PARP1 inhibitors: contemporary attempts at their use in anticancer therapy and future perspective
Ewelina Wiśnik 1 , Marcin Ryksa 2 , Maria Koter-Michalak 1Abstract
Current cancer therapies are based mainly on the use of compounds that cause DNA damage. Unfortunately, even the combination therapies do not give rewarding effects, due to the high efficiency of DNA damage repair mechanisms in tumor cells. Therefore, the present studies should be focused on proteins that are involved in DNA repair systems. Poly(ADP-ribose) polymerase-1 is an example of a protein commonly known as an enzyme that plays a role in the detection of DNA damage and repair. Activation of PARP1 in response to DNA damage leads to poly-ADP-ribosylation of proteins contributing to DNA repair systems, therefore facilitating the maintenance of genome stability. On the other hand, inhibition of PARP1 enzyme results in the accumulation of DNA damage, which in turn contributes to cell death. Studies on inhibitors of PARP1 are still ongoing, and some of them are currently in the third phase of clinical trials. To date, only one representative of the PARP1 inhibitors, called olaparib, has been approved for anti-cancer therapy in the EU and the USA. Moreover, a growing body of evidence indicates a role of this protein in various intracellular processes such as bioenergetics, proliferation, regulation of gene expression, cell death as well as immunoregulation. A number of different intracellular processes regulated by PARP1 give rise to potential wider use of PARP1 inhibitors in treatment of other diseases, including immune or autoimmune disorders.
References
- 1. Altmeyer M., Messner S., Hassa P., Fey M., Hottiger M.O.: Molecularmechanism of poly(ADP-ribosyl)ation by PARP1 and identificationof lysine residues as ADP-ribose acceptor sites. Nucleic AcidsRes., 2009; 37: 3723-3738
Google Scholar - 2. Azvolinsky A.: EMCC: veliparib plus temozolomide in metastaticmelanoma trends toward increased PFS but results are not statisticallysignificant. http://www.cancernetwork.com/oncology-journal/emcc-veliparib-plus-temozolomide-metastatic-melanomatrends-toward-increased%C2%A0pfs-results-are-not(12.04.2015)
Google Scholar - 3. Baek S.H., Bae O.N., Kim E.K., Yu S.W.: Induction of mitochondrialdysfunction by poly(ADP-ribose) polymer: Implication for neuronalcell death. Mol. Cells, 2013; 36: 258-266
Google Scholar - 4. Bai P., Canto C.: The role of PARP-1 and PARP-2 enzymes in metabolicregulation and disease. Cell Metab., 2012; 16: 290-295
Google Scholar - 5. Bai P., Canto C, Oudart H., Brunyanszki A., Cen Y., Thomas C.,Yamamoto H., Huber A., Kiss B., Houtkooper R.H., Schoonjans K.,Schreiber V., Sauve A.A., Menissier-de Murcia J., Auwerx J.: PARP-1inhibition increases mitochondrial metabolism through SIRT1 activation.Cell Metab., 2011; 13: 461-468
Google Scholar - 6. Bang Y.J., Im S.A., Lee K.W., Cho J.Y., Song E.K., Lee K.H., Kim Y.H.,Park J.O., Chun H.G., Zang D.Y., Fielding A., Rowbottom J., Kim W.H.:Olaparib plus paclitaxel in patients with recurrent or metastatic gastriccancer: a randomized, double-blind phase II study [abstract]. J.Clin. Oncol., 2013; 31 (Suplement): a4013Piśmiennictwo
Google Scholar - 7. Beneke S., Cohausz O., Malanga M., Boukamp P., Althaus F., BürkleA.: Rapid regulation of telomere length is mediated by poly(ADP-ribose)polymerase-1. Nucleic Acids Res., 2008; 36: 6309-6317
Google Scholar - 8. Brandsma I., van Gent D.C.: Pathway choice in DNA double strandbreak repair: observations of a balancing act. Genome Integr., 2012;3: 9
