malignant and chemotherapy-resistant tumors. That is mainly due to the lack of effective diagnosis at an early stage of tumor development and ineffective therapy. In most patients the disease is diagnosed at an advanced, metastatic stage and only 15-20% of patients are eligible for surgical removal of the tumor, which still remains the only chance for radical treatment. Studies in recent years have not yielded significant progress in the treatment of disease, and gemcitabine or its combinations with other chemotherapeutics such as erlotinib or capecitabine still remains the standard therapy. Although mechanisms of cell death induced by gemcitabine and other chemotherapeutic agents are well known, their effectiveness is limited due to the acquisition of drug resistance by pancreatic cancer cells. So far, mechanisms of resistance have been tested for mutations in many genes – the key to proper functioning of signaling pathways in cancer cells. However, recent studies suggest a significant role of the tumor microenvironment in the development and maintaining resistance to conventionally used chemotherapeutic and targeted therapies. Drug resistance of pancreatic cancer results from multiple mechanisms, which may include the following: mutations in key genes, aberrant gene expression, deregulation of key signaling pathways, apoptotic pathways, the capacity for epithelial-mesenchymal transition (EMT), increased angiogenesis, the presence of cancer stem cells or the presence of a hypoxic microenvironment inside the tumor.
References
- 1. Abel E.V., Simeone D.M.: Biology and clinical applications of pancreaticcancer stem cells. Gastroenterology, 2013; 144: 1241-1248
Google Scholar - 2. American Cancer Society: Cancer Facts & Figures 2014. Atlanta:Am. Cancer Soc., 2014
Google Scholar - 3. Anuchapreeda S., Leechanachai P., Smith M.M., Ambudkar S.V.,Limtrakul P.N. Modulation of P-glycoprotein expression and functionby curcumin in multidrug-resistant human KB cells. Biochem.Pharmacol., 2002; 64: 573-582
Google Scholar - 4. Arumugam T., Ramachandran V., Fournier K.F., Wang H., MarquisL., Abbruzzese J.L., Gallick G.E., Logsdon C.D., McConkey D.J., Choi W.:Epithelial to mesenchymal transition contributes to drug resistancein pancreatic cancer. Cancer Res., 2009; 69: 5820-5828
Google Scholar - 5. Baenke F., Peck B., Miess H., Schulze A.: Hooked on fat: the roleof lipid synthesis in cancer metabolism and tumour development.Dis. Model. Mech., 2013; 6: 1353-1363
Google Scholar - 6. Barnes D., Sato G.: Methods for growth of cultured cells in serum–free medium. Anal. Biochem. 1980; 102: 255-270
Google Scholar - 7. Bisht S., Mizuma M., Feldmann G., Ottenhof N.A., Hong S.M.,Pramanik D., Chenna V., Karikari C., Sharma R., Goggins M.G., RudekM.A., Ravi R., Maitra A., Maitra A.: Systemic administration ofpolymeric nanoparticle-encapsulated curcumin (NanoCurc) blockstumor growth and metastases in preclinical models of pancreaticcancer. Mol. Cancer Ther., 2010; 9: 2255-2264
Google Scholar - 8. Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., HaganJ.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M.: MicroRNA expressionpatterns to differentiate pancreatic adenocarcinoma from normalpancreas and chronic pancreatitis. JAMA, 2007; 297: 1901-1908
Google Scholar - 9. Bryant K.L., Mancias J.D., Kimmelman A.C., Der C.J.: KRAS: feedingpancreatic cancer proliferation. Trends Biochem. Sci., 2014;39: 91-100
Google Scholar - 10. Büchler P., Reber H.A., Lavey R.S., Tomlinson J., Büchler M.W.,Friess H., Hines O.J.: Tumor hypoxia correlates with metastatic tumorgrowth of pancreatic cancer in an orthotopic murine model. J.Surg. Res., 2004; 120: 295-303
