Liposomes as non-viral carriers for genetic drugs

COMMENTARY ON THE LAW

Liposomes as non-viral carriers for genetic drugs

Justyna M. Meissner 1 , Monika Toporkiewicz 1 , Lucyna Matusewicz 1 , Beata Machnicka 2

1. Zakład Cytobiochemii, Wydział Biotechnologii, Uniwersytet Wrocławski
2. Wydział Nauk Biologicznych, Uniwersytet Zielonogórski

Published: 2016-03-16
DOI: 10.5604/17322693.1197371
GICID: 01.3001.0009.6800
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 200-209

 

Abstract

Methods in cancer therapy particularly in recent years, are rapidly changing, due to the need of design of new, more effective therapeutic strategies. Very promising approach to treatment of the neoplastic diseases is antisense gene therapy. Due to the low toxicity of treatment and eliminating not only the symptoms but also the molecular causes of the disease it may represent a breakthrough in cancer therapies. Delivery of a therapeutic DNA or RNA oligonucleotides to the target cells in vivo requires suitable carrier system. Non-viral drug carriers are increasingly used in new systems of targeted gene therapy. This review presents new generation of non-viral carriers, and is focused on immunoliposomes finding potential application in targeted gene therapy.

References

  • 1. Abu Lila A.S., Ishida T., Kiwada H.: Targeting anticancer drugsto tumor vasculature using cationic liposomes. Pharm. Res., 2010;27: 1171-1183
    Google Scholar
  • 2. Agrawal S., Zhao Q.: Mixed backbone oligonucleotides: improvementin oligonucleotide-induced toxicity in vivo. Antisense NucleicAcid Drug Dev., 1998; 8: 135-139
    Google Scholar
  • 3. Al-Dosari M.S., Gao X.: Nonviral gene delivery: principle, limitations,and recent progress. AAPS J., 2009; 11: 671-681
    Google Scholar
  • 4. Alexis F., Pridgen E.M., Langer R., Farokhzad O.C.: Nanoparticletechnologies for cancer therapy. Handb. Exp. Pharmacol., 2010; 197:55-86
    Google Scholar
  • 5. Allen T.M.: Ligand-targeted therapeutics in anticancer therapy.Nat. Rev. Cancer, 2002; 2: 750-763
    Google Scholar
  • 6. Allen T.M., Cullis P.R.: Liposomal drug delivery systems: fromconcept to clinical applications. Adv. Drug Deliv. Rev., 2013; 65: 36-48
    Google Scholar
  • 7. Allen T.M., Mehra T., Hansen C., Chin Y.C.: Stealth liposomes: an improvedsustained release system for 1-β-D-arabinofuranosylcytosine.Cancer Res., 1992; 52: 2431-2439.
    Google Scholar
  • 8. Arias J.L.: Drug targeting strategies in cancer treatment: an overview.Mini Rev. Med. Chem., 2011; 11: 1-17
    Google Scholar
  • 9. Barbet J., Machy P., Leserman L.D.: Monoclonal antibody covalentlycoupled to liposomes: specific targeting to cells. J. Supramol.Struct. Cell. Biochem., 1981; 16: 243-258
    Google Scholar
  • 10. Brignole C., Marimpietri D., Pagnan G., Di Paolo D., Zancolli M.,Pistoia V., Ponzoni M., Pastorino F.: Neuroblastoma targeting by cmyb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome:immune cell-mediated anti-tumor activities. CancerLett., 2005; 228: 181-186
    Google Scholar
  • 11. Brignole C., Pagnan G., Marimpietri D., Cosimo E., Allen T.M.,Ponzoni M., Pastorino F.: Targeted delivery system for antisenseoligonucleotides: a novel experimental strategy for neuroblastomatreatment. Cancer Lett., 2003; 197: 231-235
    Google Scholar
  • 12. Byrne J.D., Betancourt T., Brannon-Peppas L.: Active targetingschemes for nanoparticle systems in cancer therapeutics. Adv. DrugDeliv. Rev., 2008; 60: 1615-1626