Google Scholar - 9. Bryant H.E., Schultz N., Thomas H.D., Parker K.M., Flower D., LopezE., Kyle S., Meuth M., Curtin N.J., Helleday T.: Specific killing ofBRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.Nature, 2005; 434: 913-917
Google Scholar - 10. Citarelli M., Teotia S., Lamb R.S.: Evolutionary history of thepoly(ADP-ribose) polymerase gene family in eukaryotes. BMC Evol.Biol., 2010; 10: 308
Google Scholar - 11. Dębska S., Kubicka J., Czyżykowski R., Habib M., Potemski P.:Inhibitory PARP – podstawy teoretyczne i zastosowanie kliniczne.Postępy Hig. Med. Dośw., 2012; 66: 311-321
Google Scholar - 12. Donawho C.K., Luo Y, Luo Y, Penning T.D., Bauch J.L., Bouska J.J.,Bontcheva-Diaz V.D., Cox B.F., DeWeese T.L., Dillehay L.E., FergusonD.C. Ghoreishi-Haack N.S., Grimm D.R., Guan R., Han E.K. i wsp.:ABT-888, an orally active poly(ADP-ribose) polymerase inhibitorthat potentiates DNA-damaging agents in preclinical tumor models.Clin.Cancer Res., 2007; 13: 2728-2737
Google Scholar - 13. Donizy P., Pietrzyk G., Halon A., Kozyra C., Gansukh T., Lage H.,Surowiak P., Matkowski R.: Nuclear-cytoplasmic PARP-1 expression as an unfavorable prognostic marker in lymph node-negative earlybreast cancer: 15-year follow-up. Oncol. Rep., 2014; 31: 1777-1787
Google Scholar - 14. Ekblad T., Camaioni E., Schüler H., Macchiarulo A.: PARP inhibitors:polypharmacology versus selective inhibition. FEBS J., 2013;280: 3563-3575
Google Scholar - 15. Ethier C., Tardif M., Arul L., Poirier G.G.: PARP-1 modulation ofmTOR signaling in response to a DNA alkylating agent. PLOS One,2012; 7: e47978
Google Scholar - 16. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., RichardsonT.B., Santarosa M., Dillon K.J., Hickson I., Knights C., MartinN.M., Jackson S.P., Smith G.C., Ashworth A.: Targeting the DNArepair defect in BRCA mutant cells as a therapeutic strategy. Nature,2005; 434: 917-921
Google Scholar - 17. Ferraris D.V.: Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem., 2010; 53: 4561-4584
Google Scholar - 18. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H.Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S.,Gottlieb E., Green D.R., Hengartner M.O., Kepp O., Knight R.A. i wsp.:Molecular definitions of cell death subroutines: recommendationsof the Nomenclature Committee on Cell Death 2012. Cell Death Differ.,2012; 19: 107-120
Google Scholar - 19. Gao F., Kwon S.W., Zhao Y., Jin Y.: PARP1 poly(ADP-ribosyl)atesSox2 to control Sox2 protein levels and FGF4 expression during embryonicstem cell differentiation. J. Biol. Chem., 2009; 284: 22263-22273
Google Scholar - 20. Golmard L., Caux-Moncoutier V., Davy G., Ageeli1 E.A., PoirotB., Tirapo C., Michaux D., Barbaroux C., d’Enghien C.D., Nicolas A.,Castéra L., Sastre-Garau X., Stern M., HoudayerC., Stoppa-LyonnetD.: Germline mutation in the RAD51B gene confers predisposition tobreast cancer. BMC Cancer, 2013; 13: 484
Google Scholar - 21. Gomez M., Wu J., Schreiber V., Dunlap J., Dantzer F., Wang Y.,Liu Y.: PARP1 is a TRF2-associated poly(ADP-ribose) polymeraseand protects eroded telomeres. Mol. Biol. Cell, 2006; 17: 1686-1696
Google Scholar - 22. Hassa P.O., Haenni S.S., Buerki C., Meier N.I., Lane W.S., OwenH., Gersbach M., Imhof R., Hottiger M.O.: Acetylation of poly(ADP–ribose) polymerase-1 by p300/CREB-binding protein regulates coactivationof NF-κB-dependent transcription. J. Biol. Chem., 2005;280: 40450-40464
Google Scholar - 23. Hutchinson L.: Targeted therapies: PARP inhibitor olaparib issafe and effective in patients with BRCA1 and BRCA2 mutations. Nat.Rev. Clin. Oncol., 2010; 7: 549
Google Scholar - 24. Jin S., DiPaola R.S., Mathew R., White E.: Metabolic catastropheas a means to cancer cell death. J. Cell Sci., 2007; 120: 379-383