Google Scholar - 11. Burchell B., Brierley C.H., Rance D.: Specificity of human UDP -glucuronosyltransferases and xenobiotic glucuronidation. Life Sci.,1995; 57: 1819-1831
Google Scholar - 12. Burris H.A.3rd, Moore M.J., Andersen J., Green M.R., RothenbergM.L., Modiano M.R., Cripps M.C., Portenoy R.K., Storniolo A.M., TarassoffP., Nelson R., Dorr F.A., Stephens C.D., Von Hoff D.D.: Improvementsin survival and clinical benefit with gemcitabine as first-linetherapy for patients with advanced pancreas cancer: a randomizedtrial. J. Clin. Oncol., 1997; 15: 2403-2413
Google Scholar - 13. Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E.,Aldler H., Rattan S., Keating M., Rai K., Rassenti L., Kipps T., NegriniM., Bullrich F., Croce C.M.: Frequent deletions and down-regulationof micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocyticleukemia. Proc. Natl. Acad. Sci. USA, 2002; 99: 15524-15529
Google Scholar - 14. Cannito S., Novo E., Compagnone A., Valfre di Bonzo L., BuslettaC., Zamara E., Paternostro C., Povero D., Bandino A., Bozzo F., CravanzolaC., Bravoco V., Colombatto S., Parola M.: Redox mechanismsswitch on hypoxia-dependent epithelial-mesenchymal transition incancer cells. Carcinogenesis, 2008; 29: 2267-2278
Google Scholar - 15. Carmeliet P., Dor, Y., Herbert J.M., Fukumura D., BrusselmansK., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P.,Koch C.J., Ratcliffe P., Moons L., Jain R.K., Collen D., Keshert E.: Roleof HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumourangiogenesis. Nature, 1998; 394: 485-490
Google Scholar - 16. Cascorbi I.: Role of pharmacogenetics of ATP-binding cassettetransporters in the pharmacokinetics of drugs. Pharmacol. Ther.,2006; 112: 457-473
Google Scholar - 17. Chang T.C., Wentzel E.A., Kent O.A., Ramachandran K., MullendoreM., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., LowensteinC.J., Arking D.E., Beer M.A., Maitra A., Mendell J.T.: Transactivationof miR-34a by p53 broadly influences gene expression and promotesapoptosis. Mol. Cell, 2007; 26: 745-752
Google Scholar - 18. Clerc P., Bensaadi N., Pradel P., Estival A., Clemente F., Vaysse N.:Lipid-dependent proliferation of pancreatic cancer cell lines. CancerRes., 1991; 51: 3633-3638
Google Scholar - 19. Court H., Philips M.R., Bar-Sagi D.: Molecular Genetics of PancreaticCancer, Springer, 2013
Google Scholar - 20. Czernik P., Radominska-Pandya A.: Uses of human UDP-glucuronosyltransferase2B7 to detect and treat cancer. Patent nr.US20020198167 A1, Data publikacji: 26.12.2002
Google Scholar - 21. Day J.D., Digiuseppe J.A., Yeo C., Lai-Goldman M., Anderson S.M.,Goodman S.N., Kern S.E., Hruban R.H.: Immunohistochemical evaluationof HER-2/neu expression in pancreatic adenocarcinoma andpancreatic intraepithelial neoplasms. Hum. Pathol., 1996; 27: 119-124
Google Scholar - 22. DeBerardinis R.J., Is cancer a disease of abnormal cellular metabolism?New angles on an old idea. Genet. Med., 2008; 10: 767-777
Google Scholar - 23. Duffy J.P., Eibl G., Reber H.A., Hines O.J.: Influence of hypoxiaand neoangiogenesis on the growth of pancreatic cancer. Mol. Cancer,2003; 2: 12
Google Scholar - 24. Elliott R.L., Blobe G.C.: Role of transforming growth factor Betain human cancer. J. Clin. Oncol., 2005; 23: 2078-2093
Google Scholar - 25. Flavin R., Peluso S., Nguyen P.L., Loda M.: Fatty acid synthaseas a potential therapeutic target in cancer. Future Oncol., 2010; 6:551-562
Google Scholar - 26. Giovannetti E., Mey V., Nannizzi S., Pasqualetti G., Del Tacca M.,Danesi R.: Pharmacogenetics of anticancer drug sensitivity in pancreaticcancer. Mol. Cancer Ther., 2006; 5: 1387-1395
