Effects of activation of endocannabinoid system on myocardial metabolism

COMMENTARY ON THE LAW

Effects of activation of endocannabinoid system on myocardial metabolism

Agnieszka Polak 1 , Ewa Harasim 1 , Adrian Chabowski 1

1. Zakład Fizjologii Uniwersytetu Medycznego w Białymstoku

Published: 2016-05-21
DOI: 10.5604/17322693.1202483
GICID: 01.3001.0009.6834
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 542-555

 

Abstract

Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases – hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

References

  • 1. Alhouayek M., Lambert D.M., Delzenne N.M., Cani P.D., MuccioliG.G.: Increasing endogenous 2-arachidonoylglycerol levels counteractscolitis and related systemic inflammation. FASEB J., 2011;25: 2711-2721
    Google Scholar
  • 2. Banerjee S.K., McGaffin K.R., Pastor-Soler N.M., Ahmad F.: SGLT1is a novel cardiac glucose transporter that is perturbed in diseasestates. Cardiovasc. Res., 2009; 84: 111-118
    Google Scholar
  • 3. Bari M., Battista N., Fezza F., Finazzi-Agrò A., Maccarrone M.: Lipidrafts control signaling of type-1 cannabinoid receptors in neuronalcells. Implications for anandamide-induced apoptosis. J. Biol. Chem.,2005; 280: 12212-12220
    Google Scholar
  • 4. Bisogno T.: Endogenous cannabinoids: structure and metabolism.J. Neuroendocrinol., 2008; 20 (Suppl. 1): 1-9 5 Björklund E., Blomqvist A., Hedlin J., Persson E., Fowler C.J.: Involvementof fatty acid amide hydrolase and fatty acid binding protein
    Google Scholar
  • 5. in the uptake of anandamide by cell lines with different levelsof fatty acid amide hydrolase expression: a pharmacological study.PLoS One, 2014; 9: e103479
    Google Scholar
  • 6. Bonen A., Chabowski A., Luiken J.J., Glatz J.F.: Is membrane transportof FFA mediated by lipid, protein, or both? Mechanisms and regulationof protein-mediated cellular fatty acid uptake: molecular,biochemical, and physiological evidence. Physiology, 2007; 22: 15-29
    Google Scholar
  • 7. Bonz A., Laser M., Küllmer S., Kniesch S., Babin-Ebell J., Popp V.,Ertl G., Wagner J.A.: Cannabinoids acting on CB1 receptors decreasecontractile performance in human atrial muscle. J. Cardiovasc.Pharmacol., 2003; 41: 657-664
    Google Scholar
  • 8. Borrelli F., Romano B., Petrosino S., Pagano E., Capasso R., CoppolaD., Battista G., Orlando P., Di Marzo V., Izzo A.A.: Palmitoylethanolamide,a naturally occurring lipid, is an orally effective intestinalanti-inflammatory agent. Br. J. Pharmacol., 2015; 172: 142-158
    Google Scholar
  • 9. Broberger C.: Brain regulation of food intake and appetite: moleculesand networks. J. Intern. Med., 2005; 258: 301-327
    Google Scholar
  • 10. Bátkai S., Pacher P., Osei-Hyiaman D., Radaeva S., Liu J., Harvey–White J., Offertáler L., Mackie K., Rudd M.A., Bukoski R.D., KunosG.: Endocannabinoids acting at cannabinoid-1 receptors regulatecardiovascular function in hypertension. Circulation, 2004; 110:1996-2002
    Google Scholar