    Google Scholar
  • 13. Chan J.M., Rhee J.W., Drum C.L., Bronson R.T., Golomb G., LangerR., Farokhzad O.C.: In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc.Natl. Acad. Sci. USA, 2011; 108: 19347-19352
    Google Scholar
  • 14. Chapman C.J., Erdahl W.L., Taylor R.W., Pfeiffer D.R.: Factorsaffecting solute entrapment in phospholipid vesicles prepared bythe freeze-thaw extrusion method: a possible general method forimproving the efficiency of entrapment. Chem. Phys. Lipids, 1990;55: 73-83
    Google Scholar
  • 15. Chen Y., Zhu X., Zhang X., Liu B., Huang L.: Nanoparticles modifiedwith tumor-targeting scFv deliver siRNA and miRNA for cancertherapy. Mol. Ther., 2010; 18: 1650-1656
    Google Scholar
  • 16. Cheng W.W., Allen T.M.: Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonalantibody, Fab’ fragments and single chain Fv. J. Control. Release,2008; 126: 50-58
    Google Scholar
  • 17. Christian S., Pilch J., Akerman M.E., Porkka K., Laakkonen P.,Ruoslahti E.: Nucleolin expressed at the cell surface is a markerof endothelial cells in angiogenic blood vessels. J. Cell Biol., 2003;163: 871-878
    Google Scholar
  • 18. Collet G., Grillon C., Nadim M., Kieda C.: Trojan horse at cellularlevel for tumor gene therapies. Gene, 2013; 525: 208-216
    Google Scholar
  • 19. Danhier F., Feron O., Preat V.: To exploit the tumor microenvironment:passive and active tumor targeting of nanocarriers foranti-cancer drug delivery. J. Control. Release, 2010; 148: 135-146
    Google Scholar
  • 20. Deamer D.W., Barchfeld G.L.: Encapsulation of macromoleculesby lipid vesicles under simulated prebiotic conditions. J. Mol. Evol.,1982; 18: 203-206
    Google Scholar
  • 21. Deshpande P.P., Biswas S., Torchilin V.P.: Current trends in theuse of liposomes for tumor targeting. Nanomedicine, 2013; 8: 1509-1528
    Google Scholar
  • 22. Dobbs W., Heinrich B., Bourgogne C., Donnio B., Terazzi E., BonnetM.E., Stock F., Erbacher P., Bolcato-Bellemin A.L., Douce L.: Mesomorphicimidazolium salts: new vectors for efficient siRNA transfection.J. Am. Chem. Soc., 2009; 131: 13338-13346
    Google Scholar
  • 23. Dokka S., Toledo D., Shi X., Castranova V., Rojanasakul Y.: Oxygenradical-mediated pulmonary toxicity induced by some cationicliposomes. Pharm. Res., 2000; 17: 521-525
    Google Scholar
  • 24. Eastman S.J., Siegel C., Tousignant J., Smith A.E., Cheng S.H.,Scheule R.K.: Biophysical characterization of cationic lipid: DNAcomplexes. Biochim. Biophys. Acta, 1997; 1325: 41-62
    Google Scholar
  • 25. Elbayoumi T.A., Torchilin V.P.: Current trends in liposome research.Methods Mol. Biol., 2010; 605: 1-27
    Google Scholar
  • 26. Escriou V., Ciolina C., Lacroix F., Byk G., Scherman D., Wils P.:Cationic lipid-mediated gene transfer: effect of serum on cellularuptake and intracellular fate of lipopolyamine/DNA complexes.Biochim. Biophys. Acta, 1998; 1368: 276-288
    Google Scholar
  • 27. Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., WenzM., Northrop J.P., Ringold G.M., Danielsen M.: Lipofection: a highlyefficient, lipid-mediated DNA-transfection procedure. Proc. Natl.Acad. Sci. USA, 1987; 84: 7413-7417
    Google Scholar
  • 28. Gabizon A., Horowitz A.T., Goren D., Tzemach D., Shmeeda H.,Zalipsky S.: In vivo fate of folate-targeted polyethylene-glycol liposomesin tumor-bearing mice. Clin. Cancer Res., 2003; 9: 6551-6559
    Google Scholar
