Pancreatic cancer- mechanisms of chemoresistance

COMMENTARY ON THE LAW

Pancreatic cancer- mechanisms of chemoresistance

Barbara Borowa-Mazgaj 1

1. Katedra Technologii Leków i Biochemii, Wydział Chemiczny, Politechnika Gdańska

Published: 2016-03-04
DOI: 10.5604/17322693.1196387
GICID: 01.3001.0009.6796
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 169-179

 

Abstract

Despite the enormous progress made over the past decades in diagnosis, treatment and prevention of many types of tumor, the survival rate for pancreatic cancer still remains poor. Pancreatic cancer is one of the most malignant and chemotherapy-resistant tumors. That is mainly due to the lack of effective diagnosis at an early stage of tumor development and ineffective therapy. In most patients the disease is diagnosed at an advanced, metastatic stage and only 15-20% of patients are eligible for surgical removal of the tumor, which still remains the only chance for radical treatment. Studies in recent years have not yielded significant progress in the treatment of disease, and gemcitabine or its combinations with other chemotherapeutics such as erlotinib or capecitabine still remains the standard therapy. Although mechanisms of cell death induced by gemcitabine and other chemotherapeutic agents are well known, their effectiveness is limited due to the acquisition of drug resistance by pancreatic cancer cells. So far, mechanisms of resistance have been tested for mutations in many genes – the key to proper functioning of signaling pathways in cancer cells. However, recent studies suggest a significant role of the tumor microenvironment in the development and maintaining resistance to conventionally used chemotherapeutic and targeted therapies. Drug resistance of pancreatic cancer results from multiple mechanisms, which may include the following: mutations in key genes, aberrant gene expression, deregulation of key signaling pathways, apoptotic pathways, the capacity for epithelial-mesenchymal transition (EMT), increased angiogenesis, the presence of cancer stem cells or the presence of a hypoxic microenvironment inside the tumor.

References

  • 1. Abel E.V., Simeone D.M.: Biology and clinical applications of pancreaticcancer stem cells. Gastroenterology, 2013; 144: 1241-1248
    Google Scholar
  • 2. American Cancer Society: Cancer Facts & Figures 2014. Atlanta:Am. Cancer Soc., 2014
    Google Scholar
  • 3. Anuchapreeda S., Leechanachai P., Smith M.M., Ambudkar S.V.,Limtrakul P.N. Modulation of P-glycoprotein expression and functionby curcumin in multidrug-resistant human KB cells. Biochem.Pharmacol., 2002; 64: 573-582
    Google Scholar
  • 4. Arumugam T., Ramachandran V., Fournier K.F., Wang H., MarquisL., Abbruzzese J.L., Gallick G.E., Logsdon C.D., McConkey D.J., Choi W.:Epithelial to mesenchymal transition contributes to drug resistancein pancreatic cancer. Cancer Res., 2009; 69: 5820-5828
    Google Scholar
  • 5. Baenke F., Peck B., Miess H., Schulze A.: Hooked on fat: the roleof lipid synthesis in cancer metabolism and tumour development.Dis. Model. Mech., 2013; 6: 1353-1363
    Google Scholar
  • 6. Barnes D., Sato G.: Methods for growth of cultured cells in serum–free medium. Anal. Biochem. 1980; 102: 255-270
    Google Scholar