  • 11. Cable J.C., Tan G.D., Alexander S.P., O’Sullivan S.E.: The activityof the endocannabinoid metabolising enzyme fatty acid amide hydrolasein subcutaneous adipocytes correlates with BMI in metabolicallyhealthy humans. Lipids Health Dis., 2011; 10: 129
    Google Scholar
  • 12. Cable J.C., Tan G.D., Alexander S.P., O’Sullivan S.E.: The effects ofobesity, diabetes and metabolic syndrome on the hydrolytic enzymesof the endocannabinoid system in animal and human adipocytes.Lipids Health Dis., 2014; 13: 43
    Google Scholar
  • 13. Cabral G.A., Griffin-Thomas L.: Emerging role of the cannabinoidreceptor CB2 in immune regulation: therapeutic prospects forneuroinflammation. Expert Rev. Mol. Med., 2009; 11: e3
    Google Scholar
  • 14. Christie M.J., Vaughan C.W.: Neurobiology: cannabinoids actbackwards. Nature, 2001; 410: 527-530
    Google Scholar
  • 15. Cota D., Marsicano G., Tschöp M., Grübler Y., Flachskamm C.,Schubert M., Auer D., Yassouridis A., Thöne-Reineke C., Ortmann S.,Tomassoni F., Cervino C., Nisoli E., Linthorst A.C., Pasquali R., Lutz B.,Stalla G.K., Pagotto U.: The endogenous cannabinoid system affectsenergy balance via central orexigenic drive and peripheral lipogenesis.J. Clin. Invest., 2003; 112: 423-431
    Google Scholar
  • 16. Cravatt B.F., Demarest K., Patricelli M.P., Bracey M.H., Giang D.K.,Martin B.R., Lichtman A.H.: Supersensitivity to anandamide andenhanced endogenous cannabinoid signaling in mice lacking fattyacid amide hydrolase. Proc. Natl. Acad. Sci. USA, 2001; 98: 9371-9376
    Google Scholar
  • 17. Cunha P., Romão A.M., Mascarenhas-Melo F., Teixeira H.M.,Reis F.: Endocannabinoid system in cardiovascular disorders – newpharmacotherapeutic opportunities. J. Pharm. Bioallied Sci., 2011;3: 350-360
    Google Scholar
  • 18. Czarnowska E., Turska-Kmieć A.: Current opinions on mechanismsof energetic abnormalities in heart. Significance of the PPARαexpression and therapeutic objects. Kardiol. Pol., 2012; 70: 1061-1067
    Google Scholar
  • 19. De Petrocellis L., Di Marzo V.: Non-CB1, non-CB2 receptors forendocannabinoids, plant cannabinoids, and synthetic cannabimimetics:focus on G-protein-coupled receptors and transient receptorpotential channels. J. Neuroimmune Pharmacol., 2010; 5: 103-121
    Google Scholar
  • 20. Depre C., Vanoverschelde J.L., Taegtmeyer H.: Glucose for theheart. Circulation, 1999; 99: 578-588
    Google Scholar
  • 21. Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A.,Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R.:Isolation and structure of a brain constituent that binds to the cannabinoidreceptor. Science, 1992; 258: 1946-1949
    Google Scholar
  • 22. Di Filippo C., Rossi F., Rossi S., D’Amico M.: Cannabinoid CB2 receptoractivation reduces mouse myocardial ischemia-reperfusioninjury: involvement of cytokine/chemokines and PMN. J. Leukoc.Biol., 2004; 75: 453-459
    Google Scholar
  • 23. Di Marzo V.: Endocannabinoids: synthesis and degradation. Rev.Physiol. Biochem. Pharmacol., 2008; 160: 1-24
    Google Scholar
  • 24. Di Marzo V.: The endocannabinoid system in obesity and type 2 diabetes. Diabetologia, 2008; 51: 1356-1367