  • 29. Gao J., Sun J., Li H., Liu W., Zhang Y., Li B., Qian W., Wang H., ChenJ., Guo Y.: Lyophilized HER2-specific PEGylated immunoliposomesfor active siRNA gene silencing. Biomaterials, 2010; 31: 2655-2664
    Google Scholar
  • 30. Gao K., Huang L.: Non-viral methods for siRNA delivery. Mol.Pharm., 2009; 6: 651-658
    Google Scholar
  • 31. Gao Y., McLuckey S.A.: Electron transfer followed by collision-induceddissociation (NET-CID) for generating sequence informationfrom backbone-modified oligonucleotide anions. Rapid Commun.Mass Spectrom., 2013; 27: 249-257
    Google Scholar
  • 32. Goldenbogen B., Brodersen N., Gramatica A., Loew M., LiebscherJ., Herrmann A., Egger H., Budde B., Arbuzova A.: Reduction-sensitiveliposomes from a multifunctional lipid conjugate and naturalphospholipids: reduction and release kinetics and cellular uptake.Langmuir, 2011; 27: 10820-10829
    Google Scholar
  • 33. Gomes-da-Silva L.C., Ramalho J.S., Pedroso de Lima M.C., SimoesS., Moreira J.N.: Impact of anti-PLK1 siRNA-containing F3-targetedliposomes on the viability of both cancer and endothelial cells. Eur.J. Pharm. Biopharm., 2013; 85: 356-364
    Google Scholar
  • 34. Goyal P., Goyal K., Vijaya Kumar S.G., Singh A., Katare O.P., MishraD.N.: Liposomal drug delivery systems–clinical applications.Acta Pharm., 2005; 55: 1-25
    Google Scholar
  • 35. Haley B., Frenkel E.: Nanoparticles for drug delivery in cancertreatment. Urol. Oncol., 2008; 26: 57-64
    Google Scholar
  • 36. Harding F.A., Stickler M.M., Razo J., DuBridge R.B.: The immunogenicityof humanized and fully human antibodies: residual immunogenicityresides in the CDR regions. MAbs, 2010; 2: 256-265
    Google Scholar
  • 37. Hayes M.E., Drummond D.C., Kirpotin D.B., Zheng W.W., NobleC.O., Park J.W., Marks J.D., Benz C.C., Hong K.: Genospheres: self-assemblingnucleic acid-lipid nanoparticles suitable for targeted genedelivery. Gene Ther., 2006; 13: 646-651
    Google Scholar
  • 38. Heath T.D., Macher B.A., Papahadjopoulos D.: Covalent attachmentof immunoglobulins to liposomes via glycosphingolipids. Biochim.Biophys. Acta, 1981; 640: 66-81
    Google Scholar
  • 39. Hu C.M., Kaushal S., Tran Cao H.S., Aryal S., Sartor M., EsenerS., Bouvet M., Zhang L.: Half-antibody functionalized lipid-polymerhybrid nanoparticles for targeted drug delivery to carcinoembryonicantigen (CEA) presenting pancreatic cancer cells. Mol. Pharm.,2010; 7: 914-920
    Google Scholar
  • 40. Huang G., Zhou Z., Srinivasan R., Penn M.S., Kottke-MarchantK., Marchant R.E., Gupta A.S.: Affinity manipulation of surface-conjugatedRGD peptide to modulate binding of liposomes to activatedplatelets. Biomaterials, 2008; 29: 1676-1685
    Google Scholar
  • 41. Hwang W.Y., Foote J.: Immunogenicity of engineered antibodies.Methods, 2005; 36: 3-10
    Google Scholar
  • 42. Ibsen S., Benchimol M., Simberg D., Esener S.: Ultrasound mediatedlocalized drug delivery. Adv. Exp. Med. Biol., 2012; 733: 145-153
    Google Scholar
  • 43. Immordino M.L., Dosio F., Cattel L.: Stealth liposomes: review ofthe basic science, rationale, and clinical applications, existing andpotential. Int. J. Nanomedicine, 2006; 1: 297-315
    Google Scholar
  • 44. Ishida T., Atobe K., Wang X., Kiwada H.: Accelerated blood clearanceof PEGylated liposomes upon repeated injections: effect ofdoxorubicin-encapsulation and high-dose first injection. J. Control.Release, 2006; 115: 251-258
    Google Scholar
  • 45. Ito K., Chen J., Asano T., Vaughan E.D.Jr., Poppas D.P., HayakawaM., Felsen D.: Liposome-mediated gene therapy in the kidney. Hum.Cell, 2004; 17: 17-28