  • 7. Bisht S., Mizuma M., Feldmann G., Ottenhof N.A., Hong S.M.,Pramanik D., Chenna V., Karikari C., Sharma R., Goggins M.G., RudekM.A., Ravi R., Maitra A., Maitra A.: Systemic administration ofpolymeric nanoparticle-encapsulated curcumin (NanoCurc) blockstumor growth and metastases in preclinical models of pancreaticcancer. Mol. Cancer Ther., 2010; 9: 2255-2264
    Google Scholar
  • 8. Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., HaganJ.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M.: MicroRNA expressionpatterns to differentiate pancreatic adenocarcinoma from normalpancreas and chronic pancreatitis. JAMA, 2007; 297: 1901-1908
    Google Scholar
  • 9. Bryant K.L., Mancias J.D., Kimmelman A.C., Der C.J.: KRAS: feedingpancreatic cancer proliferation. Trends Biochem. Sci., 2014;39: 91-100
    Google Scholar
  • 10. Büchler P., Reber H.A., Lavey R.S., Tomlinson J., Büchler M.W.,Friess H., Hines O.J.: Tumor hypoxia correlates with metastatic tumorgrowth of pancreatic cancer in an orthotopic murine model. J.Surg. Res., 2004; 120: 295-303
    Google Scholar
  • 11. Burchell B., Brierley C.H., Rance D.: Specificity of human UDP -glucuronosyltransferases and xenobiotic glucuronidation. Life Sci.,1995; 57: 1819-1831
    Google Scholar
  • 12. Burris H.A.3rd, Moore M.J., Andersen J., Green M.R., RothenbergM.L., Modiano M.R., Cripps M.C., Portenoy R.K., Storniolo A.M., TarassoffP., Nelson R., Dorr F.A., Stephens C.D., Von Hoff D.D.: Improvementsin survival and clinical benefit with gemcitabine as first-linetherapy for patients with advanced pancreas cancer: a randomizedtrial. J. Clin. Oncol., 1997; 15: 2403-2413
    Google Scholar
  • 13. Calin G.A., Dumitru C.D., Shimizu M., Bichi R., Zupo S., Noch E.,Aldler H., Rattan S., Keating M., Rai K., Rassenti L., Kipps T., NegriniM., Bullrich F., Croce C.M.: Frequent deletions and down-regulationof micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocyticleukemia. Proc. Natl. Acad. Sci. USA, 2002; 99: 15524-15529
    Google Scholar
  • 14. Cannito S., Novo E., Compagnone A., Valfre di Bonzo L., BuslettaC., Zamara E., Paternostro C., Povero D., Bandino A., Bozzo F., CravanzolaC., Bravoco V., Colombatto S., Parola M.: Redox mechanismsswitch on hypoxia-dependent epithelial-mesenchymal transition incancer cells. Carcinogenesis, 2008; 29: 2267-2278
    Google Scholar
  • 15. Carmeliet P., Dor, Y., Herbert J.M., Fukumura D., BrusselmansK., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P.,Koch C.J., Ratcliffe P., Moons L., Jain R.K., Collen D., Keshert E.: Roleof HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumourangiogenesis. Nature, 1998; 394: 485-490
    Google Scholar
  • 16. Cascorbi I.: Role of pharmacogenetics of ATP-binding cassettetransporters in the pharmacokinetics of drugs. Pharmacol. Ther.,2006; 112: 457-473
    Google Scholar
  • 17. Chang T.C., Wentzel E.A., Kent O.A., Ramachandran K., MullendoreM., Lee K.H., Feldmann G., Yamakuchi M., Ferlito M., LowensteinC.J., Arking D.E., Beer M.A., Maitra A., Mendell J.T.: Transactivationof miR-34a by p53 broadly influences gene expression and promotesapoptosis. Mol. Cell, 2007; 26: 745-752
    Google Scholar
  • 18. Clerc P., Bensaadi N., Pradel P., Estival A., Clemente F., Vaysse N.:Lipid-dependent proliferation of pancreatic cancer cell lines. CancerRes., 1991; 51: 3633-3638