Google Scholar - 27. Guillemette C.: Pharmacogenomics of human UDP-glucuronosyltransferaseenzymes. Pharmacogenomics J., 2003; 3: 136-158
Google Scholar - 28. Guo J.Y., Chen H.Y., Mathew R., Fan J., Strohecker A.M., Karsli–Uzunbas G., Kamphorst J.J., Chen G., Lemons J.M., Karantza V., CollerH.A., Dipaola R.S., Gelinas C., Rabinowitz J.D., White E.: Activated Rasrequires autophagy to maintain oxidative metabolism and tumorigenesis Genes Dev., 2011; 25: 460-470
Google Scholar - 29. Hagmann W., Jesnowski R., Faissner R., Guo C., Lohr J.M.: Atp–binding cassette C transporters in human pancreatic carcinomacell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology,2009; 9: 136-144
Google Scholar - 30. Hagmann W., Jesnowski R., Löhr J.M.: Interdependence of gemcitabinetreatment, transporter expression, and resistance in humanpancreatic carcinoma cells. Neoplasia, 2010; 12: 740-747
Google Scholar - 31. Hahn S.A., Greenhalf B., Ellis I., Sina-Frey M., Rieder H., Korte B.,Gerdes B., Kress R., Ziegler A., Raeburn J.A., Campra D., GrützmannR., Rehder H., Rothmund M., Schmiegel W. i wsp.: BRCA2 germlinemutations in familial pancreatic carcinoma. J. Natl. Cancer Inst.,2003; 95: 214-221
Google Scholar - 32. Harms K.L., Chen X.: The C terminus of p53 family proteins isa cell fate determinant. Mol. Cell. Biol., 2005; 25: 2014-2030
Google Scholar - 33. Hermann P.C., Huber S.L., Herrler T., Aicher A., Ellwart J.W., GubaM., Bruns C.J., Heeschen C.: Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreaticcancer. Cell Stem Cell, 2007; 1: 313-323
Google Scholar - 34. Herreros-Villanueva M., Zubia-Olascoaga A., Bujanda L.: c-Metin pancreatic cancer stem cells: therapeutic implications. World J.Gastroenterol., 2012; 18: 5321-5323
Google Scholar - 35. Hindriksen S., Bijlsma M.F.: Cancer stem cells, EMT, and developmentalpathway activation in pancreatic tumors. Cancers, 2012;4: 989-1035
Google Scholar - 36. Höckel M., Vaupel P.: Tumor hypoxia: definitions and currentclinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001;93: 266-276
Google Scholar - 37. Höckel M., Vorndran B., Schlenger K., Baussmann E., KnapsteinP.G.: Tumor oxygenation: a new predictive parameter in locallyadvanced cancer of the uterine cervix. Gynecol. Oncol., 1993; 51:141-149
Google Scholar - 38. Hosotani R., Miyamoto Y., Fujimoto K., Doi R., Otaka A., FujiiN., Imamura M.: Trojan p16 peptide suppresses pancreatic cancergrowth and prolongs survival in mice. Clin. Cancer Res., 2002; 8:1271-1276
Google Scholar - 39. Huber M.A., Kraut N., Beug H.: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr.Opin. Cell Biol., 2005; 17: 548-558
Google Scholar - 40. Hugo H., Ackland M.L., Blick T., Lawrence M.G., Clements J.A.,Williams E.D., Thompson E.W.: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell.Physiol., 2007; 213: 374-383
Google Scholar - 41. Hung M.C., Lau Y.K.: Basic science of HER-2/neu: a review. Semin.Oncol., 1999; 26 (Suppl. 12): 51-59
Google Scholar - 42. Iwatsuki M., Mimori K., Yokobori T., Ishi H., Beppu T., NakamoriS., Baba H., Mori M.: Epithelial-mesenchymal transition incancer development and its clinical significance. Cancer Sci., 2010;101: 293-299
Google Scholar - 43. Javle M.M., Gibbs J.F., Iwata K.K., Pak Y., Rutledge P., Yu J., BlackJ.D., Tan D., Khoury T.: Epithelial-mesenchymal transition (EMT) andactivated extracellular signal-regulated kinase (p-Erk) in surgicallyresected pancreatic cancer. Ann. Surg. Oncol., 2007; 14: 3527-3533
Google Scholar - 44. Kalluri R., Weinberg R.A.: The basics of epithelial-mesenchymaltransition. J. Clin. Invest., 2009; 119: 1420-1428