    Google Scholar
  • 25. Di Marzo V., De Petrocellis L.: Why do cannabinoid receptorshave more than one endogenous ligand? Philos. Trans. R. Soc. Lond.B Biol. Sci., 2012; 367: 3216-3228
    Google Scholar
  • 26. Di Marzo V., Goparaju S.K., Wang L., Liu J., Bátkai S., Járai Z.,Fezza F., Miura G.I., Palmiter R.D., Sugiura T., Kunos G.: Leptin-regulatedendocannabinoids are involved in maintaining food intake.Nature, 2001; 410: 822-825
    Google Scholar
  • 27. Di Marzo V., Matias I.: Endocannabinoid control of food intakeand energy balance. Nat. Neurosci., 2005; 8: 585-589
    Google Scholar
  • 28. Di Marzo V., Petrosino S.: Endocannabinoids and the regulationof their levels in health and disease. Curr. Opin. Lipidol., 2007;18: 129-140
    Google Scholar
  • 29. Dinh T.P., Carpenter D., Leslie F.M., Freund T.F., Katona I., SensiS.L., Kathuria S., Piomelli D.: Brain monoglyceride lipase participatingin endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA,2002; 99: 10819-10824
    Google Scholar
  • 30. Dirkx E., Schwenk R.W., Glatz J.F., Luiken J.J., Van Eys G.J.: Highfat diet induced diabetic cardiomyopathy. Prostaglandins Leukot.Essent. Fatty Acids, 2011; 85: 219-225
    Google Scholar
  • 31. Esposito I., Proto M.C., Gazzerro P., Laezza C., Miele C., AlberobelloA.T., D’Esposito V., Beguinot F., Formisano P., Bifulco M.: The cannabinoidCB1 receptor antagonist rimonabant stimulates 2-deoxyglucoseuptake in skeletal muscle cells by regulating the expression ofphosphatidylinositol-3-kinase. Mol. Pharmacol., 2008; 74: 1678-1686
    Google Scholar
  • 32. Frias M.A., Montessuit C.: JAK-STAT signaling and myocardialglucose metabolism. JAKSTAT, 2013; 2: e26458
    Google Scholar
  • 33. Fride E.: Endocannabinoids in the central nervous system –an overview. Prostaglandins Leukot. Essent. Fatty Acids, 2002; 66:221-233
    Google Scholar
  • 34. Fu J., Bottegoni G., Sasso O., Bertorelli R., Rocchia W., MasettiM., Guijarro A., Lodola A., Armirotti A., Garau G., Bandiera T., ReggianiA., Mor M., Cavalli A., Piomelli D.: A catalytically silent FAAH- 1 variant drives anandamide transport in neurons. Nat. Neurosci.,2011; 15: 64-69
    Google Scholar
  • 35. Gamber K.M., Macarthur H., Westfall T.C.: Cannabinoids augmentthe release of neuropeptide Y in the rat hypothalamus. Neuropharmacology,2005; 49: 646-652
    Google Scholar
  • 36. Gimeno R.E., Ortegon A.M., Patel S., Punreddy S., Ge P., Sun Y.,Lodish H.F., Stahl A.: Characterization of a heart-specific fatty acidtransport protein. J. Biol. Chem., 2003; 278: 16039-16044
    Google Scholar
  • 37. Gonthier M.P., Hoareau L., Festy F., Matias I., Valenti M., BèsHoutmannS., Rouch C., Robert-Da Silva C., Chesne S., Lefebvre d’HellencourtC., Césari M., Di Marzo V., Roche R.: Identification of endocannabinoidsand related compounds in human fat cells. Obesity,2007; 15: 837-845
    Google Scholar
  • 38. Gonzalez E., McGraw T.E.: Insulin-modulated Akt subcellularlocalization determines Akt isoform-specific signaling. Proc. Natl.Acad. Sci. USA, 2009; 106: 7004-7009