    Google Scholar
  • 19. Court H., Philips M.R., Bar-Sagi D.: Molecular Genetics of PancreaticCancer, Springer, 2013
    Google Scholar
  • 20. Czernik P., Radominska-Pandya A.: Uses of human UDP-glucuronosyltransferase2B7 to detect and treat cancer. Patent nr.US20020198167 A1, Data publikacji: 26.12.2002
    Google Scholar
  • 21. Day J.D., Digiuseppe J.A., Yeo C., Lai-Goldman M., Anderson S.M.,Goodman S.N., Kern S.E., Hruban R.H.: Immunohistochemical evaluationof HER-2/neu expression in pancreatic adenocarcinoma andpancreatic intraepithelial neoplasms. Hum. Pathol., 1996; 27: 119-124
    Google Scholar
  • 22. DeBerardinis R.J., Is cancer a disease of abnormal cellular metabolism?New angles on an old idea. Genet. Med., 2008; 10: 767-777
    Google Scholar
  • 23. Duffy J.P., Eibl G., Reber H.A., Hines O.J.: Influence of hypoxiaand neoangiogenesis on the growth of pancreatic cancer. Mol. Cancer,2003; 2: 12
    Google Scholar
  • 24. Elliott R.L., Blobe G.C.: Role of transforming growth factor Betain human cancer. J. Clin. Oncol., 2005; 23: 2078-2093
    Google Scholar
  • 25. Flavin R., Peluso S., Nguyen P.L., Loda M.: Fatty acid synthaseas a potential therapeutic target in cancer. Future Oncol., 2010; 6:551-562
    Google Scholar
  • 26. Giovannetti E., Mey V., Nannizzi S., Pasqualetti G., Del Tacca M.,Danesi R.: Pharmacogenetics of anticancer drug sensitivity in pancreaticcancer. Mol. Cancer Ther., 2006; 5: 1387-1395
    Google Scholar
  • 27. Guillemette C.: Pharmacogenomics of human UDP-glucuronosyltransferaseenzymes. Pharmacogenomics J., 2003; 3: 136-158
    Google Scholar
  • 28. Guo J.Y., Chen H.Y., Mathew R., Fan J., Strohecker A.M., Karsli–Uzunbas G., Kamphorst J.J., Chen G., Lemons J.M., Karantza V., CollerH.A., Dipaola R.S., Gelinas C., Rabinowitz J.D., White E.: Activated Rasrequires autophagy to maintain oxidative metabolism and tumorigenesis Genes Dev., 2011; 25: 460-470
    Google Scholar
  • 29. Hagmann W., Jesnowski R., Faissner R., Guo C., Lohr J.M.: Atp–binding cassette C transporters in human pancreatic carcinomacell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology,2009; 9: 136-144
    Google Scholar
  • 30. Hagmann W., Jesnowski R., Löhr J.M.: Interdependence of gemcitabinetreatment, transporter expression, and resistance in humanpancreatic carcinoma cells. Neoplasia, 2010; 12: 740-747
    Google Scholar
  • 31. Hahn S.A., Greenhalf B., Ellis I., Sina-Frey M., Rieder H., Korte B.,Gerdes B., Kress R., Ziegler A., Raeburn J.A., Campra D., GrützmannR., Rehder H., Rothmund M., Schmiegel W. i wsp.: BRCA2 germlinemutations in familial pancreatic carcinoma. J. Natl. Cancer Inst.,2003; 95: 214-221
    Google Scholar
  • 32. Harms K.L., Chen X.: The C terminus of p53 family proteins isa cell fate determinant. Mol. Cell. Biol., 2005; 25: 2014-2030
    Google Scholar
  • 33. Hermann P.C., Huber S.L., Herrler T., Aicher A., Ellwart J.W., GubaM., Bruns C.J., Heeschen C.: Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreaticcancer. Cell Stem Cell, 2007; 1: 313-323
    Google Scholar
  • 34. Herreros-Villanueva M., Zubia-Olascoaga A., Bujanda L.: c-Metin pancreatic cancer stem cells: therapeutic implications. World J.Gastroenterol., 2012; 18: 5321-5323
    Google Scholar
