The use of oligonucleotide aptamers in cancer therapy
Adrian Odrzywolski 1 , Adam Waśko 2Abstract
Aptamers are a new class of molecules which originated in the 1990s. They are usually RNA or DNA oligonucleotides, the length of which ranges between 20 and 80 nt. They are produced using the SELEX method that allows one to obtain aptamers that bind to virtually any molecule of interest, providing a high specificity. Aptamers are an alternative to antibodies because on the one hand, their sensitivity is at a similar or sometimes even higher level, while on the other hand they do not show immunogenicity, and may be synthesized in vitro. To date, a broad range of different applications of aptamers has been described: as components of biosensors, or use in various laboratory techniques, such as microarrays or chromatography. One of the most important is the use of aptamers in medicine, especially in the fight against cancer. They can be used both for diagnosis and for the eradication of cancers – particularly through the delivery of drugs. Currently, most transport-related research is devoted to the delivery of chemotherapeutic drugs, such as doxorubicin. This was used in research on liver cancer cells, prostate, and acute lymphoblastic leukemia blast cells. Another possibility is to use aptamers to deliver siRNAs. In this way inhibition of the quality control process of the mRNA in tumor cells is possible. An aptamer complex with the drug allows for direct delivery of the active substance in a particular cell type, substantially eliminating the non-specific effect of the drug.
References
- 1. Berens C., Thain A., Schroeder R.: A tetracycline-binding RNAaptamer. Bioorg. Med. Chem., 2001; 9: 2549-2556
Google Scholar - 2. Burmeister P.E., Lewis S.D., Silva R.F., Preiss J.R., Horwitz L.R.,Pendergrast P.S., McCauley T.G., Kurz J.C., Epstein D.M., Wilson C.,Keefe A.D.: Direct in vitro selection of a 2’-o-methyl aptamer to VEGF.Chem. Biol., 2005; 12: 25-33
Google Scholar - 3. Cheng C., Chen Y.H., Lennox K.A., Behlke M.A., Davidson B.L.: Invivo SELEX for identification of brain-penetrating aptamers. Mol.Ther. Nucleic Acids, 2013; 2: e67
Google Scholar - 4. Dassie J.P., Lie X., Thomas G.S., Whitaker R.M., Thiel K.W., StockdaleK.R., Meyerholz D.K., McCaffrey A.P., McNamara J.O.2nd, Giangrande P.H.:Systemic administration of optimized aptamer-siRNA chimeras promotesregression of PSMA-expressing tumors. Nat. Biotechnol., 2009; 27: 839-849
Google Scholar - 5. Davlieva M., Donarski J., Wang J., Shamoo Y., Nikonowicz E.P.:Structure analysis of free and bound states of an RNA aptamer againstribosomal protein S8 from Bacillus anthracis. Nucleic Acids Res.,2014; 42: 10795-10808 6 Dougan H., Lyster D.M., Vo C.V., Stafford A., Weitz J.I., Hobbs J.B.:Extending the lifetime of anticoagulant oligodeoxynucleotide aptamersin blood. Nucl. Med. Biol., 2000; 27: 289-297
Google Scholar - 6. receptor aptamers selectively kill target cells upon irradiation.Mol. Ther. Nucleic Acids, 2014; 3: e143
Google Scholar - 7. Ellington A.D., Szostak J.W.: In vitro selection of RNA moleculesthat bind specific ligands. Nature, 1990; 346: 818-822
Google Scholar - 8. Ferreira C.S., Cheung M.C., Missailidis S., Bisland S., Gariépy J.:Phototoxic aptamers selectively enter and kill epithelial cancer cells.Nucleic Acids Res., 2009; 37: 866-876
Google Scholar - 9. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., MelloC.C.: Potent and specific genetic interference by double-strandedRNA in caenorhabditis elegans. Nature, 1998; 391: 806-811
Google Scholar - 10. Gilbert W.: Origin of life: The RNA world. Nature, 1986; 319: 618
Google Scholar - 11. Hamula C.L., Guthrie J.W., Zhang H., Li X.F., Le C.X.: Selectionand analytical applications of aptamers. Trends Analyt. Chem., 2006;25: 681-691
Google Scholar - 12. Han B., Zhao C., Yin J., Wang H.: High performance aptameraffinity chromatography for single-step selective extraction andscreening of basic protein lysozyme. J. Chromatogr. B Analyt. Technol.Biomed. Life Sci., 2012; 903: 112-117
