Eukaryotic TLS polymerases

COMMENTARY ON THE LAW

Eukaryotic TLS polymerases

Przemysław Tomczyk 1 , Ewelina Synowiec 1 , Daniel Wysokiński 1 , Katarzyna Woźniak 1

1. Katedra Genetyki Molekularnej, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2016-05-21
DOI: 10.5604/17322693.1202481
GICID: 01.3001.0009.6832
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 522-533

 

Abstract

TLS polymerases are able to replicate damaged DNA (called translesion DNA synthesis, TLS). Their presence prevents cell death as a result of violating the integrity of the genome. In vitro, they are mutator, but in vivo are recruited by specific types of DNA damage and usually replicate them in a correct manner. The best-known TLS polymerases belong to the Y family, such as Rev1, κ, η, ι, and polymerase ζ from the B family. There are two mechanisms of TLS polymerases action: polymerase-switching model and the gap-filling model. Selection of the mechanism primarily depends on the phase of the cell cycle. The regulation of these polymerases may take place at the transcriptional level and at level of recruitment to the sites of DNA damage. In the latter case post-translational modification of proteins – ubiquitination and sumoylation, and protein-protein interactions are crucial.

References

  • 1. Acharya N., Johnson R.E., Prakash S., Prakash L.: Complex formationwith Rev1 enhances the proficiency of Saccharomyces cerevisiae DNApolymerase zeta for mismatch extension and for extension oppositefrom DNA lesions. Mol. Cell. Biol., 2006; 26: 9555-9563
    Google Scholar
  • 2. Andersen P.L., Xu F., Xiao W.: Eukaryotic DNA damage toleranceand translesion synthesis through covalent modifications of PCNA.Cell Res., 2008; 18: 162-173
    Google Scholar
  • 3. Aravind L., Koonin E.V.: The HORMA domain: a common structuraldenominator in mitotic checkpoints, chromosome synapsis and DNArepair. Trends Biochem. Sci., 1998; 23: 284-286
    Google Scholar
  • 4. Avkin S., Goldsmith M., Velasco-Miguel S., Geacintov N., FriedbergE.C., Livneh Z.: Quantitative analysis of translesion DNA synthesis acrossa benzo[α]pyrene-guanine adduct in mammalian cells: the role of DNApolymerase κ. J. Biol. Chem., 2004; 279: 53298-53305
    Google Scholar
  • 5. Avkin S., Sevilya Z., Toube L., Geacintov N., Chaney S.G., Oren M.,Livneh Z.: P53 and p21 regulate error-prone DNA repair to yield a lowermutation load. Mol. Cell, 2006; 22: 407-413
    Google Scholar
  • 6. Baker T.A., Bell S.P.: Polymerases and the replisome: machines withinmachines. Cell, 1998; 92: 295-305
    Google Scholar
  • 7. Bavoux C., Hoffmann J.S., Cazaux C.: Adaptation to DNA damage andstimulation of genetic instability: the double-edged sword mammalianDNA polymerase κ. Biochimie, 2005; 87: 637-646
    Google Scholar
  • 8. Bebenek K., Tissier A., Frank E.G., McDonald J.P., Prasad R., WilsonS.H., Woodgate R., Kunkel T.A.: 5’-Deoxyribose phosphate lyase activityof human DNA polymerase iota in vitro. Science, 2001; 291: 2156-2159
    Google Scholar
  • 9. Bębenek A.: Mechanizmy wierności replikacji DNA. Postępy Biochem.,2008; 54: 43-56
    Google Scholar
  • 10. Berdis A.J.: Chemotherapeutic intervention by inhibiting DNA polymerases.W: DNA repair in cancer therapy. Molecular targets and clinicalapplications, red.: M.R. Kelley. Elsevier Inc. 2012, 75-107
    Google Scholar
  • 11. Bienko M., Green C.M., Crosetto N., Rudolf F., Zapart G., Coull B.,Kannouche P., Wider G., Peter M., Lehmann A.R., Hofmann K., Dikic I.:Ubiquitin-binding domains in Y-family polymerases regulate translesionsynthesis. Science, 2005; 310: 1821-1824