Google Scholar - 45. Klein A.P.: Genetic susceptibility to pancreatic cancer. Mol. Carcinog.,2012; 51: 14-24
Google Scholar - 46. Konig J., Hartel M., Nies A.T., Martignoni M.E., Guo J., BuchlerM.W., Friess H., Keppler D.: Expression and localization of humanmultidrug resistance protein (ABCC) family members in pancreaticcarcinoma. Int. J. Cancer, 2005; 115: 359-367
Google Scholar - 47. Koong A.C., Mehta V.K., Le Q.T., Fisher G.A., Terris D.J., BrownJ.M., Bastidas A.J., Vierra M.: Pancreatic tumors show high levels ofhypoxia. Int. J. Radiat. Oncol. Biol. Phys., 2000; 48: 919-922
Google Scholar - 48. Kroep J.R., Pinedo H.M., van Groeningen C.J., Peters G.J.: Experimentaldrugs and drug combinations in pancreatic cancer. Ann.Oncol., 1999; 10 (Suppl. 4): 234-238
Google Scholar - 49. Kubbutat M.H., Jones S.N., Vousden K.H.: Regulation of p53 stabilityby Mdm2. Nature, 1997; 387: 299-303
Google Scholar - 50. Kunnumakkara A.B., Guha S., Krishnan S., Diagaradjane P., GelovaniJ., Aggarwal B.B.: Curcumin potentiates antitumor activity ofgemcitabine in an orthotopic model of pancreatic cancer throughsuppression of proliferation, angiogenesis, and inhibition of nuclearfactor-κB-regulated gene products. Cancer Res., 2007; 67: 3853-3861
Google Scholar - 51. Laghi L., Orbetegli O., Bianchi P., Zerbi A., Di Carlo V., BolandC.R, Malesci A.: Common occurrence of multiple K-RAS mutations inpancreatic cancers with associated precursor lesions and in biliarycancers. Oncogene, 2002; 21: 4301-4306
Google Scholar - 52. Levine A.J., Momand J., Finlay C.A.: The p53 tumour suppressorgene. Nature, 1991; 351: 453-456
Google Scholar - 53. Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., WichaM., Clarke M.F., Simeone D.M.: Identification of pancreatic cancerstem cells. Cancer Res., 2007; 67: 1030-1037
Google Scholar - 54. Li D., Xie K., Wolff R., Abbruzzese J.L.: Pancreatic cancer. Lancet,2004; 363: 1049-1057
Google Scholar - 55. Limtrakul P., Chearwae W., Shukla S., Phisalphong C., AmbudkarS.V.: Modulation of function of three ABC drug transporters, P-glycoprotein(ABCB1), mitoxantrone resistance protein (ABCG2) andmultidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin,a major metabolite of curcumin. Mol. Cell. Biochem., 2007; 296: 85-95
Google Scholar - 56. Lobo N.A., Shimono Y., Qian D., Clarke M.F.: The biology of cancerstem cells. Annu. Rev. Cell Dev. Biol., 2007; 23: 675-699
Google Scholar - 57. Lonardo E., Hermann P.C., Mueller M.T., Huber S., Balic A., Miranda-Lorenzo I., Zagorac S., Alcala S., Rodriguez-Arabaolaza I., RamirezJ.C., Torres-Ruíz R., Garcia E., Hidalgo M., Cebrián D.Á., HeuchelR. i wsp.: Nodal/Activin signaling drives self-renewal and tumorigenicityof pancreatic cancer stem cells and provides a target forcombined drug therapy, 2011; 9: 433-446
Google Scholar - 58. Long J., Zhang Y., Yu X., Yang J., LeBrun D.G., Chen C., Yao Q., LiM.: Overcoming drug resistance in pancreatic cancer. Expert Opin.Ther. Targets, 2011; 15: 817-828
Google Scholar - 59. Maxwell P.H., Dachs G.U., Gleadle J.M., Nicholls L.G., Harris A.L.,Stratford I.J., Hankinson O., Pugh C.W., Ratcliffe P.J.: Hypoxia-induciblefactor-1 modulates gene expression in solid tumors and influencesboth angiogenesis and tumor growth. Proc. Natl. Acad. Sci.USA, 1997; 94: 8104-8109
Google Scholar - 60. McKeehan W.L.: The role of nutrients in control of normal andmalignant cell growth. W: Molecular Interrelations of Nutrition andCancer, red.: M.S. Arnott, J. Van Eys, Y.M. Wang. Raven Press, NewYork 1982; 249-263
Google Scholar - 61. Medes G., Thomas A., Weinhouse S.: Metabolism of neoplastictissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro.Cancer Res., 1953; 13: 27-29