Google Scholar - 25. Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W.,Friedlander M., Balmana J., Mitchell G., Fried G., Stemmer S.M., HubertA., Rosengarten O., Steiner M., Loman N., Bowen K., FieldingA. i wsp.: Olaparib monotherapy in patients with advanced cancerand a germline BRCA1/2 mutation. J. Clin. Oncol., 2015; 33: 244-250
Google Scholar - 26. Kaye S.B., Lubinski J., Matulonis U., Ang J.E., Gourley C., KarlanB.Y., Amnon A., Bell-McGuinn K.M., Chen L.M., Friedlander M., SafraT., Vergote I., Wickens M., Lowe E.S., Carmichael J. i wsp.: PhaseII, open-label, randomized, multicenter study comparing the efficacyand safety of olaparib, a poly (ADP-ribose) polymerase inhibitor,and pegylated liposomal doxorubicin in patients with BRCA1or BRCA2 mutations and recurrent ovarian cancer. J. Clin. Oncol.,2012; 30: 372-379
Google Scholar - 27. Kiliańska Z.M., Żołnierczyk J., Węsierska-Gądek J.: Biologicznaaktywność polimerazy poli(ADP-rybozy)-1. Postępy Hig. Med. Dośw.,2010; 64: 344-363
Google Scholar - 28. Kim M.Y., Zhang T., Kraus W.L.: Poly(ADP-ribosyl)ation by PARP-1: `PAR-laying’ NAD+ into a nuclear signal. Genes Dev., 2005; 19:1951-1967
Google Scholar - 29. Kluzek K., Białkowska A., Koczorowska A., Zdzienicka M.Z.: Inhibitorypolimerazy poli(ADP-rybozy) (PARP) w terapii nowotworówz mutacjami BRCA1/2. Postępy Hig. Med. Dośw., 2012; 66: 372-384
Google Scholar - 30. Kotova E., Jarnik M., Tulin A.V.: Poly (ADP-Ribose) polymerase 1 is required for protein localization to Cajal body. PLoS Genet.,2009; 5: e1000387
Google Scholar - 31. Kotova E., Jarnik M., Tulin A.V.: Uncoupling of the transactivationand transrepression functions of PARP1 protein. Proc. Natl.Acad. Sci. USA, 2010; 107: 6406-6411
Google Scholar - 32. Kraus W.L.: Transcriptional control by PARP-1: chromatin modulation,enhancer-binding, coregulation, and insulation. Curr. Opin.Cell Biol., 2008, 20: 294-302
Google Scholar - 33. Kraus W.L., Hottiger M.O.: PARP-1 and gene regulation: progressand puzzles. Mol. Aspects Med., 2013; 34: 1109-1123
Google Scholar - 34. Krishnakumar R., Kraus W.L.: The PARP side of the nucleus: molecularactions, physiological outcomes, and clinical targets. Mol.Cell, 2010; 39: 8-24
Google Scholar - 35. Langelier M.F., Ruhl D.D., Planck J.L., Kraus W.L., Pascal J.M.: TheZn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functionsin both DNA-dependent poly(ADP-ribose) synthesis activityand chromatin compaction. J. Biol. Chem., 2010; 285: 18877-18887
Google Scholar - 36. Ledermann J., Harter P., Gourley C., Friedlander M., Vergote I.,Rustin G., Scott C.L., Meier W., Shapira-Frommer R., Safra T., Matei D.,Fielding A., Spencer S., Dougherty B., Orr M. i wsp.: Olaparib maintenancetherapy in patients with platinum-sensitive relapsed serous ovariancancer: a preplanned retrospective analysis of outcomes by BRCAstatus in a randomised phase 2 trial. Lancet Oncol., 2014; 15: 852-861
Google Scholar - 37. Liu J.F., Barry W.T., Birrer M., Lee J.M., Buckanovich R.J., FlemingG.F., Rimel B., Buss M.K., Nattam S., Hurteau J., Luo W., QuyP., Whalen C., Obermayer L., Lee H. i wsp.: Combination cediraniband olaparib versus olaparib alone for women with recurrent platinum-sensitiveovarian cancer: a randomised phase 2 study. LancetOncol., 2014; 15: 1207-1214
Google Scholar - 38. Lodhi N., Kossenkov A.V., Tulin A.V.: Bookmarking promoters inmitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigeneticmark. Nucl. Acids Res., 2014; 42: 7028-7038
Google Scholar - 39. Loeffler P.A., Cuneo M.J., Mueller G.A., DeRose E.F., Gabel S.A.,London R.E.: Structural studies of the PARP-1 BRCT domain. BMCStruct. Biol., 2011; 11: 37