  • 35. Hindriksen S., Bijlsma M.F.: Cancer stem cells, EMT, and developmentalpathway activation in pancreatic tumors. Cancers, 2012;4: 989-1035
    Google Scholar
  • 36. Höckel M., Vaupel P.: Tumor hypoxia: definitions and currentclinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001;93: 266-276
    Google Scholar
  • 37. Höckel M., Vorndran B., Schlenger K., Baussmann E., KnapsteinP.G.: Tumor oxygenation: a new predictive parameter in locallyadvanced cancer of the uterine cervix. Gynecol. Oncol., 1993; 51:141-149
    Google Scholar
  • 38. Hosotani R., Miyamoto Y., Fujimoto K., Doi R., Otaka A., FujiiN., Imamura M.: Trojan p16 peptide suppresses pancreatic cancergrowth and prolongs survival in mice. Clin. Cancer Res., 2002; 8:1271-1276
    Google Scholar
  • 39. Huber M.A., Kraut N., Beug H.: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr.Opin. Cell Biol., 2005; 17: 548-558
    Google Scholar
  • 40. Hugo H., Ackland M.L., Blick T., Lawrence M.G., Clements J.A.,Williams E.D., Thompson E.W.: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J. Cell.Physiol., 2007; 213: 374-383
    Google Scholar
  • 41. Hung M.C., Lau Y.K.: Basic science of HER-2/neu: a review. Semin.Oncol., 1999; 26 (Suppl. 12): 51-59
    Google Scholar
  • 42. Iwatsuki M., Mimori K., Yokobori T., Ishi H., Beppu T., NakamoriS., Baba H., Mori M.: Epithelial-mesenchymal transition incancer development and its clinical significance. Cancer Sci., 2010;101: 293-299
    Google Scholar
  • 43. Javle M.M., Gibbs J.F., Iwata K.K., Pak Y., Rutledge P., Yu J., BlackJ.D., Tan D., Khoury T.: Epithelial-mesenchymal transition (EMT) andactivated extracellular signal-regulated kinase (p-Erk) in surgicallyresected pancreatic cancer. Ann. Surg. Oncol., 2007; 14: 3527-3533
    Google Scholar
  • 44. Kalluri R., Weinberg R.A.: The basics of epithelial-mesenchymaltransition. J. Clin. Invest., 2009; 119: 1420-1428
    Google Scholar
  • 45. Klein A.P.: Genetic susceptibility to pancreatic cancer. Mol. Carcinog.,2012; 51: 14-24
    Google Scholar
  • 46. Konig J., Hartel M., Nies A.T., Martignoni M.E., Guo J., BuchlerM.W., Friess H., Keppler D.: Expression and localization of humanmultidrug resistance protein (ABCC) family members in pancreaticcarcinoma. Int. J. Cancer, 2005; 115: 359-367
    Google Scholar
  • 47. Koong A.C., Mehta V.K., Le Q.T., Fisher G.A., Terris D.J., BrownJ.M., Bastidas A.J., Vierra M.: Pancreatic tumors show high levels ofhypoxia. Int. J. Radiat. Oncol. Biol. Phys., 2000; 48: 919-922
    Google Scholar
  • 48. Kroep J.R., Pinedo H.M., van Groeningen C.J., Peters G.J.: Experimentaldrugs and drug combinations in pancreatic cancer. Ann.Oncol., 1999; 10 (Suppl. 4): 234-238
    Google Scholar
  • 49. Kubbutat M.H., Jones S.N., Vousden K.H.: Regulation of p53 stabilityby Mdm2. Nature, 1997; 387: 299-303
    Google Scholar
  • 50. Kunnumakkara A.B., Guha S., Krishnan S., Diagaradjane P., GelovaniJ., Aggarwal B.B.: Curcumin potentiates antitumor activity ofgemcitabine in an orthotopic model of pancreatic cancer throughsuppression of proliferation, angiogenesis, and inhibition of nuclearfactor-κB-regulated gene products. Cancer Res., 2007; 67: 3853-3861
    Google Scholar