Google Scholar - 13. Harada K., Frankel A.D.: Identification of two novel argininebinding DNAs. EMBO J., 1995; 14: 5798-5811
Google Scholar - 14. Hoang C.V., Oyama M., Saito O., Aono M., Nagao T.: Monitoringthe presence of ionic mercury in environmental water by plasmon–enhanced infrared spectroscopy. Sci. Rep., 2013; 3: 1175
Google Scholar - 15. Huang Y.F., Shangguan D., Liu H., Phillips J.A., Zhang X., Chen Y.,Tan W.: Molecular assembly of an aptamer-drug conjugate for targeteddrug delivery to tumor cells. Chembiochem, 2009; 10: 862-868
Google Scholar - 16. Jeon W., Lee S., Manjunatha D. H., Ban C.: A colorimetric aptasensorfor the diagnosis of malaria based on cationic polymers andgold nanoparticles. Anal. Biochem., 2013; 439: 11-16
Google Scholar - 17. Jing M., Bowser M.T.: Isolation of DNA aptamers using micro freeflow electrophoresis. Lab Chip, 2011; 11: 3703-3709
Google Scholar - 18. Keyt B.A., Berleau L.T., Nguyen H.V., Chen H., Heinsohn H., VandlenR., Ferrara N.: The carboxyl-terminal domain (111–165) of vascularendothelial growth factor is critical for its mitogenic potency.J. Biol. Chem., 1996; 271: 7788-7795
Google Scholar - 19. Kim Y.H., Sung H.J., Kim S., Kim E.O., Lee J.W., Moon J.Y., ChoiK., Jung J.E., Lee Y., Koh S.S., Rhee S.G., Heo K., Kim I.H.: An RNAaptamer that specifically binds pancreatic adenocarcinoma up-regulatedfactor inhibits migration and growth of pancreatic cancercells. Cancer Lett., 2011; 313: 76-83
Google Scholar - 20. Klussmann S.: The Aptamer Handbook: Functional Oligonucleotidesand Their Applications. Wiley-VCH, Weinheim, 2006
Google Scholar - 21. Kruspe S., Meyer C., Hahn U.: Chlorin e6 conjugated interleukin-
Google Scholar - 22. Lee Y.J., Lee S.: Regression of hepatocarcinoma cells using RNAaptamer specific to alpha-fetoprotein. Biochem. Biophys. Res. Commun.,2012; 417: 521-527
Google Scholar - 23. Li D., Wieckowska A., Willner I.: Optical analysis of Hg2+ ionsby oligonucleotide-gold-nanoparticle hybrids and DNA-based machines.Angew. Chem. Int. Ed. Engl., 2008; 47: 3927-3931
Google Scholar - 24. Liu Z., Duan J.H., Song Y.M., Ma J., Wang F.D., Lu X., Yang X.D:Novel HER2 aptamer selectively delivers cytotoxic drug to HER2–positive breast cancer cells in vitro. J. Transl. Med., 2012; 10: 148
Google Scholar - 25. Mallikaratchy P., Tang Z., Tan W.: Cell specific aptamer-photosensitizerconjugates as a molecular tool in photodynamic therapy.ChemMedChem., 2008; 3: 425-428
Google Scholar - 26. Manoharan M.: Oligonucleotide conjugates as potential antisensedrugs with improved uptake, biodistribution, targeted delivery,and mechanism of action. Antisense Nucleic Acid Drug Dev.,2002; 12: 103-128
Google Scholar - 27. McNamara J.O.2nd, Andrechek E.R., Wang Y., Viles K.D., RempelR.E., Gilboa E., Sullenger B.A., Giangrande P.H.: Cell type-specificdelivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol.,2006; 24: 1005-1015
Google Scholar - 28. Meng L., Yang L., Zhao X., Zhang L., Zhu H., Liu C., Tan W.: Targeteddelivery of chemotherapy agents using a liver cancer-specificaptamer. PLoS One, 2012; 7: e33434
Google Scholar - 29. Mi J., Zhang X., Giangrande P.H., McNamara J.O.2nd, Nimjee S.M.,Sarraf-Yazdi S., Sullenger B.A., Clary B.M.: Targeted inhibition ofαvβ3 integrin with an RNA aptamer impairs endothelial cell growthand survival. Biochem. Biophys. Res. Commun., 2005; 338: 956-963
Google Scholar - 30. Miele E., Spinelli G.P., Miele E., Di Fabrizio E., Ferretti E., TomaoS., Gulino A.: Nanoparticle-based delivery of small interferingRNA: challenges for cancer therapy. Int. J. Nanomedicine, 2012; 7:3637-3657
Google Scholar - 31. Min K., Jo H., Song K., Cho M., Chun Y., Jon S., Kim W.J., Ban C.:Dual-aptamer-based delivery vehicle of doxorubicin to both psma(+) and psma (-) prostate cancers. Biomaterials, 2011; 32: 2124-2132
Google Scholar - 32. Pagratis N.C., Bell C., Chang Y.F., Jennings S., Fitzwater T., JellinekD., Dang C.: Potent 2’-amino-, and 2’-fluoro-2’-deoxyribonucleotideRNA inhibitors of keratinocyte growth factor. Nat. Biotechnol.,1997; 15: 68-73