Google Scholar - 40. Lynparza™ approved by the US food and drug administration forthe treatment of advanced ovarian cancer in patients with germlineBRCA-mutations. http://www.astrazeneca.com/Media/Press-releases/Article/20141219–lynparza-approved(14.04.2015)
Google Scholar - 41. Lynparza™ approved in the European Union as first-in-classtreatment for advanced BRCA-mutated ovarian cancer. http://www.astrazeneca.com/Media/Press-releases/Article/20141218–lynparza-approved-in-the-european-union (14.04.2015)
Google Scholar - 42. Mangerich A., Bürkle A.: Pleiotropic cellular functions of PARP1in longevity and aging: genome maintenance meets inflammation.Oxid. Med. Cell. Longev., 2012; 2012: 321653
Google Scholar - 43. Martínez-Zamudio R.I., Ha H.C.: Histone ADP-ribosylation facilitatesgene transcription by directly remodeling nucleosomes. Mol.Cell. Biol., 2012; 32: 2490-2502
Google Scholar - 44. Martínez-Zamudio R.I., Ha H.C.: PARP1 enhances inflammatorycytokine expression by alteration of promoter chromatin structurein microglia. Brain Behav., 2014; 4: 552–565
Google Scholar - 45. Masutani M., Nakagama H., Sugimura T.: Poly(ADP-ribosyl)ationin relation to cancer and autoimmune disease. Cell. Mol. Life Sci.,2005; 62: 769-783
Google Scholar - 46. Mendes-Pereira A.M., Martin S.A., Brough R., McCarthy A., TaylorJ.R., Kim J.S., Waldman T., Lord C.J., Ashworth A.: Synthetic lethaltargeting of PTEN mutant cells with PARP inhibitors. EMBO Mol.Med., 2009; 1: 315-322
Google Scholar - 47. Minami D., Takigawa N., Takeda H., Takata M., Ochi N., IchiharaE., Hisamoto A., Hotta K., Tanimoto M., Kiura K.: Synergistic effectof olaparib with combination of cisplatin on PTEN-deficient lungcancer cells. Mol. Cancer Res., 2013; 11: 140-148
Google Scholar - 48. Mladenov E., Magin S., Soni A., Iliakis G.: DNA Double-strandbreak repair as determinant of cellular radiosensitivity to killingand target in radiation therapy. Front. Oncol., 2013; 3: 113
Google Scholar - 49. Morrow D.A., Brickman C.M., Murphy S.A., Baran K., KrakoverR., Dauerman H., Kumar S., Slomowitz N., Grip L., McCabe C.H., SalzmanA.L.: A randomized, placebo-controlled trial to evaluate thetolerability, safety, pharmacokinetics, and pharmacodynamics ofa potent inhibitor of poly(ADP-ribose) polymerase (INO-1001) in patientswith ST-elevation myocardial infarction undergoing primarypercutaneous coronary intervention: results of the TIMI 37 trial. J.Thromb. Thrombolysis, 2009; 27: 359-364
Google Scholar - 50. Murai J., Huang S.Y., Das B.B., Renaud A., Zhang Y., DoroshowJ.H., Ji J., Takeda S., Pommier Y.: Trapping of PARP1 and PARP2 byclinical PARP inhibitors. Cancer Res., 2012; 72: 5588-5599
Google Scholar - 51. Na Z., Peng B., Ng S., Pan S., Lee J.S., Shen H.M., Yao S.Q.: A small–molecule protein-protein interaction inhibitor of PARP1 that targetsits BRCT domain. Angew. Chem. Int. Ed. Engl., 2015; 54: 2515-2519
Google Scholar - 52. O’Shaughnessy J., Schwartzberg L., Danso M.A., Miller K.D., RugoH.S., Neubauer M., Robert N., Hellerstedt B., Saleh M., Richards P.,Specht J.M., Yardley D.A., Carlson R.W., Finn R.S., Charpentier E.i wsp.: Phase III study of iniparib plus gemcitabine and carboplatinversus gemcitabine and carboplatin in patients with metastatictriple-negative breast cancer. J. Clin. Oncol., 2014; 32: 3840-3847
Google Scholar - 53. Pleschke J.M., Kleczkowska H.E., Strohm M., Althaus F.R.: Poly-(ADP-ribose) Binds to Specific Domains in DNA Damage CheckpointProteins. J. Biol. Chem., 2000; 275: 40974-40980