Google Scholar - 62. Meech R., Mackenzie P.I.: Structure and function of uridine diphosphateglucuronosyltransferases. Clin. Exp. Pharmacol. Physiol.,1997; 24: 907-915
Google Scholar - 63. Moore M.J., Goldstein D., Hamm J., Figer A., Hecht J.R., GallingerS., Au H.J., Murawa P., Walde D., Wolff R.A., Campos D., Lim R., DingK., Clark G., Voskoglou-Nomikos T. i wsp.: Erlotinib plus gemcitabinecompared with gemcitabine alone in patients with advancedpancreatic cancer: a phase III trial of the National Cancer Instituteof Canada Clinical Trials Group. J. Clin. Oncol., 2007; 25: 1960-1966
Google Scholar - 64. Moriyama T., Ohuchida K., Mizumoto K., Yu J., Sato N., NabaeT., Takahata S., Toma H., Nagai E., Tanaka M.: MicroRNA-21 modulatesbiological functions of pancreatic cancer cells including theirproliferation, invasion, and chemoresistance. Mol. Cancer Ther.,2009; 8: 1067-1074
Google Scholar - 65. Morton J.P., Timpson P., Karim S.A., Ridgway R.A., Athineos D.,Doyle B., Jamieson N.B., Oien K.A., Lowy A.M., Brunton V.G., FrameM.C., Evans T.R., Sansom O.J.: Mutant p53 drives metastasis and overcomesgrowth arrest/senescence in pancreatic cancer. Proc. Natl.Acad. Sci. USA, 2010; 107: 246-251
Google Scholar - 66. Nakajima S., Doi R., Toyoda E., Tsuji S., Wada M., Koizumi M.,Tulachan S.S., Ito D., Kami K., Mori T., Kawaguchi Y., Fujimoto K.,Hosotani R., Imamura M.: N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin. Cancer Res.,2004; 10: 4125-4133
Google Scholar - 67. Natalwala A., Spychal R., Tselepis C.: Epithelial-mesenchymaltransition mediated tumourigenesis in the gastrointestinal tract.World J. Gastroenterol., 2008; 14: 3792-3797
Google Scholar - 68. Nitsche C., Simon P., Weiss F.U., Fluhr G., Weber E., Gärtner S.,Behn C.O., Kraft M., Ringel J., Aghdassi A., Mayerle J., Lerch M.M.:Environmental risk factors for chronic pancreatitis and pancreaticcancer. Dig. Dis., 2011; 29: 235-242
Google Scholar - 69. Ohtsubo K., Watanabe H., Yamaguchi Y., Hu Y.X., Motoo Y., OkaiT., Sawabu N.: Abnormalities of tumor suppressor gene p16 in pancreaticcarcinoma: immunohistochemical and genetic findings comparedwith clinicopathological parameters. J. Gastroenterol., 2003;38: 663-671
Google Scholar - 70. Olive K.P., Jacobetz M.A., Davidson C.J., Gopinathan A., McIntyreD., Honess D., Madhu B., Goldgraben M.A., Caldwell M.E., Allard D.,Frese K.K., Denicola G., Feig C., Combs C., Winter S.P. i wsp.: Inhibitionof Hedgehog signaling enhances delivery of chemotherapy ina mouse model of pancreatic cancer. Science, 2009; 324: 1457-1461
Google Scholar - 71. Patel B.B., Sengupta R., Qazi S., Vachhani H., Yu Y., Rishi A.K.,Majumdar A.P.: Curcumin enhances the effects of 5-fluorouraciland oxaliplatin in mediating growth inhibition of colon cancer cellsby modulating EGFR and IGF-1R. Int. J. Cancer, 2008; 122: 267-273
Google Scholar - 72. Peng B., Fleming J.B., Breslin T., Grau A.M., Fojioka S., AbbruzzeseJ.L., Evans D.B., Ayers D., Wathen K., Wu T., Robertson K.D.,Chiao P.J.: Suppression of tumorigenesis and induction of p15ink4bby Smad4/DPC4 in human pancreatic cancer cells. Clin. Cancer Res.,2002; 8: 3628-3638
Google Scholar - 73. Pratt S., Shepard R.L., Kandasamy R.A., Johnston P.A., PerryW.3rd, Dantzig A.H.: The multidrug resistance protein 5 (ABCC5)confers resistance to 5-fluorouracil and transports its monophosphorylatedmetabolites. Mol. Cancer Ther., 2005; 4: 855-863
Google Scholar - 74. Radominska-Pandya A., Czernik P.J., Little J.M., Battaglia E.,Mackenzie P.I.: Structural and functional studies of UDP-glucuronosyltransferases.Drug Metab. Rev., 1999; 31: 817-899