  • 51. Laghi L., Orbetegli O., Bianchi P., Zerbi A., Di Carlo V., BolandC.R, Malesci A.: Common occurrence of multiple K-RAS mutations inpancreatic cancers with associated precursor lesions and in biliarycancers. Oncogene, 2002; 21: 4301-4306
    Google Scholar
  • 52. Levine A.J., Momand J., Finlay C.A.: The p53 tumour suppressorgene. Nature, 1991; 351: 453-456
    Google Scholar
  • 53. Li C., Heidt D.G., Dalerba P., Burant C.F., Zhang L., Adsay V., WichaM., Clarke M.F., Simeone D.M.: Identification of pancreatic cancerstem cells. Cancer Res., 2007; 67: 1030-1037
    Google Scholar
  • 54. Li D., Xie K., Wolff R., Abbruzzese J.L.: Pancreatic cancer. Lancet,2004; 363: 1049-1057
    Google Scholar
  • 55. Limtrakul P., Chearwae W., Shukla S., Phisalphong C., AmbudkarS.V.: Modulation of function of three ABC drug transporters, P-glycoprotein(ABCB1), mitoxantrone resistance protein (ABCG2) andmultidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin,a major metabolite of curcumin. Mol. Cell. Biochem., 2007; 296: 85-95
    Google Scholar
  • 56. Lobo N.A., Shimono Y., Qian D., Clarke M.F.: The biology of cancerstem cells. Annu. Rev. Cell Dev. Biol., 2007; 23: 675-699
    Google Scholar
  • 57. Lonardo E., Hermann P.C., Mueller M.T., Huber S., Balic A., Miranda-Lorenzo I., Zagorac S., Alcala S., Rodriguez-Arabaolaza I., RamirezJ.C., Torres-Ruíz R., Garcia E., Hidalgo M., Cebrián D.Á., HeuchelR. i wsp.: Nodal/Activin signaling drives self-renewal and tumorigenicityof pancreatic cancer stem cells and provides a target forcombined drug therapy, 2011; 9: 433-446
    Google Scholar
  • 58. Long J., Zhang Y., Yu X., Yang J., LeBrun D.G., Chen C., Yao Q., LiM.: Overcoming drug resistance in pancreatic cancer. Expert Opin.Ther. Targets, 2011; 15: 817-828
    Google Scholar
  • 59. Maxwell P.H., Dachs G.U., Gleadle J.M., Nicholls L.G., Harris A.L.,Stratford I.J., Hankinson O., Pugh C.W., Ratcliffe P.J.: Hypoxia-induciblefactor-1 modulates gene expression in solid tumors and influencesboth angiogenesis and tumor growth. Proc. Natl. Acad. Sci.USA, 1997; 94: 8104-8109
    Google Scholar
  • 60. McKeehan W.L.: The role of nutrients in control of normal andmalignant cell growth. W: Molecular Interrelations of Nutrition andCancer, red.: M.S. Arnott, J. Van Eys, Y.M. Wang. Raven Press, NewYork 1982; 249-263
    Google Scholar
  • 61. Medes G., Thomas A., Weinhouse S.: Metabolism of neoplastictissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro.Cancer Res., 1953; 13: 27-29
    Google Scholar
  • 62. Meech R., Mackenzie P.I.: Structure and function of uridine diphosphateglucuronosyltransferases. Clin. Exp. Pharmacol. Physiol.,1997; 24: 907-915
    Google Scholar
  • 63. Moore M.J., Goldstein D., Hamm J., Figer A., Hecht J.R., GallingerS., Au H.J., Murawa P., Walde D., Wolff R.A., Campos D., Lim R., DingK., Clark G., Voskoglou-Nomikos T. i wsp.: Erlotinib plus gemcitabinecompared with gemcitabine alone in patients with advancedpancreatic cancer: a phase III trial of the National Cancer Instituteof Canada Clinical Trials Group. J. Clin. Oncol., 2007; 25: 1960-1966
    Google Scholar
  • 64. Moriyama T., Ohuchida K., Mizumoto K., Yu J., Sato N., NabaeT., Takahata S., Toma H., Nagai E., Tanaka M.: MicroRNA-21 modulatesbiological functions of pancreatic cancer cells including theirproliferation, invasion, and chemoresistance. Mol. Cancer Ther.,2009; 8: 1067-1074