    Google Scholar
  • 12. Bienko M., Green C.M., Sabbioneda S., Crosetto N., Matic I., HibbertR.G., Begovic T., Niimi A., Mann M., Lehmann A.R., Dikic I.: Regulationof translesion synthesis DNA polymerase h by monoubiquitination.Mol. Cell, 2010; 37: 396-407
    Google Scholar
  • 13. Boudsocq F., Kokoska R.J., Plosky B.S., Vaisman A., Ling H., KunkelT.A., Yang W., Woodgate R.: Investigating the role of the little fingerdomain of Y-family DNA polymerases in low fidelity synthesis andtranslesion replication. J. Biol. Chem., 2004; 279: 32932-32940
    Google Scholar
  • 14. Brondello J.M., Pillaire M.J., Rodriguez C., Gourraud P.A., SelvesJ., Cazaux C., Piette J.: Novel evidences for a tumor suppressor role ofRev3, the catalytic subunit of Pol zeta. Oncogene, 2008; 27: 6093-6101
    Google Scholar
  • 15. Cazzalini O., Scovassi A.I., Savio M., Stivala L.A., Prosperi E.: Multipleroles of the cell cycle inhibitor p21CDKN1A in the DNA damage response.Mutat. Res., 2010; 704: 12-20
    Google Scholar
  • 16. Cordeiro-Stone M., Zaritskaya L.S., Price L.K., Kaufmann W.K.: Replicationfork bypass of a pyrimidine dimer blocking leading strandDNA synthesis. J. Biol. Chem., 1997; 272: 13945-13954
    Google Scholar
  • 17. Donigan K.A., McLenigan M.P., Yang W., Goodman M.F., WoodgateR.: The steric gate of DNA polymerase ι regulates ribonucleotideincorporation and deoxyribonucleotide fidelity. J. Biol. Chem., 2014;289: 9136-9145
    Google Scholar
  • 18. D’Souza S., Walker G.C.: Novel role for the C terminus of Saccharomycescerevisiae Rev1 in mediating protein-protein interactions. Mol.Cell. Biol., 2006; 26: 8173-8182
    Google Scholar
  • 19. Fortune J.M., Pavlov Y.I., Welch C.M., Johansson E., Burgers P.M.,Kunkel T.A.: Saccharomyces cerevisiae DNA polymerase d: high fidelityfor base substitutions but lower fidelity for single- and multi-base deletions.J. Biol. Chem., 2005; 280: 29980-29987
    Google Scholar
  • 20. Frank E.G., Woodgate R.: Increased catalytic activity and alteredfidelity of human DNA polymerase ι in the presence of manganese. J.Biol. Chem., 2007; 282: 24689-24696
    Google Scholar
  • 21. Friedberg E.C., Lehmann A.R., Fuchs R.P.: Trading places: how doDNA polymerases switch during translesion DNA synthesis? Mol. Cell,2005; 18: 499-505
    Google Scholar
  • 22. Gan G.N., Wittschieben J.P., Wittschieben B.O., Wood R.D.: DNA polymerasezeta (pol ζ) in higher eukaryotes. Cell Res., 2008; 18: 174-183
    Google Scholar
  • 23. Gibbs P.E., McGregor W.G., Maher V.M., Nisson P., Lawrence C.W.:A human homolog of the Saccharomyces cerevisiae REV3 gene, whichencodes the catalytic subunit of DNA polymerase ζ. Proc. Natl. Acad.Sci. USA, 1998; 95: 6876-6880
    Google Scholar
  • 24. Goodman M.F.: Error-prone repair DNA polymerases in prokaryotesand eukaryotes. Annu. Rev. Biochem., 2002; 71: 17-50
    Google Scholar
  • 25. Goodman M.F., Woodgate R.: Translesion DNA polymerases. ColdSpring Harb. Perspect. Biol., 2013; 5: a010363
    Google Scholar
  • 26. Guo C., Fischhaber P.L., Luk-Paszyc M.J., Masuda Y., Zhou J., KamiyaK., Kisker C., Friedberg E.C.: Mouse Rev1 protein interacts with multipleDNA polymerases involved in translesion DNA synthesis. EMBO J.,2003; 22: 6621-6630
    Google Scholar
  • 27. Guo C., Tang T.S., Bienko M., Parker J.L., Bielen A.B., Sonoda E., TakedaS., Ulrich H.D., Dikic I., Friedberg E.C.: Ubiquitin-binding motifs inREV1 protein are required for its role in the tolerance of DNA damage.Mol. Cell. Biol., 2006; 26: 8892-8900