    Google Scholar
  • 46. Jin L., Zeng X., Liu M., Deng Y., He N.: Current progress in genedelivery technology based on chemical methods and nano-carriers.Theranostics, 2014; 4: 240-255
    Google Scholar
  • 47. Kale A.A., Torchilin V.P.: Environment-responsive multifunctionalliposomes. Methods Mol. Biol., 2010; 605: 213-242
    Google Scholar
  • 48. Kim S.S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D.,Habiro K., Yang Y.G., Manjunath N., Shimaoka M., Shankar P.: RNAi–mediated CCR5 silencing by LFA-1-targeted nanoparticles preventsHIV infection in BLT mice. Mol. Ther., 2010; 18: 370-376
    Google Scholar
  • 49. Klein E., Ciobanu M., Klein J., Machi V., Leborgne C., VandammeT., Frisch B., Pons F., Kichler A., Zuber G., Lebeau L.: “HFP” fluorinatedcationic lipids for enhanced lipoplex stability and gene delivery.Bioconjug. Chem., 2010; 21: 360-371
    Google Scholar
  • 50. Koren E., Apte A., Jani A., Torchilin V.P.: Multifunctional PEGylated2C5-immunoliposomes containing pH-sensitive bonds and TATpeptide for enhanced tumor cell internalization and cytotoxicity. J.Control. Release, 2012; 160: 264-273
    Google Scholar
  • 51. Kularatne S.A., Low P.S.: Targeting of nanoparticles: folate receptor.Methods Mol. Biol., 2010; 624: 249-265
    Google Scholar
  • 52. Kurreck J.: Antisense technologies. Improvement through novelchemical modifications. Eur. J. Biochem., 2003; 270: 1628-1644
    Google Scholar
  • 53. Laakkonen P., Vuorinen K.: Homing peptides as targeted deliveryvehicles. Integr. Biol., 2010; 2: 326-337
    Google Scholar
  • 54. Lammers T., Kiessling F., Hennink W.E., Storm G.: Drug targetingto tumors: principles, pitfalls and (pre-) clinical progress. J. Control.Release, 2012; 161: 175-187
    Google Scholar
  • 55. Lee J.M., Yoon T.J., Cho Y.S.: Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res. Int., 2013;2013: 782041
    Google Scholar
  • 56. Liberska A., Unciti-Broceta A., Bradley M.: Very long-chain fattytails for enhanced transfection. Org. Biomol. Chem., 2009; 7: 61-68
    Google Scholar
  • 57. Liu D., Hu J., Qiao W., Li Z., Zhang S., Cheng L.: Synthesis of carbamate-linked lipids for gene delivery. Bioorg. Med. Chem. Lett.,2005; 15: 3147-3150
    Google Scholar
  • 58. Lv H., Zhang S., Wang B., Cui S., Yan J.: Toxicity of cationic lipidsand cationic polymers in gene delivery. J. Control. Release,2006; 114: 100-109
    Google Scholar
  • 59. Maeda H.: Macromolecular therapeutics in cancer treatment:the EPR effect and beyond. J. Control. Release, 2012; 164: 138-144
    Google Scholar
  • 60. Maeda H., Nakamura H., Fang J.: The EPR effect for macromoleculardrug delivery to solid tumors: improvement of tumor uptake,lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev., 2013; 65: 71-79
    Google Scholar
  • 61. Manjila S.B., Baby J.N., Bijin E.N., Constantine I., Pramod K.,Valsalakumari J.: Novel gene delivery systems. Int. J. Pharm. Investig.,2013; 3: 1-7
    Google Scholar
  • 62. Markman J.L., Rekechenetskiy A., Holler E., Ljubimova J.Y.: Nanomedicinetherapeutic approaches to overcome cancer drug resistance.Adv. Drug Deliv. Rev., 2013; 65: 1866-1879
    Google Scholar
  • 63. Martin B., Sainlos M., Aissaoui A., Oudrhiri N., Hauchecorne M.,Vigneron J.P., Lehn J.M., Lehn P.: The design of cationic lipids forgene delivery. Curr. Pharm. Des., 2005; 11: 375-394
    Google Scholar