Google Scholar - 33. Pastor F., Kolonias D., Giangrande P.H., Gilboa E.: Induction oftumour immunity by targeted inhibition of nonsense-mediatedmRNA decay. Nature, 2010; 465: 227-230
Google Scholar - 34. Radom F., Jurek P.M., Mazurek M.P., Otlewski J., Jeleń F.: Aptamers:molecules of great potential. Biotechnol. Adv., 2013; 31:1260-1274
Google Scholar - 35. Ray P., Cheek M.A., Sharaf M.L., Li N., Ellington A.D., SullengerB.A., Shaw B.R., White R.R.: Aptamer-mediated delivery of chemotherapyto pancreatic cancer cells. Nucleic Acid Ther., 2012; 22: 295-305
Google Scholar - 36. Roychowdhury-Saha M., Lato S.M., Shank E.D., Burke D.H.: Flavinrecognition by an RNA aptamer targeted toward FAD. Biochemistry,2002; 41: 2492-2499
Google Scholar - 37. Sapag A., Salinas-Luypaert C., Constenla-Muñoz C.: First reportof in vitro selection of RNA aptamers targeted to recombinant Loxosceleslaeta spider toxins. Biol. Res., 2014; 47: 2
Google Scholar - 38. Savla R., Taratula O., Garbuzenko O., Minko T.: Tumor targetedquantum dot-mucin 1 aptamer-doxorubicin conjugate for imagingand treatment of cancer. J. Control Release, 2011; 153: 16-22
Google Scholar - 39. Sazani P.L., Larralde R., Szostak J.W.: A small aptamer with strongand specific recognition of the triphosphate of ATP. J. Am. Chem.Soc., 2004; 126: 8370-8371
Google Scholar - 40. Sett A., Das S., Bora U.: Functional nucleic-acid-based sensorsfor environmental monitoring. Appl. Biochem. Biotechnol., 2014;174: 1073-1091
Google Scholar - 41. Sett A., Das S., Sharma P., Bora U.: Aptasensors in health, environmentand food safety monitoring. OJAB, 2012; 1: 9-19
Google Scholar - 42. Shea R.G., Marsters J.C., Bischofberger N.: Synthesis, hybridizationproperties and antiviral activity of lipid-oligodeoxynucleotideconjugates. Nucleic Acids Res., 1990; 18: 3777-3783
Google Scholar - 43. Šmuc T., Ahn I.Y., Ulrich H.: Nucleic acid aptamers as high affinityligands in biotechnology and biosensorics. J. Pharm. Biomed.Anal., 2013; 81-82: 210-217
Google Scholar - 44. Song K.M., Lee S., Ban C.: Aptamers and their biological applications.Sensors, 2012; 12: 612-631
Google Scholar - 45. Sosic A., Meneghello A., Antognoli A., Cretaio E., Gatto B.: Developmentof a multiplex sandwich aptamer microarray for thedetection of VEGF165 and thrombin. Sensors, 2013; 13: 13425-13438
Google Scholar - 46. Stoltenburg R., Reinemann C., Strehlitz B.: SELEX – a (r)evolutionarymethod to generate high-affinity nucleic acid ligands. Biomol.Eng., 2007; 24: 381-403
Google Scholar - 47. Sundaram P., Kurniawan H., Byrne M.E., Wower J.: TherapeuticRNA aptamers in clinical trials. Eur. J. Pharm. Sci., 2013; 48: 259-271
Google Scholar - 48. Toh S.Y., Citartan M., Gopinath S.C., Tang T.H.: Aptamers as a replacementfor antibodies in enzyme-linked immunosorbent assay.Biosens. Bioelectron., 2015; 64: 392-403
Google Scholar - 49. Tuerk C., Gold L.: Systematic evolution of ligands by exponentialenrichment: RNA ligands to bacteriophage T4 DNA polymerase.Science, 1990; 249: 505-510
Google Scholar - 50. Vinogradov S.V., Suzdaltseva Y.G., Kabanov A.V.: Block polycationicoligonucleotide derivative: synthesis and inhibition of herpesvirus reproduction. Bioconjug. Chem., 1996; 7: 3-6
Google Scholar - 51. Yang Q., Goldstein I.J., Mei H.Y., Engelke D.R.: DNA ligands thatbind tightly and selectively to cellobiose. Proc. Natl. Acad. Sci. USA,1998; 95: 5462-5467
Google Scholar - 52. Zhang Z., Ali M.M., Eckert M.A., Kang D.K., Chen Y.Y., SenderL.S., Fruman D.A., Zhao W.: A polyvalent aptamer system for targeteddrug delivery. Biomaterials, 2013; 34: 9728-9735
Google Scholar - 53. Zimbres F.M., Tárnok A., Ulrich H., Wrenger C.: Aptamers: novelmolecules as diagnostic markers in bacterial and viral infections?Biomed. Res. Int., 2013; 2013: 731516
Google Scholar - 54. Zueva E., Rubio L.I., Duconge F., Tavitian B.: Metastasis-focusedcell-based SELEX generates aptamers inhibiting cell migration andinvasion. Int. J. Cancer, 2011; 128: 797-804
Google Scholar