    Google Scholar
  • 28. Guo D., Xie Z., Shen H., Zhao B., Wang Z.: Translesion synthesis ofacetylaminofluorene-dG adducts by DNA polymerase ζ is stimulatedby yeast Rev1 protein. Nucleic Acids Res. 2004; 32: 1122-1130
    Google Scholar
  • 29. Haracska L., Prakash S., Prakash L.: Replication past O(6)-methylguanineby yeast and human DNA polymerase η. Mol. Cell. Biol., 2000;20: 8001-8007
    Google Scholar
  • 30. Haracska L., Prakash L., Prakash S.: Role of human DNA polymeraseκ as an extender in translesion synthesis. Proc. Natl. Acad. Sci. USA,2002; 99: 16000-16005
    Google Scholar
  • 31. Haracska L., Yu S.L., Johnson R.E., Prakash L., Prakash S.: Efficientand accurate replication in the presence of 7,8-dihydro-8-oxoguanineby DNA polymerase η. Nat. Genet., 2000; 25: 458-461
    Google Scholar
  • 32. He X., Ye F., Zhang J., Cheng Q., Shen J., Chen H.: REV1 genetic variantsassociated with the risk of cervical carcinoma. Eur. J. Epidemiol.,2008; 23: 403-409
    Google Scholar
  • 33. Hendriks I.A., D’Souza R.C., Yang B., Verlaan-de Vries M., Mann M.,Vertegaal A.C.: Uncovering global SUMOylation signaling networks ina site-specific manner. Nat. Struct. Mol. Biol., 2014; 21: 927-936
    Google Scholar
  • 34. Jansen J.G., Langerak P., Tsaalbi-Shtylik A., van den Berk P., JacobsH., de Wind N.: Strand-biased defect in C/G transversions in hypermutatingimmunoglobulin genes in Rev1-deficient mice. J. Exp. Med.,2006; 203: 319-323
    Google Scholar
  • 35. Jarosz D.F., Godoy V.G., Delaney J.C., Essigmann J.M., Walker G.C.:A single amino acid governs enhanced activity of DinB DNA polymeraseson damaged templates. Nature, 2006; 439: 225-228
    Google Scholar
  • 36. Johnson R.E., Kondratick C.M., Prakash S., Prakash L.: hRAD30 mutationsin the variant form of xeroderma pigmentosum. Science, 1999;285: 263-265
    Google Scholar
  • 37. Johnson R.E., Prakash S., Prakash L.: Efficient bypass of a thymine-thyminedimer by yeast DNA polymerase, Polη. Science, 1999; 283:1001-1004
    Google Scholar
  • 38. Johnson R.E., Washington M.T., Haracska L., Prakash S., Prakash L.:Eukaryotic polymerase ι and ζ act sequentially to bypass DNA lesions.Nature, 2000; 406: 1015-1019
    Google Scholar
  • 39. Johnson R.E., Washington M.T., Prakash S., Prakash L.: Fidelity ofhuman DNA polymerase η. J. Biol. Chem., 2000; 275: 7447-7450
    Google Scholar
  • 40. Jung Y.S., Hakem A., Hakem R., Chen X.: Pirh2 E3 ubiquitin ligasemonoubiquitinates DNA polymerase h to suppress translesion DNAsynthesis. Mol. Cell. Biol., 2011; 31: 3997-4006
    Google Scholar
  • 41. Jung Y.S., Liu G., Chen X.: Pirh2 E3 ubiquitin ligase targets DNApolymerase h for 20S proteasomal degradation. Mol. Cell. Biol., 2010;30: 1041-1048
    Google Scholar
  • 42. Kim S.H., Michael W.M.: Regulated proteolysis of DNA polymeraseη during the DNA-damage response in C. elegans. Mol. Cell, 2008;32: 757-766
    Google Scholar
  • 43. Knobel P.A., Marti T.M.: Translesion DNA synthesis in the contextof cancer research. Cancer Cell Internat., 2011; 11: 39
    Google Scholar
  • 44. Kobayashi M., Figaroa F., Meeuwenoord N., Jansen L.E., Siegal G.:Characterization of the DNA binding and structural properties of theBRCT region of human replication factor C p140 subunit. J. Biol. Chem.,2006; 281: 4308-4317
    Google Scholar