  • 64. Martin F.J., Hubbell W.L., Papahadjopoulos D.: Immunospecifictargeting of liposomes to cells: a novel and efficient method for covalentattachment of Fab’ fragments via disulfide bonds. Biochemistry,1981; 20: 4229-4238
    Google Scholar
  • 65. Mevel M., Kamaly N., Carmona S., Oliver M.H., Jorgensen M.R.,Crowther C., Salazar F.H., Marion P.L., Fujino M., Natori Y., ThanouM., Arbuthnot P., Yaouanc J.J., Jaffres P.A., Miller A.D.: DODAG; a versatilenew cationic lipid that mediates efficient delivery of pDNAand siRNA. J. Control. Release, 2010; 143: 222-232
    Google Scholar
  • 66. Milla P., Dosio F., Cattel L.: PEGylation of proteins and liposomes:a powerful and flexible strategy to improve the drug delivery. Curr.Drug. Metab., 2012; 13: 105-119
    Google Scholar
  • 67. Mok H., Zhang M.: Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opin. DrugDeliv., 2013; 10: 73-87
    Google Scholar
  • 68. Morille M., Montier T., Legras P., Carmoy N., Brodin P., PitardB., Benoit J.P., Passirani C.: Long-circulating DNA lipid nanocapsulesas new vector for passive tumor targeting. Biomaterials, 2010; 31:321-329
    Google Scholar
  • 69. Mufamadi M.S., Pillay V., Choonara Y.E., Du Toit L.C., Modi G.,Naidoo D., Ndesendo V.M.: A review on composite liposomal technologiesfor specialized drug delivery. J. Drug Deliv., 2011; 2011: 939851
    Google Scholar
  • 70. Nie Y., Ji L., Ding H., Xie L., Li L., He B., Wu Y., Gu Z.: Cholesterolderivatives based charged liposomes for doxorubicin delivery:preparation, in vitro and in vivo characterization. Theranostics,2012; 2: 1092-1103
    Google Scholar
  • 71. Ozpolat B., Sood A.K., Lopez-Berestein G.: Nanomedicine basedapproaches for the delivery of siRNA in cancer. J. Intern. Med., 2010;267: 44-53
    Google Scholar
  • 72. Pastorino F., Brignole C., Loi M., Di Paolo D., Di Fiore A., Perri P.,Pagnan G., Ponzoni M.: Nanocarrier-mediated targeting of tumorand tumor vascular cells improves uptake and penetration of drugsinto neuroblastoma. Front. Oncol., 2013; 3: 190
    Google Scholar
  • 73. Patil S.D., Rhodes D.G., Burgess D.J.: Biophysical characterizationof anionic lipoplexes. Biochim. Biophys. Acta, 2005; 1711: 1-11
    Google Scholar
  • 74. Pirollo K.F., Zon G., Rait A., Zhou Q., Yu W., Hogrefe R., Chang E.H.: Tumor-targeting nanoimmunoliposome complex for short interferingRNA delivery. Hum. Gene Ther., 2006; 17: 117-124
    Google Scholar
  • 75. Pisani M., Mobbili G., Bruni P.: Neutral liposomes and DNA transfection.W: Non-Viral Gene Therapy, red.: X. Yuan. InTech., 2011:319-348
    Google Scholar
  • 76. Powoźnik B., Kubowicz P., Pękala E.: Przeciwciała monoklonalnew terapii celowanej. Postępy Hig. Med. Dośw., 2012; 66: 663-673
    Google Scholar
  • 77. Reichert J.M., Rosensweig C.J., Faden L.B., Dewitz M.C.: Monoclonalantibody successes in the clinic. Nat. Biotechnol., 2005; 23:1073-1078
    Google Scholar
  • 78. Rolland A., Sullivan S.M.: Pharmaceutical Gene Delivery Systems.Marcel Dekker, New York 2003: 99-101
    Google Scholar
  • 79. Ropert C.: Liposomes as a gene delivery system. Braz. J. Med.Biol. Res., 1999; 32: 163-169
    Google Scholar
  • 80. Rothdiener M., Muller D., Castro P.G., Scholz A., SchwemmleinM., Fey G., Heidenreich O., Kontermann R.E.: Targeted delivery ofSiRNA to CD33-positive tumor cells with liposomal carrier systems.J. Control. Release, 2010; 144: 251-258
    Google Scholar
  • 81. Sahu N.K., Shilakari G., Nayak A., Kohli D.V.: Antisense technology:a selective tool for gene expression regulation and gene targeting.Curr. Pharm. Biotechnol., 2007; 8: 291-304