    Google Scholar
  • 39. Guindon J., Guijarro A., Piomelli D., Hohmann A.G.: Peripheralantinociceptive effects of inhibitors of monoacylglycerol lipasein a rat model of inflammatory pain. Br. J. Pharmacol., 2011; 163:1464-1478
    Google Scholar
  • 40. Hanus L., Abu-Lafi S., Fride E., Breuer A., Vogel Z., Shalev D.E.,Kustanovich I., Mechoulam R.: 2-arachidonyl glyceryl ether, an endogenousagonist of the cannabinoid CB1 receptor. Proc. Natl. Acad.Sci. USA, 2001; 98: 3662-3665
    Google Scholar
  • 41. Harris D., McCulloch A.I., Kendall D.A., Randall M.D.: Characterizationof vasorelaxant responses to anandamide in the rat mesentericarterial bed. J. Physiol., 2002; 539: 893-902
    Google Scholar
  • 42. Herling A.W., Gossel M., Haschke G., Stengelin S., Kuhlmann J.,Müller G., Schmoll D., Kramer W.: CB1 receptor antagonist AVE1625affects primarily metabolic parameters independently of reducedfood intake in Wistar rats. Am. J. Physiol. Endocrinol. Metab., 2007;293: E826-E832
    Google Scholar
  • 43. Heyman E., Gamelin F.X., Aucouturier J., Di Marzo V.: The roleof the endocannabinoid system in skeletal muscle and metabolicadaptations to exercise: potential implications for the treatment ofobesity. Obes. Rev., 2012; 13: 1110-1124
    Google Scholar
  • 44. Higuchi S., Irie K., Yamaguchi R., Katsuki M., Araki M., Ohji M.,Hayakawa K., Mishima S., Akitake Y., Matsuyama K., Mishima K.,Iwasaki K., Fujiwara M.: Hypothalamic 2-arachidonoylglycerol regulatesmultistage process of high-fat diet preferences. PLoS One,2012; 7: e38609
    Google Scholar
  • 45. Hiley C.R.: Endocannabinoids and the heart. J. Cardiovasc. Pharmacol.,2009; 53: 267-276
    Google Scholar
  • 46. Howlett A.C., Mukhopadhyay S.: Cellular signal transductionby anandamide and 2-arachidonoylglycerol. Chem. Phys. Lipids,2000; 108: 53-70
    Google Scholar
  • 47. Huang S., Czech M.P.: The GLUT4 glucose transporter. Cell Metab.,2007; 5: 237-252
    Google Scholar
  • 48. Irving A.J., Rae M.G., Coutts A.A.: Cannabinoids on the brain.ScientificWorldJournal, 2002; 2: 632-648
    Google Scholar
  • 49. Jamshidi N., Taylor D.A.: Anandamide administration into theventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol.,2001; 134: 1151-1154
    Google Scholar
  • 50. Jbilo O., Ravinet-Trillou C., Arnone M., Buisson I., Bribes E.,Péleraux A., Pénarier G., Soubrié P., Le Fur G., Galiègue S., Casellas P.:The CB1 receptor antagonist rimonabant reverses the diet-inducedobesity phenotype through the regulation of lipolysis and energybalance. FASEB J., 2005; 19: 1567-1569
    Google Scholar
  • 51. Járai Z., Wagner J.A., Varga K., Lake K.D., Compton D.R., MartinB.R., Zimmer A.M., Bonner T.I., Buckley N.E., Mezey E., Razdan R.K.,Zimmer A., Kunos G.: Cannabinoid-induced mesenteric vasodilationthrough an endothelial site distinct from CB1 or CB2 receptors. Proc.Natl. Acad. Sci. USA, 1999; 96: 14136-14141
    Google Scholar