  • 45. Kunkel T.A., Hamatake R.K., Motto-Fox J., Fitzgerald M.P., Sugino A.:Fidelity of DNA polymerase I and the DNA polymerase I-DNA primasecomplex from Saccharomyces cerevisiae. Mol. Cell. Biol., 1989; 9: 4447-4458
    Google Scholar
  • 46. Kusumoto R., Masutani C., Iwai S., Hanaoka F.: Translesion synthesisby human DNA polymerase η across thymine glycol lesions. Biochemistry,2002; 41: 6090-6099
    Google Scholar
  • 47. Lawrence C.W.: Cellular functions of DNA polymerase ζ and Rev1protein. Adv. Protein Chem., 2004; 69: 167-203
    Google Scholar
  • 48. Lazzaro F., Novarina D., Amara F., Watt D.L., Stone J.E., CostanzoV., Burgers P.M., Kunkel T.A., Plevani P., Muzi-Falconi M.: RNase H andpostreplication repair protect cells from ribonucleotides incorporatedin DNA. Mol. Cell, 2012; 45: 99-110
    Google Scholar
  • 49. Lehmann A.R.: Translesion synthesis in mammalian cells. Exp. CellRes., 2006; 312: 2673-2676
    Google Scholar
  • 50. Lehmann A.R., Kirk-Bell S., Arlett C.F., Paterson M.C., Lohman P.H.,de Weerd-Kastelein E.A., Bootsma D.: Xeroderma pigmentosum cellswith normal levels of excision repair have a defect in DNA synthesisafter UV-irradiation. Proc. Natl. Acad. Sci. USA, 1975; 72: 219-223
    Google Scholar
  • 51. Lehmann A.R., Niimi A., Ogi T., Brown S., Sabbioneda S., Wing J.F.,Kannouche P.L., Green C.M.: Translesion synthesis: Y-family polymerasesand the polymerase switch. DNA Repair, 2007; 6: 891-899
    Google Scholar
  • 52. Lemee F., Bavoux C., Pillaire M.J., Bieth A., Machado C.R., Pena S.D., Guimbaud R., Selves J., Hoffmann J.S., Cazaux C.: Characterizationof promoter regulatory elements involved in down expression of theDNA polymerase κ in colorectal cancer. Oncogene, 2007; 26: 3387-3394
    Google Scholar
  • 53. Lin W., Xin H., Zhang Y., Wu X., Yuan F., Wang Z.: The human REV1gene codes for a DNA template-dependent dCMP transferase. NucleicAcids Res., 1999; 27: 4468-4475
    Google Scholar
  • 54. Lin X., Okuda T., Trang J., Howell S.B.: Human REV1 modulates thecytotoxicity and mutagenicity of cisplatin in human ovarian carcinomacells. Mol. Pharmacol., 2006; 69: 1748-1754
    Google Scholar
  • 55. Ling H., Boudsocq F., Plosky B.S., Woodgate R., Yang W.: Replicationof a cis-syn thymine dimer at atomic resolution. Nature, 2003;424: 1083-1087
    Google Scholar
  • 56. Ling H., Boudsocq F., Woodgate R., Yang W.: Crystal structure ofa Y-family DNA polymerase in action: a mechanism for error-proneand lesion-bypass replication. Cell, 2001; 107: 91-102
    Google Scholar
  • 57. Livneh Z., Ziv O., Shachar S.: Multiple two-polymerase mechanismsin mammalian translesion DNA synthesis. Cell Cycle, 2010; 9: 729-735
    Google Scholar
  • 58. Longley M.J., Nguyen D., Kunkel T.A., Copeland W.C.: The fidelityof human DNA polymerase g with and without exonucleolytic proofreadingand the p55 accessory subunit. J. Biol. Chem., 2001; 276: 38555-38562
    Google Scholar
  • 59. Makarova A.V., Burgers P.M.: Eukaryotic DNA polymerase ζ. DNARepair, 2015; 29: 47-55
    Google Scholar
  • 60. Masuda Y., Kamiya K.: Role of single-stranded DNA in targetingREV1 to primer termini. J. Biol. Chem., 2006; 281: 24314-24321
    Google Scholar
  • 61. Masutani C., Kusumoto R., Iwai S., Hanaoka F.: Mechanisms of accuratetranslesion synthesis by human DNA polymerase η. EMBO J.,2000; 19: 3100-3109
    Google Scholar
  • 62. Matsuda T., Bebenek K., Masutani C., Rogozin I.B., Hanaoka F., KunkelT.A.: Error rate and specificity of human and murine DNA polymeraseh. J. Mol. Biol., 2001; 312: 335-346
    Google Scholar
