The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

COMMENTARY ON THE LAW

The participation of outer membrane proteins in the bacterial sensitivity to nanosilver

Anna Kędziora 1 , Eva Krzyżewska 2 , Bartłomiej Dudek 1 , Gabriela Bugla‑Płoskońska 1

1. Zakład Mikrobiologii, Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
2. Zakład Mikrobiologii Lekarskiej, Instytut Immunologii i Terapii Doświadczalnej PAN we Wrocławiu

Published: 2016-06-13
DOI: 10.5604/17322693.1205005
GICID: 01.3001.0009.6841
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 610-617

 

Abstract

The presented study is to analyze the participation of outer membrane proteins of Gram- negative bacteria in sensitivity to silver nanomaterials. The mechanism of interaction of silver with the bacterial cell is best described in this group of microorganisms. There are several theories regarding the effectiveness of antimicrobial ions and nanosilver, and at the indicated differences in the way they work. Outer membrane proteins of Gram-negative bacteria are involved in the procurement of silver from the environment and contribute to the development mechanisms of resistance to nanometals. They are measurable parameter in the field of cell phenotypic response to the presence of Gram-negative bacteria in the environment silver nanoforms: its properties, chemical composition, content or times of action. Proteomic methods (including two dimensional electrophoresis and MALDI‑TOF MS) are therefore relevant techniques for determining the susceptibility of bacteria to silver and the changes taking place in the outer membrane under the influence: uptime/exposure and physical and chemical parameters of silver nanomaterials. Many products containing nanosilver is still in the research phase in terms of physico‑chemical characteristics and biological activity, others have been already implemented in many industries. During the very fast nanotechnology developing and introduction to the market products based on the nanosilver the bacterial answer to nanosilver is needed.