  • 52. Kaczocha M., Glaser S.T., Deutsch D.G.: Identification of intracellularcarriers for the endocannabinoid anandamide. Proc. Natl.Acad. Sci. USA, 2009; 106: 6375-6380
    Google Scholar
  • 53. Karlsson M., Contreras J.A., Hellman U., Tornqvist H., Holm C.:cDNA cloning, tissue distribution, and identification of the catalytictriad of monoglyceride lipase. Evolutionary relationship to esterases,lysophospholipases, and haloperoxidases. J. Biol. Chem., 1997;272: 27218-27223
    Google Scholar
  • 54. Leggett J.D., Aspley S., Beckett S.R., D’Antona A.M., KendallD.A., Kendall D.A.: Oleamide is a selective endogenous agonist ofrat and human CB1 cannabinoid receptors. Br. J. Pharmacol., 2004;141: 253-262
    Google Scholar
  • 55. Li Q., Ma H.J., Song S.L., Shi M., Li D.P., Zhang Y.: Effects of anandamideon potassium channels in rat ventricular myocytes: a suppressionof I(to) and augmentation of K(ATP) channels. Am. J. Physiol.Cell. Physiol., 2012; 302: C924-C930
    Google Scholar
  • 56. Liu J., Zhou L., Xiong K., Godlewski G., Mukhopadhyay B., TamJ., Yin S., Gao P., Shan X., Pickel J., Bataller R., O’Hare J., Scherer T.,Buettner C., Kunos G.: Hepatic cannabinoid receptor-1 mediatesdiet-induced insulin resistance via inhibition of insulin signalingand clearance in mice. Gastroenterology, 2012; 142: 1218-1228.e1
    Google Scholar
  • 57. Liu Y.L., Connoley I.P., Wilson C.A., Stock M.J.: Effects of the cannabinoidCB1 receptor antagonist SR141716 on oxygen consumptionand soleus muscle glucose uptake in Lepob/Lepob mice. Int. J. Obes.,2005; 29: 183-187
    Google Scholar
  • 58. Lopaschuk G.D., Belke D.D., Gamble J., Itoi T., Schönekess B.O.:Regulation of fatty acid oxidation in the mammalian heart in healthand disease. Biochim. Biophys. Acta, 1994; 1213: 263-276
    Google Scholar
  • 59. Luiken J.J., Koonen D.P., Willems J., Zorzano A., Becker C., FischerY., Tandon N.N., Van Der Vusse G.J., Bonen A., Glatz J.F.: Insulinstimulates long-chain fatty acid utilization by rat cardiac myocytesthrough cellular redistribution of FAT/CD36. Diabetes, 2002;51: 3113-3119
    Google Scholar
  • 60. Lépicier P., Bouchard J.F., Lagneux C., Lamontagne D.: Endocannabinoidsprotect the rat isolated heart against ischaemia. Br. J.Pharmacol., 2003; 139: 805-815
    Google Scholar
  • 61. Łaczmański Ł., Milewicz A., Dunajska K., Jędrzejczuk D., PawlakM., Lwow F.: Endocannabinoid type 1 receptor gene (CNR1) polymorphisms(rs806381, rs10485170, rs6454674, rs2023239) and cardiovascularrisk factors in postmenopausal women. Gynecol. Endocrinol.,2011; 27: 1023-1027
    Google Scholar
  • 62. Malinowska B., Godlewski G., Bucher B., Schlicker E.: CannabinoidCB1 receptor-mediated inhibition of the neurogenic vasopressorresponse in the pithed rat. Naunyn Schmiedebergs Arch. Pharmacol.,1997; 356: 197-202
    Google Scholar
  • 63. Malinowska B., Kwolek G., Göthert M.: Anandamide and methanandamideinduce both vanilloid VR1- and cannabinoid CB1 receptor-mediatedchanges in heart rate and blood pressure in anaesthetizedrats. Naunyn Schmiedebergs Arch. Pharmacol., 2001;364: 562-569.