  • 63. Mayorow V.I., Rogozin I.B., Adkison L.R., Gearhart P.J.: DNA polymeraseη contributes to strand bias of mutations of A versus T in immunoglobulingenes. J. Immunol., 2005; 174: 7781-7786
    Google Scholar
  • 64. McCulloch S.D., Kokoska R.J., Chilkova O., Welch C.M., Johansson E.,Burgers P.M., Kunkel T.A.: Enzymatic switching for efficient and accuratetranslesion DNA replication. Nucleic Acids Res., 2004; 32: 4665-4675
    Google Scholar
  • 65. McCulloch S.D., Kokoska R.J., Masutani C., Iwai S., Hanaoka F., KunkelT.A.: Preferential cis-syn thymine dimer bypass by DNA polymeraseη occurs with biased fidelity. Nature, 2004; 428: 97-100
    Google Scholar
  • 66. McCulloch S.D., Kunkel T.A.: The fidelity of DNA synthesis by eukaryoticreplicative and translesion synthesis polymerases. Cell Res.,2008; 18: 148-161
    Google Scholar
  • 67. McCulloch S.D., Wood A., Garg P., Burgers P.M., Kunkel T.A.: Effectsof accessory proteins on the bypass of a cis-syn thymine-thymine dimerby Saccharomyces cerevisiae DNA polymerase h. Biochemistry, 2007;46: 8888-8896
    Google Scholar
  • 68. McIntyre J., Woodgate R.: Regulation of translesion DNA synthesis:Posttranslational modification of lysine residues in key proteins. DNARepair, 2015; 29: 166-179
    Google Scholar
  • 69. Minko I.G., Yamanaka K., Kozekov I.D., Kozekova A., Indiani C.,O’Donnell M.E., Jiang Q., Goodman M.F., Rizzo C.J., Lloyd R.S.: Replicationbypass of the acrolein-mediated deoxyguanine DNA-peptidecross-links by DNA polymerases of the DinB family. Chem. Res. Toxicol.,2008; 21: 1983-1990
    Google Scholar
  • 70. Murakumo Y., Ogura Y., Ishii H., Numata S., Ichihara M., CroceC.M., Fishel R., Takahashi M.: Interactions in the error-prone postreplicationrepair proteins hREV1, hREV3, and hREV7. J. Biol. Chem.,2001; 276: 35644-35651
    Google Scholar
  • 71. Nair D.T., Johnson R.E., Prakash L., Prakash S., Aggarwal A.K.: Rev1employs a novel mechanism of DNA synthesis using a protein template. Science, 2005; 309: 2219-2222
    Google Scholar
  • 72. Nair D.T., Johnson R.E., Prakash S., Prakash L., Aggarwal A.K.: Replicationby human DNA polymerase-ι occurs by Hoogsteen base-pairing.Nature, 2004; 430: 377-380
    Google Scholar
  • 73. Nelson J.R., Gibbs P.E., Nowica A.M., Hinkle D.C., Lawrence C.W.:Evidence for a second function for Saccharomyces cerevisiae Rev1p.Mol. Microbiol., 2000; 37: 549-554
    Google Scholar
  • 74. Nelson J.R., Lawrence C.W., Hinkle D.C.: Deoxycytidyl transferaseactivity of yeast REV1 protein. Nature, 1996; 382: 729-731
    Google Scholar
  • 75. Northam M.R., Robinson H.A., Kochenova O.V., Shcherbakova P.V.:Participation of DNA polymerase zeta in replication of undamaged DNAin Saccharomyces cerevisiae. Genetics, 2010; 184: 27-42
    Google Scholar
  • 76. Ogi T., Shinkai Y., Tanaka K., Ohmori H.: Polκ protects mammaliancells against the lethal and mutagenic effects of benzo[α]pyrene. Proc.Natl. Acad. Sci. USA, 2002; 99: 15548-15553
    Google Scholar
  • 77. Ohashi E., Bebenek K., Matsuda T., Feaver W.J., Gerlach V.L., FriedbergE.C., Ohmori H., Kunkel T.A.: Fidelity and processivity of DNA synthesisby DNA polymerase k, the product of the human DINB1 gene. J.Biol. Chem., 2000; 275: 39678-39684
    Google Scholar
  • 78. Ohashi E., Murakumo Y., Kanjo N., Akagi J., Masutani C., HanaokaF., Ohmori H.: Interaction of hREV1 with three human Y-family DNApolymerases. Genes Cells, 2004; 9: 523-531
    Google Scholar