    Google Scholar
  • 65. Morton J.P., Timpson P., Karim S.A., Ridgway R.A., Athineos D.,Doyle B., Jamieson N.B., Oien K.A., Lowy A.M., Brunton V.G., FrameM.C., Evans T.R., Sansom O.J.: Mutant p53 drives metastasis and overcomesgrowth arrest/senescence in pancreatic cancer. Proc. Natl.Acad. Sci. USA, 2010; 107: 246-251
    Google Scholar
  • 66. Nakajima S., Doi R., Toyoda E., Tsuji S., Wada M., Koizumi M.,Tulachan S.S., Ito D., Kami K., Mori T., Kawaguchi Y., Fujimoto K.,Hosotani R., Imamura M.: N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clin. Cancer Res.,2004; 10: 4125-4133
    Google Scholar
  • 67. Natalwala A., Spychal R., Tselepis C.: Epithelial-mesenchymaltransition mediated tumourigenesis in the gastrointestinal tract.World J. Gastroenterol., 2008; 14: 3792-3797
    Google Scholar
  • 68. Nitsche C., Simon P., Weiss F.U., Fluhr G., Weber E., Gärtner S.,Behn C.O., Kraft M., Ringel J., Aghdassi A., Mayerle J., Lerch M.M.:Environmental risk factors for chronic pancreatitis and pancreaticcancer. Dig. Dis., 2011; 29: 235-242
    Google Scholar
  • 69. Ohtsubo K., Watanabe H., Yamaguchi Y., Hu Y.X., Motoo Y., OkaiT., Sawabu N.: Abnormalities of tumor suppressor gene p16 in pancreaticcarcinoma: immunohistochemical and genetic findings comparedwith clinicopathological parameters. J. Gastroenterol., 2003;38: 663-671
    Google Scholar
  • 70. Olive K.P., Jacobetz M.A., Davidson C.J., Gopinathan A., McIntyreD., Honess D., Madhu B., Goldgraben M.A., Caldwell M.E., Allard D.,Frese K.K., Denicola G., Feig C., Combs C., Winter S.P. i wsp.: Inhibitionof Hedgehog signaling enhances delivery of chemotherapy ina mouse model of pancreatic cancer. Science, 2009; 324: 1457-1461
    Google Scholar
  • 71. Patel B.B., Sengupta R., Qazi S., Vachhani H., Yu Y., Rishi A.K.,Majumdar A.P.: Curcumin enhances the effects of 5-fluorouraciland oxaliplatin in mediating growth inhibition of colon cancer cellsby modulating EGFR and IGF-1R. Int. J. Cancer, 2008; 122: 267-273
    Google Scholar
  • 72. Peng B., Fleming J.B., Breslin T., Grau A.M., Fojioka S., AbbruzzeseJ.L., Evans D.B., Ayers D., Wathen K., Wu T., Robertson K.D.,Chiao P.J.: Suppression of tumorigenesis and induction of p15ink4bby Smad4/DPC4 in human pancreatic cancer cells. Clin. Cancer Res.,2002; 8: 3628-3638
    Google Scholar
  • 73. Pratt S., Shepard R.L., Kandasamy R.A., Johnston P.A., PerryW.3rd, Dantzig A.H.: The multidrug resistance protein 5 (ABCC5)confers resistance to 5-fluorouracil and transports its monophosphorylatedmetabolites. Mol. Cancer Ther., 2005; 4: 855-863
    Google Scholar
  • 74. Radominska-Pandya A., Czernik P.J., Little J.M., Battaglia E.,Mackenzie P.I.: Structural and functional studies of UDP-glucuronosyltransferases.Drug Metab. Rev., 1999; 31: 817-899
    Google Scholar
  • 75. Reya T., Morrison S.J., Clarke M.F., Weissman I.L.: Stem cells,cancer, and cancer stem cells. Nature, 2001; 414: 105-111
    Google Scholar
  • 76. Salnikov A.V., Liu L., Platen M., Gladkich J., Salnikova O., RyschichE., Mattern J., Moldenhauer G., Werner J., Schemmer P., Büchler M.W.,Herr I.: Hypoxia induces EMT in low and highly aggressive pancreatictumor cells but only cells with cancer stem cell characteristicsacquire pronounced migratory potential. PLoS One, 2012; 7: e46391