    Google Scholar
  • 64. Marsicano G., Chaouloff F.: Moving bliss: a new anandamidetransporter. Nat. Neurosci., 2011; 15: 5-6
    Google Scholar
  • 65. Matias I., Cristino L., Di Marzo V.: Endocannabinoids: some like itfat (and sweet too). J. Neuroendocrinol., 2008; 20 (Suppl. 1): 100-109
    Google Scholar
  • 66. Matias I., Gonthier M.P., Orlando P., Martiadis V., De PetrocellisL., Cervino C., Petrosino S., Hoareau L., Festy F., Pasquali R., RocheR., Maj M., Pagotto U., Monteleone P., Di Marzo V.: Regulation, function,and dysregulation of endocannabinoids in models of adiposeand β-pancreatic cells and in obesity and hyperglycemia. J. Clin.Endocrinol. Metab., 2006; 91: 3171-3180
    Google Scholar
  • 67. Matias I., Petrosino S., Racioppi A., Capasso R., Izzo A.A., Di MarzoV.: Dysregulation of peripheral endocannabinoid levels in hyperglycemiaand obesity: effect of high fat diets. Mol. Cell. Endocrinol.,2008; 286 (Suppl. 1): S66-S78
    Google Scholar
  • 68. Matias I., Wang J.W., Moriello A.S., Nieves A., Woodward D.F., DiMarzo V.: Changes in endocannabinoid and palmitoylethanolamidelevels in eye tissues of patients with diabetic retinopathy and age–related macular degeneration. Prostaglandins Leukot. Essent. FattyAcids, 2006; 75: 413-418
    Google Scholar
  • 69. Mingorance C., Alvarez de Sotomayor M., Jiménez-Palacios F.J.,Callejón Mochón M., Casto C., Marhuenda E., Herrera M.D.: Effectsof chronic treatment with the CB1 antagonist, rimonabant on theblood pressure, and vascular reactivity of obese Zucker rats. Obesity,2009; 17: 1340-1347
    Google Scholar
  • 70. Montecucco F., Lenglet S., Braunersreuther V., Burger F., PelliG., Bertolotto M., Mach F., Steffens S.: CB(2) cannabinoid receptoractivation is cardioprotective in a mouse model of ischemia/reperfusion.J. Mol. Cell. Cardiol., 2009; 46: 612-620
    Google Scholar
  • 71. Monteleone P., Piscitelli F., Scognamiglio P., Monteleone A.M.,Canestrelli B., Di Marzo V., Maj M.: Hedonic eating is associated withincreased peripheral levels of ghrelin and the endocannabinoid2-arachidonoyl-glycerol in healthy humans: a pilot study J. Clin.Endocrinol. Metab, 2012; 97: E917-E924
    Google Scholar
  • 72. Motaghedi R., McGraw T.E.: The CB1 endocannabinoid systemmodulates adipocyte insulin sensitivity. Obesity, 2008; 16: 1727-1734
    Google Scholar
  • 73. Mukhopadhyay P., Bátkai S., Rajesh M., Czifra N., Harvey-WhiteJ., Haskó G., Zsengeller Z., Gerard N.P., Liaudet L., Kunos G., PacherP.: Pharmacological inhibition of CB1 cannabinoid receptor protectsagainst doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol.,2007; 50: 528-536
    Google Scholar
  • 74. Mukhopadhyay P., Horváth B., Rajesh M., Matsumoto S., SaitoK., Bátkai S., Patel V., Tanchian G., Gao R.Y., Cravatt B.F., Haskó G.,Pacher P.: Fatty acid amide hydrolase is a key regulator of endocannabinoid-inducedmyocardial tissue injury. Free Radic. Biol. Med.,2011; 50: 179-195
    Google Scholar
  • 75. Mulvihill M.M., Nomura D.K.: Therapeutic potential of monoacylglycerollipase inhibitors. Life Sci., 2013; 92: 492-497
    Google Scholar
  • 76. Murru E., Banni S., Carta G.: Nutritional properties of dietaryomega-3-enriched phospholipids. Biomed. Res. Int., 2013; 2013:965417
    Google Scholar