  • 79. Ohmori H., Friedberg E.C., Fuchs R.P., Goodman M.F., Hanaoka F.,Hinkle D., Kunkel T.A., Lawrence C.W., Livneh Z., Nohmi T., Prakash L.,Prakash S., Todo T., Walker G.C., Wang Z., Woodgate R.: The Y-familyof DNA polymerases. Mol. Cell, 2001; 8: 7-8
    Google Scholar
  • 80. Ohmori H., Ohashi E., Ogi T.: Mammalian Pol κ: regulation of itsexpression and lesion substrates. Adv. Protein. Chem., 2004; 69: 265-278
    Google Scholar
  • 81. Okuda T., Lin X., Trang J., Howell S.B.: Suppression of hREV1 expressionreduces the rate at which human ovarian carcinoma cells acquireresistance to cisplatin. Mol. Pharmacol., 2005; 67: 1852-1860
    Google Scholar
  • 82. O-Wang J., Kawamura K., Tada Y., Ohmori H., Kimura H., SakiyamaS., Tagawa M.: DNA polymerase κ, implicated in spontaneous and DNAdamage-induced mutagenesis, is overexpressed in lung cancer. CancerRes., 2001; 61: 5366-5369
    Google Scholar
  • 83. Petta T.B., Nakajima S., Zlatanou A., Despras E., Couve-Privat S., IshchenkoA., Sarasin A., Yasui A., Kannouche P.: Human DNA polymeraseiota protects cells against oxidative stress. EMBO J., 2008; 27: 2883-2895
    Google Scholar
  • 84. Plosky B.S., Vidal A.E., Fernandez de Henestrosa A.R., McLeniganM.P., McDonald J.P., Mead S., Woodgate R.: Controlling the subcellularlocalization of DNA polymerases i and h via interaction with ubiquitin.EMBO J., 2006; 25: 2847-2855
    Google Scholar
  • 85. Prakash S., Johnson R.E., Prakash L.: Eukaryotic translesion synthesisDNA polymerases: specificity of structure and function. Annu.Rev. Biochem., 2005; 74: 317-353
    Google Scholar
  • 86. Prives C., Gottifredi V.: The p21 and PCNA partnership: a new twistfor an old plot. Cell Cycle, 2008; 7: 3840-3846
    Google Scholar
  • 87. Rajpal D.K., Wu X., Wang Z.: Alteration of ultraviolet-induced mutagenesisin yeast through molecular modulation of the REV3 and REV7gene expression. Mutat. Res., 2000; 461: 133-143
    Google Scholar
  • 88. Ren C., Cho S.J., Jung Y.S., Chen X.: DNA polymerase h is regulatedby poly(rC)-binding protein 1 via mRNA stability. Biochem. J., 2014;464: 377-386
    Google Scholar
  • 89. Roerink S.F., Koole W., Stapel L.C., Romeijn R.J., Tijsterman M.:A broad requirement for TLS polymerases h and k, and interacting sumoylationand nuclear pore proteins, in lesion bypass during C. elegansembryogenesis. PLoS Genet., 2012; 8: e1002800
    Google Scholar
  • 90. Ross A.L., Sale J.E.: The catalytic activity of REV1 is employed duringimmunoglobulin gene diversification in DT40. Mol. Immunol.,2006; 43: 1587-1594
    Google Scholar
  • 91. Sabbioneda S., Minesinger B.K., Giannattasio M., Plevani P., Muzi–Falconi M., Jinks-Robertson S.: The 9-1-1 checkpoint clamp physicallyinteracts with Polζ and is partially required for spontaneous Pol-ζ-dependent mutagenesis in Saccharomyces cerevisiae. J. Biol. Chem.,2005; 280: 38657-38665
    Google Scholar
  • 92. Sakiyama T., Kohno T., Mimaki S., Ohta T., Yanagitani N., Sobue T.,Kunitoh H., Saito R., Shimizu K., Hirama C., Kimura J., Maeno G., HiroseH., Eguchi T., Saito D., Ohki M., Yokota J.: Association of amino acidsubstitution polymorphisms in DNA repair genes TP53, POLI, REV1 andLIG4 with lung cancer risk. Int. J. Cancer, 2005; 114: 730-737
    Google Scholar
  • 93. Shachar S., Ziv O., Avkin S., Adar S., Wittschieben J., Reissner T.,Chaney S., Friedberg E.C., Wang Z., Carell T., Geacintov N., Livneh Z.:Two-polymerase mechanisms dictate error-free and error-prone translesionDNA synthesis in mammals. EMBO J., 2009; 28: 383-393
    Google Scholar