    Google Scholar
  • 82. Sawant R.R., Torchilin V.P.: Challenges in development of targetedliposomal therapeutics. AAPS J., 2012; 14: 303-315
    Google Scholar
  • 83. Shu Y., Pi F., Sharma A., Rajabi M., Haque F., Shu D., Leggas M.,Evers B.M., Guo P.: Stable RNA nanoparticles as potential new generationdrugs for cancer therapy. Adv. Drug Deliv. Rev., 2014; 66: 74-89
    Google Scholar
  • 84. Sorkin A., Von Zastrow M.: Signal transduction and endocytosis:close encounters of many kinds. Nat. Rev. Mol. Cell Biol., 2002;3: 600-614
    Google Scholar
  • 85. Spelios M., Kearns M., Savva M.: From gene delivery to gene silencing:plasmid DNA-transfecting cationic lipid 1,3-dimyristoylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate efficientlypromotes small interfering RNA-induced RNA interference. Biochemistry,2010; 49: 5753-5759
    Google Scholar
  • 86. Stabelska K., Wyrozumska P., Grzybek M., Sikorski A.F.: Charakterystykai medyczne zastosowania konstrukcji liposomowych. Adv.Clin. Exp. Med., 2002; 11: 229-242
    Google Scholar
  • 87. Strebhardt K., Ullrich A.: Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008; 8: 473-480
    Google Scholar
  • 88. Stuart D.D., Allen T.M.: A new liposomal formulation for antisenseoligodeoxynucleotides with small size, high incorporation efficiencyand good stability. Biochim. Biophys. Acta, 2000; 1463: 219-229
    Google Scholar
  • 89. Szoka F.Jr., Papahadjopoulos D.: Procedure for preparation ofliposomes with large internal aqueous space and high capture byreverse-phase evaporation. Proc. Natl. Acad. Sci. USA, 1978; 75: 4194-4198
    Google Scholar
  • 90. Szybalska E.H., Szybalski W.: Genetics of human cess line. IV.DNA-mediated heritable transformation of a biochemical trait. Proc.Natl. Acad. Sci. USA, 1962; 48: 2026-2034
    Google Scholar
  • 91. Thierry A.R., Lunardi-Iskandar Y., Bryant J.L., Rabinovich P.,Gallo R.C., Mahan L.C.: Systemic gene therapy: biodistribution andlong-term expression of a transgene in mice. Proc. Natl. Acad. Sci.USA, 1995; 92: 9742-9746
    Google Scholar
  • 92. Toporkiewicz M., Meissner J., Matusewicz L., Czogalla A., SikorskiA.F.: Toward a magic or imaginary bullet? Ligands for drug targetingto cancer cells: principles, hopes, and challenges. Int. J. Nanomedicine,2015; 10: 1399-1414
    Google Scholar
  • 93. Torchilin V.: Tumor delivery of macromolecular drugs based onthe EPR effect. Adv. Drug Deliv. Rev., 2011; 63: 131-135
    Google Scholar
  • 94. Torchilin V.P.: Recent advances with liposomes as pharmaceuticalcarriers. Nat. Rev. Drug Discov., 2005; 4: 145-160
    Google Scholar
  • 95. Torchilin V.P.: Targeted pharmaceutical nanocarriers for cancertherapy and imaging. AAPS J., 2007; 9: E128-E147
    Google Scholar
  • 96. Torchilin V.P.: Passive and active drug targeting: drug deliveryto tumors as an example. Handb. Exp. Pharmacol., 2010; 197: 3-53
    Google Scholar
  • 97. Tyagi P., Kashyap M.P., Kawamorita N., Yoshizawa T., ChancellorM., Yoshimura N.: Intravesical liposome and antisense treatment fordetrusor overactivity and interstitial cystitis/painful bladder syndrome.ISRN Pharmacol., 2014; 2014: 601653
    Google Scholar
  • 98. van Rooijen N., van Nieuwmegen R.: Liposomes in immunology:multilamellar phosphatidylcholine liposomes as a simple, biodegradableand harmless adjuvant without any immunogenic activityof its own. Immunol. Commun., 1980; 9: 243-256
    Google Scholar