  • 77. O’Hare J.D., Zielinski E., Cheng B., Scherer T., Buettner C.: Centralendocannabinoid signaling regulates hepatic glucose productionand systemic lipolysis. Diabetes, 2011; 60: 1055-1062
    Google Scholar
  • 78. Oddi S., Fezza F., Pasquariello N., D’Agostino A., Catanzaro G.,De Simone C., Rapino C., Finazzi-Agrò A., Maccarrone M.: Molecularidentification of albumin and Hsp70 as cytosolic anandamide-bindingproteins. Chem. Biol., 2009; 16: 624-632
    Google Scholar
  • 79. Oz M.: Receptor-independent effects of endocannabinoids onion channels. Curr. Pharm. Des., 2006; 12: 227-239
    Google Scholar
  • 80. Pacher P., Bátkai S., Osei-Hyiaman D., Offertáler L., Liu J., Harvey–White J., Brassai A., Járai Z., Cravatt B.F., Kunos G.: Hemodynamicprofile, responsiveness to anandamide, and baroreflex sensitivity ofmice lacking fatty acid amide hydrolase. Am. J. Physiol. Heart Circ.Physiol., 2005; 289: H533-H541
    Google Scholar
  • 81. Pagano C., Pilon C., Calcagno A., Urbanet R., Rossato M., MilanG., Bianchi K., Rizzuto R., Bernante P., Federspil G., Vettor R.: The endogenouscannabinoid system stimulates glucose uptake in humanfat cells via phosphatidylinositol 3-kinase and calcium-dependentmechanisms. J. Clin. Endocrinol. Metab, 2007; 92: 4810-4819
    Google Scholar
  • 82. Pestonjamasp V.K., Burstein S.H.: Anandamide synthesis is inducedby arachidonate mobilizing agonists in cells of the immunesystem. Biochim. Biophys. Acta, 1998; 1394: 249-260
    Google Scholar
  • 83. Porter A.C., Sauer J.M., Knierman M.D., Becker G.W., Berna M.J.,Bao J., Nomikos G.G., Carter P., Bymaster F.P., Leese A.B., Felder C.C.:Characterization of a novel endocannabinoid, virodhamine, withantagonist activity at the CB1 receptor. J. Pharmacol. Exp. Ther.,2002; 301: 1020-1024
    Google Scholar
  • 84. Quercioli A., Pataky Z., Vincenti G., Makoundou V., Di Marzo V.,Montecucco F., Carballo S., Thomas A., Staub C., Steffens S., SeimbilleY., Golay A., Ratib O., Harsch E., Mach F., Schindler T.H.: Elevatedendocannabinoid plasma levels are associated with coronarycirculatory dysfunction in obesity. Eur. Heart J., 2011; 32: 1369-1378
    Google Scholar
  • 85. Rajesh M., Bátkai S., Kechrid M., Mukhopadhyay P., Lee W.S., HorváthB., Holovac E., Cinar R., Liaudet L., Mackie K., Haskó G., Pacher P.: Cannabinoid 1 receptor promotes cardiac dysfunction, oxidativestress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes,2012; 61: 716-727
    Google Scholar
  • 86. Rajesh M., Mukhopadhyay P., Bátkai S., Haskó G., Liaudet L., HuffmanJ.W., Csiszar A., Ungvari Z., Mackie K., Chatterjee S., Pacher P.:CB2-receptor stimulation attenuates TNF-α-induced human endothelialcell activation, transendothelial migration of monocytes, andmonocyte-endothelial adhesion. Am. J. Physiol. Heart Circ. Physiol.,2007; 293: H2210-H2218
    Google Scholar
  • 87. Rajesh M., Mukhopadhyay P., Haskó G., Huffman J.W., MackieK., Pacher P.: CB2 cannabinoid receptor agonists attenuate TNF-α-induced human vascular smooth muscle cell proliferation and migration.Br. J. Pharmacol., 2008; 153: 347-357
    Google Scholar
  • 88. Rajesh M., Mukhopadhyay P., Haskó G., Liaudet L., Mackie K.,Pacher P.: Cannabinoid-1 receptor activation induces reactive oxygenspecies-dependent and -independent mitogen-activated proteinkinase activation and cell death in human coronary artery endothelialcells. Br. J. Pharmacol., 2010; 160: 688-700