  • 94. Shcherbakova P.V., Fijalkowska I.J.: Translesion synthesis DNApolymerases and control of genome stability. Front. Biosci., 2006; 11:2496-2517
    Google Scholar
  • 95. Shcherbakova P.V., Pavlov Y.I., Chilkova O., Rogozin I.B., JohanssonE., Kunkel T.A.: Unique error signature of the four-subunit yeast DNApolymerase e. J. Biol. Chem., 2003; 278: 43770-43780
    Google Scholar
  • 96. Silvian L.F., Toth E.A., Pham P., Goodman M.F., Ellenberger T.: Crystalstructure of a DinB family error-prone DNA polymerase from Sulfolobussolfataricus. Nat. Struct. Biol., 2001; 8: 984-989
    Google Scholar
  • 97. Skoneczna A., McIntyre J., Skoneczny M., Policinska Z., Sledziewska-GojskaE.: Polymerase h is a short-lived, proteasomally degradedprotein that is temporarily stabilized following UV irradiation in Saccharomycescerevisiae. J. Mol. Biol., 2007; 366: 1074-1086
    Google Scholar
  • 98. Szüts D., Marcus A.P., Himoto M., Iwai S., Sale J.E.: REV1 restrainsDNA polymerase ζ to ensure frame fidelity during translesion synthesisof UV photoproducts in vivo. Nucleic Acids Res., 2008; 36: 6767-6780
    Google Scholar
  • 99. Tissier A., Frank E.G., Mcdonald J.P., Iwai S., Hanaoka F., WoodgateR.: Misinsertion and bypass of thymine-thymine dimers by human DNApolymerase iota. EMBO J., 2000; 19: 5259-5266
    Google Scholar
  • 100. Tissier A., Kannouche P., Reck M.P., Lehmann A.R., Fuchs R.P.,Cordonnier A.: Co-localization in replication foci and interaction ofhuman Y-family members, DNA polymerase polη and REVl protein.DNA Repair, 2004; 3: 1503-1514
    Google Scholar
  • 101. Trincao J., Johnson R.E., Escalante C.R., Prakash S., Prakash L.,Aggarwal A.K.: Structure of the catalytic core of S. cerevisiae DNA polymeraseη: implications for translesion DNA synthesis. Mol. Cell, 2001;8: 417-426
    Google Scholar
  • 102. Vaisman A., Frank E.G., Mcdonald J.P., Tissier A., Woodgate R.:Poliota-dependent lesion bypass in vitro. Mutat. Res., 2002; 510: 9-22
    Google Scholar
  • 103. Vaisman A., Lehmann A.R., Woodgate R.: DNA polymerases η andι. Adv. Protein Chem., 2004; 69: 205-228
    Google Scholar
  • 104. Vaisman A., Masutani C., Hanaoka F., Chaney S.G.: Efficient translesionreplication past oxaliplatin and cisplatin GpG adducts by humanDNA polymerase η. Biochemistry, 2000; 39: 4575-4580
    Google Scholar
  • 105. Vaisman A., Woodgate R.: Unique misinsertion specificity of polιmay decrease the mutagenic potential of deaminated cytosines. EMBOJ., 2001; 20: 6520-6529
    Google Scholar
  • 106. Vaziri C., Masai H.: Integrating DNA replication with trans-lesionsynthesis via Cdc7. Cell Cycle, 2010; 9: 4818-4823
    Google Scholar
  • 107. Wang Z.: DNA damage-induced mutagenesis: a novel target forcancer prevention. Mol. Interv., 2001; 1: 269-281
    Google Scholar
  • 108. Washington M.T., Johnson R.E., Prakash L., Prakash S.: HumanDINB1-encoded DNA polymerase κ is a promiscuous extender of mispairedprimer termini. Proc. Natl. Acad. Sci. USA, 2002; 99: 1910-1914
    Google Scholar
  • 109. Waters L.S., Minesinger B.K., Wiltrout M.E., D’Souza S., WoodruffR.V., Walker G.C.: Eukaryotic translesion polymerases and their rolesand regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev.,2009; 73: 134-154
    Google Scholar
  • 110. Waters L.S., Walker G.C.: The critical mutagenic translesion DNApolymerase Rev1 is highly expressed during G2/M phase rather thanS phase. Proc. Natl. Acad. Sci. USA, 2006; 103: 8971-8976
    Google Scholar