    Google Scholar
  • 77. Sarkar F.H., Li Y., Wang Z., Kong D.: Pancreatic cancer stemcells and EMT in drug resistance and metastasis. Minerva Chir.,2009; 64: 489-500
    Google Scholar
  • 78. Shah A.N., Summy J.M., Zhang J., Park S.I., Parikh N.U., GallickG.E.: Development and characterization of gemcitabine-resistantpancreatic tumor cells. Ann. Surg. Oncol., 2007; 14: 3629-3637
    Google Scholar
  • 79. Shah U.A., Saif M.W.: Tumor markers in pancreatic cancer: 2013.JOP, 2013; 14: 318-321
    Google Scholar
  • 80. Shi Q., Abbruzzese J.L., Huang S., Fidler I.J., Xiong Q., Xie K.: Constitutive and inducible interleukin 8 expression by hypoxia andacidosis renders human pancreatic cells more tumorigenic and metastatic.Clin. Cancer Res., 1999; 5: 3711-3721
    Google Scholar
  • 81. Shin S.J., Kim K.O., Kim M.K., Lee K.H., Hyun M.S., Kim K.J., ChoiJ.H., Song H.S.: Expression of E-cadherin and uPA and their associationwith the prognosis of pancreatic cancer. Jpn. J. Clin. Oncol.,2005; 35: 342-348
    Google Scholar
  • 82. Shukla S., Wu C.P., Ambudkar S.V.: Development of inhibitors ofATP-binding cassette drug transporters: present status and challenges.Expert Opin. Drug Metab. Toxicol., 2008; 4: 205-223
    Google Scholar
  • 83. Simeone D.M.: Pancreatic cancer stem cells: implications for thetreatment of pancreatic cancer. Clin. Cancer Res., 2008; 14: 5646-5648
    Google Scholar
  • 84. Strimpakos A., Saif M.W., Syrigos K.N.: Pancreatic cancer: frommolecular pathogenesis to targeted therapy. Cancer Metastasis Rev.,2008; 27: 495-522
    Google Scholar
  • 85. Szakacs G., Paterson J.K., Ludwig J.A., Booth-Genthe C., GottesmanM.M.: Targeting multidrug resistance in cancer. Nat. Rev. DrugDiscov., 2006; 5: 219-234
    Google Scholar
  • 86. The Alarming Rise of Pancreatic Cancer Deaths in the UnitedStates, Pancreatic Cancer Action Network, 2012
    Google Scholar
  • 87. Thiery J.P. Acloque H., Huang R.Y., Nieto M.A.: Epithelial-mesenchymaltransitions in development and disease. Cell, 2009; 139:871-890
    Google Scholar
  • 88. Wang J., Sen S.: MicroRNA functional network in pancreatic cancer:from biology to biomarkers of disease. J. Biosci., 2011; 36: 481-491
    Google Scholar
  • 89. Xia F., Taghian D.G., DeFrank J.S., Zeng Z.C., Willers H., Iliakis G.,Powell S.N.: Deficiency of human BRCA2 leads to impaired homologousrecombination but maintains normal nonhomologous endjoining. Proc. Nat. Acad. Sci. USA, 2001; 98: 8644-8649
    Google Scholar
  • 90. Yang Y., Liu H., Li Z., Zhao Z., Yip-Schneider M., Fan Q., SchmidtC.M., Chiorean E.G., Xie J., Cheng L., Chen J.H., Zhang J.T.: Role of fattyacid synthase in gemcitabine and radiation resistance of pancreaticcancers. Int. J. Biochem. Mol. Biol., 2011; 2: 89-98
    Google Scholar
  • 91. Yu S., Lu Z., Liu C., Meng Y., Ma Y., Zhao W., Liu J., Yu J., ChenJ.: miRNA-96 suppresses KRAS and functions as a tumor suppressorgene in pancreatic cancer. Cancer Res., 2010; 70: 6015-6025
    Google Scholar
  • 92. Zhang Y., Li M., Wang H., Fisher W.E., Lin P.H., Yao Q., Chen C.:Profiling of 95 microRNAs in pancreatic cancer cell lines and surgicalspecimens by real-time PCR analysis. World J. Surg., 2009; 33: 698-709
    Google Scholar

Full text

Skip to content