  • 99. Wang M., Thanou M.: Targeting nanoparticles to cancer. Pharmacol.Res., 2010; 62: 90-99
    Google Scholar
  • 100. Williford J.M., Wu J., Ren Y., Archang M.M., Leong K.W., MaoH.Q.: Recent advances in nanoparticle-mediated siRNA delivery.Annu. Rev. Biomed. Eng., 2014; 16: 347-370
    Google Scholar
  • 101. Wyrozumska P., Meissner J., Toporkiewicz M., Szarawarska M.,Kuliczkowski K., Ugorski M., Walasek M.A., Sikorski A.F.: Liposomecoatedlipoplex-based carrier for antisense oligonucleotides. CancerBiol. Ther., 2015; 16: 66-76
    Google Scholar
  • 102. Yang H.W., Yi J.W., Bang E.K., Jeon E.M., Kim B.H.: Cationicnucleolipids as efficient siRNA carriers. Org. Biomol. Chem., 2011;9: 291-296
    Google Scholar
  • 103. Yu B., Mao Y., Bai L.Y., Herman S.E., Wang X., Ramanunni A.,Jin Y., Mo X., Cheney C., Chan K.K., Jarjoura D., Marcucci G., Lee R.J.,Byrd J.C., Lee L.J., Muthusamy N.: Targeted nanoparticle deliveryovercomes off-target immunostimulatory effects of oligonucleotidesand improves therapeutic efficacy in chronic lymphocytic leukemia.Blood, 2013; 121: 136-147
    Google Scholar
  • 104. Yu R.Z., Grundy J.S., Geary R.S.: Clinical pharmacokinetics ofsecond generation antisense oligonucleotides. Expert. Opin. DrugMetab. Toxicol., 2013; 9: 169-182
    Google Scholar
  • 105. Zelphati O., Nguyen C., Ferrari M., Felgner J., Tsai Y., FelgnerP.L.: Stable and monodisperse lipoplex formulations for gene delivery.Gene Ther., 1998; 5: 1272-1282
    Google Scholar
  • 106. Zelphati O., Uyechi L.S., Barron L.G., Szoka F.C.Jr.: Effect of serumcomponents on the physico-chemical properties of cationiclipid/oligonucleotide complexes and on their interactions with cells.Biochim. Biophys. Acta, 1998; 1390: 119-133
    Google Scholar
  • 107. Zhang L., Chan J.M., Gu F.X., Rhee J.W., Wang A.Z., Radovic-Moreno A.F., Alexis F., Langer R., Farokhzad O.C.: Self-assembledlipid–polymer hybrid nanoparticles: a robust drug delivery platform.ACS Nano., 2008; 2: 1696-1702
    Google Scholar
  • 108. Zhao W., Zhuang S., Qi X.R.: Comparative study of the in vitroand in vivo characteristics of cationic and neutral liposomes. Int. J.Nanomedicine, 2011; 6: 3087-3098
    Google Scholar
  • 109. Zheng Y., Yu B., Weecharangsan W., Piao L., Darby M., Mao Y.,Koynova R., Yang X., Li H., Xu S., Lee L.J., Sugimoto Y., BrueggemeierR.W., Lee R.J.: Transferrin-conjugated lipid-coated PLGA nanoparticlesfor targeted delivery of aromatase inhibitor 7α-APTADD tobreast cancer cells. Int. J. Pharm., 2010; 390: 234-241
    Google Scholar
  • 110. Zhi D., Zhang S., Wang B., Zhao Y., Yang B., Yu S.: Transfectionefficiency of cationic lipids with different hydrophobic domains ingene delivery. Bioconjug. Chem., 2010; 21: 563-577
    Google Scholar
  • 111. Zhu L., Kate P., Torchilin V.P.: Matrix metalloprotease 2-responsivemultifunctional liposomal nanocarrier for enhanced tumortargeting. ACS Nano., 2012; 6: 3491-3498
    Google Scholar
  • 112. Zhu L., Lu Y., Miller D.D., Mahato R.I.: Structural and formulationfactors influencing pyridinium lipid-based gene transfer. Bioconjug.Chem., 2008; 19: 2499-2512
    Google Scholar
  • 113. Zhu L., Torchilin V.P.: Stimulus-responsive nanopreparationsfor tumor targeting. Integr. Biol., 2013; 5: 96-107
    Google Scholar
  • 114. Zuhorn I.S., Engberts J.B., Hoekstra D.: Gene delivery by cationiclipid vectors: overcoming cellular barriers. Eur. Biophys. J.,2007; 36: 349-362
    Google Scholar

Full text

Skip to content