Google Scholar - 54. Plummer R., Stephens P., Aissat-Daudigny L., Cambois A., MoachonG., Brown P. D., Campone M.: Phase 1 dose-escalation studyof the PARP inhibitor CEP-9722 as monotherapy or in combinationwith temozolomide in patients with solid tumors. Cancer Chemother.Pharmacol., 2014; 74: 257-265
Google Scholar - 55. Postel-Vinay S., Bajrami I., Friboulet L., Elliott R., Fontebasso Y.,Dorvault N., Olaussen K.A., André F., Soria J.C., Lord C.J., AshworthA.: A high-throughput screen identifies PARP1/2 inhibitors as a potentialtherapy for ERCC1-deficient non-small cell lung cancer. Oncogene,2013; 32: 5377-5387
Google Scholar - 56. Quénet D., Gasser V., Fouillen L., Cammas F., Sanglier-CianferaniS., Losson R., Dantzer F.: The histone subcode: poly(ADP-ribose)polymerase-1 (Parp-1) and Parp-2 control cell differentiation byregulating the transcriptional intermediary factor TIF1β and theheterochromatin protein HP1α. FASEB J., 2008; 22: 3853-3865
Google Scholar - 57. Robaszkiewicz A., Erdélyi K., Kovács K., Kovács I., Bai P., RajnavölgyiE., Virág L.: Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death.Free Radic. Biol. Med., 2012; 53: 1552-1564
Google Scholar - 58. Robaszkiewicz A., Valkó Z., Kovács K., Hegedűs C., Bakondi E., BaiP., Virág L.: The role of p38 signaling and poly(ADP-ribosyl)ation-inducedmetabolic collapse in the osteogenic differentiation-coupledcell death pathway. Free Radic. Biol. Med., 2014; 76: 69-79
Google Scholar - 59. Satoh A., Brace C.S., Rensing N., Clifton P., Wozniak D.F., HerzogE.D., Yamanda K.A., Imai S.: Sirt1 extends life span and delays agingin mice through the regulation of Nk2 homeobox 1 in the DMH andLH. Cell Metab., 2013; 18: 416-430
Google Scholar - 60. Steffen J.D., Brody J.R., Armen R.S., Pascal J.M.: Structural implicationsfor selective targeting of PARP’s. Front. Oncol., 2013; 3: 301
Google Scholar - 61. Szabó G., Soós P., Mandera S., Heger U., Flechtenmacher C.,Bährle S., Seres L., Cziráki A., Gries A., Zsengellér Z., Vahl C.F., HaglS., Szabó C.: INO-1001 a novel poly(ADP-ribose) polymerase (PARP)inhibitor improves cardiac and pulmonary function after crystalloidcardioplegia and extracorporal circulation. Shock, 2004; 21: 426-432
Google Scholar - 62. Toma M., Skorski T., Śliwiński T.: Syntetyczna letalność jakofunkcjonalne narzędzie w badaniach podstawowych oraz w terapiiprzeciwnowotworowej. Postępy Hig. Med. Dośw., 2014; 68: 1091-1103
Google Scholar - 63. Tulin A., Spradling A.: Chromatin loosening by poly(ADP)-ribosepolymerase (PARP) at Drosophila puff loci. Science, 2003; 299:560-562
Google Scholar - 64. Underhill C., Toulmonde M., Bonnefoi H.: A review of PARPinhibitors: from bench to bedside. Ann. Oncol., 2011; 22: 268-279
Google Scholar - 65. Virág L., Robaszkiewicz A., Rodriguez-Vargas J.M., Oliver F.J.:Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med., 2013;34: 1153-1167
Google Scholar - 66. Wacker D.A., Ruhl D.D., Balagamwala E.H., Hope K.M., Zhang T.,Kraus W.L.: The DNA binding and catalytic domains of poly(ADP-ribose)polymerase 1 cooperate in the regulation of chromatin structureand transcription. Mol. Cell. Biol., 2007; 27: 7475-7485
Google Scholar - 67. Wang Z., Wang F., Tang T., Guo C.: The role of PARP1 in the DNAdamage response and its application in tumor therapy. Front. Med.,2012; 6: 156-164
Google Scholar - 68. Yang F., Baumann C., De La Fuente R.: Persistence of histoneH2AX phosphorylation after meiotic chromosome synapsis and abnormalcentromere cohesion in Poly (ADP-ribose) polymerase (Parp-1) null oocytes. Dev. Biol., 2009; 331: 326-338
Google Scholar - 69. Yu J., Auwerx J.: The role of sirtuins in the control of metabolichomeostasis. Ann. NY Acad. Sci., 2009; 1173, Suppl. 1: E10-E19
Google Scholar