  • 111. Wilkinson A., Smith A., Bullard D., Lavesa-Curto M., Sayer H.,Bonner A., Hemmings A., Bowater R.: Analysis of ligation and DNAbinding by Escherichia coli DNA ligase (LigA). Biochim. Biophys. Acta,2005; 1749: 113-122
    Google Scholar
  • 112. Wittschieben J.P., Reshmi S.C., Gollin S.M., Wood R.D.: Loss of DNApolymerase ζ causes chromosomal instability in mammalian cells. CancerRes., 2006; 66: 134-142
    Google Scholar
  • 113. Wolfle W.T., Washington M.T., Prakash L., Prakash S.: Human DNApolymerase κ uses template-primer misalignment as a novel means forextending mispaired termini and for generating single-base deletions.Genes Dev., 2003; 17: 2191-2199
    Google Scholar
  • 114. Wu F., Lin X., Okuda T., Howell S.B.: DNA polymerase ζ regulatescisplatin cytotoxicity, mutagenicity, and the rate of development ofcisplatin resistance. Cancer Res., 2004; 64: 8029-8035
    Google Scholar
  • 115. Xie K., Doles J., Hemann M.T., Walker G.C.: Error-prone translesionsynthesis mediates acquired chemoresistance. Proc. Natl. Acad.Sci. USA, 2010; 107: 20792-20797
    Google Scholar
  • 116. Yang W.: Damage repair DNA polymerases Y. Curr. Opin. Struct.Biol., 2003; 13: 23-30
    Google Scholar
  • 117. Yang W.: Portraits of a Y-family DNA polymerase. FEBS Lett., 2005;579: 868-872
    Google Scholar
  • 118. Yang W., Woodgate R.: What a difference a decade makes: insightsinto translesion DNA synthesis. Proc. Natl. Acad. Sci. USA, 2007;104: 15591-15598
    Google Scholar
  • 119. Yoon J., Prakash L., Prakash S.: Error-free replicative bypass of(6-4) photoproducts by DNA polymerase ζ in mouse and human cells.Genes Dev., 2010; 24: 123-128
    Google Scholar
  • 120. Yuan B., Cao H., Jiang Y., Hong H., Wang Y.: Efficient and accuratebypass of N2-(1-carboxyethyl)-2’-deoxyguanosine by DinB DNApolymerase in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2008; 105:8679-8684
    Google Scholar
  • 121. Yuan F., Zhang Y., Rajpal D.K., Wu X., Guo D., Wang M., Taylor J.S.,Wang Z.: Specificity of DNA lesion bypass by the yeast DNA polymeraseη. J. Biol. Chem., 2000; 275: 8233-8239
    Google Scholar
  • 122. Zander L., Bemark M.: Immortalized mouse cell lines that lacka functional Rev3 gene are hypersensitive to UV irradiation and cisplatintreatment. DNA Repair, 2004; 3: 743-752
    Google Scholar
  • 123. Zhang Y., Yuan F., Wu X., Wang Z.: Preferential incorporation ofG opposite template T by the low-fidelity human DNA polymerase ι.Mol. Cell. Biol., 2000; 20: 7099-7108
    Google Scholar
  • 124. Zhang Y., Yuan F., Wu X., Rechkoblit O., Taylor J.S., Geacintov N.E.,Wang Z.: Error-prone lesion bypass by human DNA polymerase η. NucleicAcids Res., 2000; 28: 4717-4724
    Google Scholar
  • 125. Zhao Y., Lu S., Wu L., Chai G., Wang H., Chen Y., Sun J., Yu Y., ZhouW., Zheng Q., Wu M., Otterson G.A., Zhu W.G.: Acetylation of p53 at lysine373/382 by the histone deacetylase inhibitor depsipeptide inducesexpression of p21Waf1/Cip1. Mol. Cell. Biol., 2006; 26: 2782-2790
    Google Scholar
  • 126. Zhong X., Garg P., Stith C.M., Nick McElhinny S.A., Kissling G.E.,Burgers P.M., Kunkel T.A.: The fidelity of DNA synthesis by yeast DNApolymerase z alone and with accessory proteins. Nucleic Acids Res.,2006; 34: 4731-4742
    Google Scholar
  • 127. Ziv O., Geacintov N., Nakajima S., Yasui A., Livneh Z.: DNA polymeraseζ cooperates with polymerases κ and ι in translesion DNA synthesisacross pyrimidine photodimers in cells from XPV patients. Proc. Natl.Acad. Sci. USA, 2009; 106: 11552-11557
    Google Scholar

Full text

Skip to content