Google Scholar - 75. Reya T., Morrison S.J., Clarke M.F., Weissman I.L.: Stem cells,cancer, and cancer stem cells. Nature, 2001; 414: 105-111
Google Scholar - 76. Salnikov A.V., Liu L., Platen M., Gladkich J., Salnikova O., RyschichE., Mattern J., Moldenhauer G., Werner J., Schemmer P., Büchler M.W.,Herr I.: Hypoxia induces EMT in low and highly aggressive pancreatictumor cells but only cells with cancer stem cell characteristicsacquire pronounced migratory potential. PLoS One, 2012; 7: e46391
Google Scholar - 77. Sarkar F.H., Li Y., Wang Z., Kong D.: Pancreatic cancer stemcells and EMT in drug resistance and metastasis. Minerva Chir.,2009; 64: 489-500
Google Scholar - 78. Shah A.N., Summy J.M., Zhang J., Park S.I., Parikh N.U., GallickG.E.: Development and characterization of gemcitabine-resistantpancreatic tumor cells. Ann. Surg. Oncol., 2007; 14: 3629-3637
Google Scholar - 79. Shah U.A., Saif M.W.: Tumor markers in pancreatic cancer: 2013.JOP, 2013; 14: 318-321
Google Scholar - 80. Shi Q., Abbruzzese J.L., Huang S., Fidler I.J., Xiong Q., Xie K.: Constitutive and inducible interleukin 8 expression by hypoxia andacidosis renders human pancreatic cells more tumorigenic and metastatic.Clin. Cancer Res., 1999; 5: 3711-3721
Google Scholar - 81. Shin S.J., Kim K.O., Kim M.K., Lee K.H., Hyun M.S., Kim K.J., ChoiJ.H., Song H.S.: Expression of E-cadherin and uPA and their associationwith the prognosis of pancreatic cancer. Jpn. J. Clin. Oncol.,2005; 35: 342-348
Google Scholar - 82. Shukla S., Wu C.P., Ambudkar S.V.: Development of inhibitors ofATP-binding cassette drug transporters: present status and challenges.Expert Opin. Drug Metab. Toxicol., 2008; 4: 205-223
Google Scholar - 83. Simeone D.M.: Pancreatic cancer stem cells: implications for thetreatment of pancreatic cancer. Clin. Cancer Res., 2008; 14: 5646-5648
Google Scholar - 84. Strimpakos A., Saif M.W., Syrigos K.N.: Pancreatic cancer: frommolecular pathogenesis to targeted therapy. Cancer Metastasis Rev.,2008; 27: 495-522
Google Scholar - 85. Szakacs G., Paterson J.K., Ludwig J.A., Booth-Genthe C., GottesmanM.M.: Targeting multidrug resistance in cancer. Nat. Rev. DrugDiscov., 2006; 5: 219-234
Google Scholar - 86. The Alarming Rise of Pancreatic Cancer Deaths in the UnitedStates, Pancreatic Cancer Action Network, 2012
Google Scholar - 87. Thiery J.P. Acloque H., Huang R.Y., Nieto M.A.: Epithelial-mesenchymaltransitions in development and disease. Cell, 2009; 139:871-890
Google Scholar - 88. Wang J., Sen S.: MicroRNA functional network in pancreatic cancer:from biology to biomarkers of disease. J. Biosci., 2011; 36: 481-491
Google Scholar - 89. Xia F., Taghian D.G., DeFrank J.S., Zeng Z.C., Willers H., Iliakis G.,Powell S.N.: Deficiency of human BRCA2 leads to impaired homologousrecombination but maintains normal nonhomologous endjoining. Proc. Nat. Acad. Sci. USA, 2001; 98: 8644-8649
Google Scholar - 90. Yang Y., Liu H., Li Z., Zhao Z., Yip-Schneider M., Fan Q., SchmidtC.M., Chiorean E.G., Xie J., Cheng L., Chen J.H., Zhang J.T.: Role of fattyacid synthase in gemcitabine and radiation resistance of pancreaticcancers. Int. J. Biochem. Mol. Biol., 2011; 2: 89-98
Google Scholar - 91. Yu S., Lu Z., Liu C., Meng Y., Ma Y., Zhao W., Liu J., Yu J., ChenJ.: miRNA-96 suppresses KRAS and functions as a tumor suppressorgene in pancreatic cancer. Cancer Res., 2010; 70: 6015-6025
Google Scholar - 92. Zhang Y., Li M., Wang H., Fisher W.E., Lin P.H., Yao Q., Chen C.:Profiling of 95 microRNAs in pancreatic cancer cell lines and surgicalspecimens by real-time PCR analysis. World J. Surg., 2009; 33: 698-709
Google Scholar