References

  • 1. Achouak W., Heulin T., Pages J.M.: Multiple facets of bacterialporins. FEMS Microbiol. Lett., 2001; 199: 1‑7
    Google Scholar
  • 2. Baj J., Markiewicz Z.: Biologia molekularna bakterii. PWN,Warszawa, 2007; 45‑56
    Google Scholar
  • 3. Bugla‑Płoskońska G., Futoma‑Kołoch B., Doroszkiewicz W.: Rolabiałek błony zewnętrznej w oddziaływaniach bakterii Gram‑ujem‑nych z organizmem gospodarza. Postępy Mikrobiol., 2007; 46:139‑152
    Google Scholar
  • 4. Bugla‑Płoskońska G., Leszkiewicz A., Borak B., Jasiorski M.,Drulis‑Kawa Z., Baszczuk A., Maruszewski K., Doroszkiewicz W.:Bactericidal properties of silica particles with silver islands lo‑cated on the surface. Int. J. Antimicrob. Agents, 2007; 29: 746‑748
    Google Scholar
  • 5. Fabrega J., Fawcett S.R., Renshaw J.C., Lead J.R.; Silver nanopar‑ticle impact on bacterial growth: Effect of pH, concentration, andorganic matter. Env. Sci. Tech., 2009; 43: 7285‑7290
    Google Scholar
  • 6. Franke S., Grass G., Rensing C., Nies D.H.: Molecular analysisof the copper‑transporting efflux system CusCFBA of Escherichiacoli. J. Bacteriol., 2003; 185: 3804‑3812
    Google Scholar
  • 7. Gupta A., Phung L.T., Taylor D.E., Silver S.: Diversity of silverresistance genes in IncH incompatibility group plasmid. Micro‑biology, 2001; 147: 3393‑3402
    Google Scholar
  • 8. He T., Liu H., Zhou Y., Yang J., Cheng X., Shi H.: Antibacterialeffect and proteomic analysis of graphene‑based silver nanopar‑ticles on a pathogenic bacterium Pseudomonas aeruginosa. Biomet‑als, 2014; 27: 673 ‑682
    Google Scholar
  • 9. Hsu S.H., Tseng H.J., Lin Y.C.: The biocompatibility and anti‑bacterial properties of waterborne polyurethane‑silver nanocom‑posites. Biomaterials, 2010; 31: 6796‑6808
    Google Scholar
  • 10. Jasiorski M., Leszkiewicz A., Brzeziński S., Bugla‑PłoskońskaG., Malinowska G., Borak B., Karbownik I., Baszczuk A., Stręk W.,Doroszkiewicz W.: Textile with silver silica spheres: its antimi‑crobial activity against Escherichia coli and Staphylococcus aureus.J. Sol‑Gel Sci. Technol., 2009; 51: 330‑334
    Google Scholar
  • 11. Kędziora A., Gerasymchuk Y., Sroka E., Bugla‑Płoskońska G.,Doroszkiewicz W., Rybak Z., Hreniak D.C., Wilgusz R., Stręk W.A.:Wykorzystanie materiałów opartych na częściowo redukowanymtlenku grafenu z nanocząstkami srebra jako środków bakterio‑statycznych i bakteriobójczych. Polim. Med., 2013; 43: 129‑134
    Google Scholar
  • 12. Kędziora A., Gorzelańczyk K., Bugla‑Płoskońska G.: Positiveand negative aspects of silver nanoparticles usage. Biol. Int., 2013;53: 67‑76
    Google Scholar
  • 13. Kędziora A., Sobik K.: Oporność bakterii na srebro – problemstary, czy nowy? Kosmos, 2013; 62: 301
    Google Scholar
  • 14. KędzioraA., Stręk W., Kępinski L., Bugla‑PłoskońskaG., Dorosz‑kiewicz W.: Synthesis and antibacterial activity of novel titaniumdioxide doped with silver. J. Sol‑Gel. Sci. Technol., 2012; 62: 79‑86
    Google Scholar
  • 15. Koebnik R., Locher K.P., Van Gelder P.: Structure and functionof bacterial outer membrane proteins: barrels in a nutshell. Mol.Microbiol., 2000; 37: 239‑253
    Google Scholar
  • 16. Krzyżewska E.,Kędziora A., Dudek B., Pawlak A., Strek W., Do‑roszkiewicz W., Bugla‑Płoskońska G.: Analiza zmian w proteomiebłony zewnętrznej K. pneumoniae i E. aerogenes po długotrwałejekspozycji na nanocząstki srebra różniące się parametrami fizy‑ko‑chemicznymi. III Ogólnopolska Konferencja Naukowo‑Szko‑leniowa „Wektory i patogeny w przeszłości i przyszłości” 2014;Wrocław
    Google Scholar
  • 17. Langauer‑Lewowicka H., Pawlas K.: Nanocząstki, nanotech‑nologia – potencjalne zagrożenia środowiskowe i zawodowe. En‑viron. Med., 2014; 17: 7‑14
    Google Scholar
  • 18. Li X.Z., Nikaido H., Williams K.E.: Silver‑resistant mutantsof Escherichia coli display active efflux of Ag+ and are deficient inporins. J. Bacteriol., 1997; 179: 6127‑6132
    Google Scholar
  • 19. Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Tam P.K.,Chiu J.F., Che C.M.: Proteomic analysis of the mode of antibacterialaction of silver nanoparticles. J. Proteome Res., 2006; 5: 916‑924
    Google Scholar
  • 20. Mijnendonckx K., Leys N., Mahillon J., Silver S., Van Houdt R.:Antimicrobial silver: uses, toxicity and potential for resistance.Biometals, 2013; 26: 609‑621
    Google Scholar
  • 21. Mroczek‑Sosnowska N., Jaworski S., Siennicka A., Gondek A.:Unikalne właściwości nanocząstek srebra. Polskie Drobiarstwo,2013; 2: 6‑8
    Google Scholar
  • 22. Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R.,Odzak N., Sigg L., Behra L.: Toxicity of silver nanoparticles toChlamydomonas reinhardtii. Env. Sci. Tech., 2008; 42: 8959‑8964
    Google Scholar
  • 23. Pal S., Tak Y.K., Song J.M.: Does the antibacterial activity ofsilver nanoparticles depend on the shape of the nanoparticle?A study of the Gram‑negative bacterium Escherichia coli. Appl.Environ. Microbiol., 2007; 73: 1712‑1720
    Google Scholar
  • 24. Percival S.L., Bowler P.G., Russell D.: Bacterial resistance tosilver in wound care. J. Hosp. Infect., 2005; 60: 1‑7
    Google Scholar
  • 25. Radzig M.A., Nadtochenko V.A., Koksharova O.A., Kiwi J., Lipa‑sova V.A., Khmel I.A.: Antibacterial effects of silver nanoparticleson gram‑negative bacteria: influence on the growth and biofilmsformation, mechanisms of action. Colloids Surf. B Biointerfaces,2013; 102: 300‑306
    Google Scholar
  • 26. RCSB Protein Data Bank. http://www.rcsb.org/pdb/home/home.do (05.02.2015)
    Google Scholar
  • 27. Silver S.: Bacterial resistances to toxic metal ions ‑ a review.Gene, 1996; 179: 9‑19
    Google Scholar
  • 28. Silver S.: Bacterial silver resistance: molecular biology anduses and misuses of silver compounds. FEMS Microbiol. Rev., 2003;27: 341‑353
    Google Scholar
  • 29. Sotiriou G.A., Pratsinis S.E.: Antibacterial activity of nanosil‑ver ions and particles. Environ. Sci. Technol., 2010; 44: 5649‑5654
    Google Scholar
  • 30. Su H.L., Lin S.H., Wei J.C., Pao I.C., Chiao S.H., Huang C.C., LinS.Z., Lin J.J.: Novel nanohybrids of silver particles on clay platelets for inhibiting silver‑resistant bacteria. PLoS One, 2011; 6: e21125
    Google Scholar
  • 31. Wiglusz R.J., Kędziora A., Łukowiak A, Doroszkiewicz W., StrekW.: Hydroxyapatites and europium(III) doped hydroxyapatites asa carrier of silver nanoparticles and their antimicrobial activity.J. Biomed. Nanotechnol., 2012; 8: 605‑612
    Google Scholar
  • 32. Witkowska D., Bartyś A., Gamian A.: Białka osłony komórkowejpałeczek jelitowych i ich udział w patogenności oraz odpornościprzeciwbakteryjnej. Postępy Hig. Med. Dośw., 2009; 63: 176‑199
    Google Scholar
  • 33. Wysocka K., Leszkiewicz A., Kowalczyk J., Stręk W., Doroszkie‑wicz W., Podbielska H.: Nanomateriały krzemionkowe domieszko‑wane srebrem i ich możliwe zastosowania w biomedycynie. ActaBio‑Opt. Inf. Med., 2007; 13: 180‑183
    Google Scholar

Full text

Skip to content