    Google Scholar
  • 89. Randall M.D., Kendall D.A., O›Sullivan S.: The complexities ofthe cardiovascular actions of cannabinoids. Br. J. Pharmacol., 2004;142: 20-26
    Google Scholar
  • 90. Reggio P.H.: Endocannabinoid structure-activity relationshipsfor interaction at the cannabinoid receptors. Prostaglandins Leukot.Essent. Fatty Acids, 2002; 66: 143-160
    Google Scholar
  • 91. Rudź R., Schlicker E., Baranowska U., Marciniak J., Karabowicz P.,Malinowska B.: Acute myocardial infarction inhibits the neurogenictachycardic and vasopressor response in rats via presynaptic cannabinoidtype 1 receptor. J. Pharmacol. Exp. Ther., 2012; 343: 198-205
    Google Scholar
  • 92. Schenk S., Horowitz J.F.: Coimmunoprecipitation of FAT/CD36and CPT I in skeletal muscle increases proportionally with fat oxidationafter endurance exercise training. Am. J. Physiol. Endocrinol.Metab., 2006; 291: E254-E260
    Google Scholar
  • 93. Scherer T., Lindtner C., Zielinski E., O›Hare J., Filatova N., BuettnerC.: Short term voluntary overfeeding disrupts brain insulin controlof adipose tissue lipolysis. J. Biol. Chem., 2012; 287: 33061-33069
    Google Scholar
  • 94. Shmist Y.A., Goncharov I., Eichler M., Shneyvays V., Isaac A.,Vogel Z., Shainberg A.: Delta-9-tetrahydrocannabinol protects cardiaccells from hypoxia via CB2 receptor activation and nitric oxideproduction. Mol. Cell. Biochem., 2006; 283: 75-83
    Google Scholar
  • 95. Silvestri C., Di Marzo V.: The endocannabinoid system in energyhomeostasis and the etiopathology of metabolic disorders. CellMetab., 2013; 17: 475-490
    Google Scholar
  • 96. Stanley W.C., Recchia F.A., Lopaschuk G.D.: Myocardial substratemetabolism in the normal and failing heart. Physiol. Rev., 2005;85: 1093-1129
    Google Scholar
  • 97. Starowicz K.M., Cristino L., Matias I., Capasso R., Racioppi A.,Izzo A.A., Di Marzo V.: Endocannabinoid dysregulation in the pancreasand adipose tissue of mice fed with a high-fat diet. Obesity,2008; 16: 553-565
    Google Scholar
  • 98. Steffens S., Pacher P.: Targeting cannabinoid receptor CB2 incardiovascular disorders: promises and controversies. Br. J. Pharmacol.,2012; 167: 313-323
    Google Scholar
  • 99. Svízenská I., Dubový P., Sulcová A.: Cannabinoid receptors 1and 2 (CB1 and CB2), their distribution, ligands and functional involvementin nervous system structures – a short review. Pharmacol.Biochem. Behav., 2008; 90: 501-511
    Google Scholar
  • 100. van der Vusse G.J., Van Bilsen M., Glatz J.F.: Cardiac fatty aciduptake and transport in health and disease. Cardiovasc. Res., 2000;45: 279-293
    Google Scholar
  • 101. Vettor R., Pagano C.: The role of the endocannabinoid systemin lipogenesis and fatty acid metabolism. Best. Pract. Res. Clin. Endocrinol.Metab., 2009; 23: 51-63
    Google Scholar
  • 102. Wagner J.A., Varga K., Járai Z., Kunos G.: Mesenteric vasodilationmediated by endothelial anandamide receptors. Hypertension,1999; 33: 429-434
    Google Scholar
  • 103. Yu M., Ives D., Ramesha C.S.: Synthesis of prostaglandin E2ethanolamide from anandamide by cyclooxygenase-2. J. Biol. Chem.,1997; 272: 21181-21186
    Google Scholar

Full text

Skip to content