Misregulation of iron homeostasis in amyotrophic lateral sclerosis

COMMENTARY ON THE LAW

Misregulation of iron homeostasis in amyotrophic lateral sclerosis

Anna Gajowiak 1 , Agnieszka Styś 1 , Rafał R. Starzyński 1 , Robert Staroń 1 , Paweł Lipiński 1

1. Zakład Biologii Molekularnej, Instytutu Genetyki i Hodowli Zwierząt PAN w Jastrzębcu

Published: 2016-06-30
DOI: 10.5604/17322693.1208036
GICID: 01.3001.0009.6849
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 709-721

 

Abstract

Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS) requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1) gene. Mutations in the SOD1 gene constituteone of the most common genetic causes of the inherited form of ALS. However, it should beconsidered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymaticactivity, a condition which does not occur in human pathology and which may itself changethe expression of iron metabolism genes.

References

  • 1. Aisen P., Leibman A., Zweier J.: Stoichiometric and site characteristicsof the binding of iron to human transferrin. J. Biol. Chem.,1978; 253: 1930-1937
    Google Scholar
  • 2. Alexander J., Kowdley K.V.: HFE-associated hereditary hemochromatosis.Genet. Med., 2009;11: 307-313
    Google Scholar
  • 3. Allen R.P., Earley C.J.: The role of iron in restless legs syndrome.Mov. Disord. 2007; 22: S440-S448
    Google Scholar
  • 4. Andrews N.C.: Forging a field: the golden age of iron biology.Blood, 2008; 112: 219-230
    Google Scholar
  • 5. Barber S.C., Mead R.J., Shaw P.J.: Oxidative stress in ALS: a mechanismof neurodegeneration and a therapeutic target. Biochim. Biophys.Acta, 2006; 1762: 1051-1067
    Google Scholar
  • 6. Bartosz G.: Druga twarz tlenu. Wydawnictwo Naukowe PWN,Warszawa 2003 7 Bartzokis G., Cummings J., Perlman S., Hance D.B., Mintz J.: Increasedbasal ganglia iron levels in Huntington disease. Arch. Neurol.,1999; 56: 569-574
    Google Scholar
  • 7. tesla MRI and pathology. PLoS One, 2012; 7: e35241
    Google Scholar
  • 8. Beard J.L.: Why iron deficiency is important in infant development.J. Nutr., 2008; 138: 2534-2536
    Google Scholar
  • 9. Blasco H., Vourch P., Nadjar Y., Ribourtout B., Gordon P.H.,Guettard Y.O., Camu W., Praline J., Meininger V., Andres C.R., CorciaP.: Association between divalent metal transport 1 encoding gene(SLC11A2) and disease duration in amyotrophic lateral sclerosis. J.Neurol. Sci., 2011; 303: 124-127
    Google Scholar
  • 10. Brissot P., Ropert M., Le Lan C., Loréal O.: Non-transferrin boundiron: a key role in iron overload and iron toxicity. Biochim. Biophys.Acta, 2012; 1820: 403-410
    Google Scholar
  • 11. Bush A.I.: The metal theory of Alzheimer’s disease. J. AlzheimersDis., 2013; 33: S277-S281
    Google Scholar
  • 12. Cammer W.: Oligodendrocyte associated enzymes. W: Oligodendroglia.red., W.T. Norton, New York: Plenum, 1984, 199-232
    Google Scholar
  • 13. Cermák J., Neuwirt J.: A half century since the isolation of crystallineferritin by Professor Laufberger. Vnitr. Lek., 1986; 32: 833-835
    Google Scholar
  • 14. Charcot J.M., Joffroy A.: Deux cas d’atrophie musculaire progressiveavec lesions de la substance grise et des faiseaux anterolaterauxde la moelle epiniere. Arch. Physiol. Neurol. Pathol., 1869; 2: 744-754
    Google Scholar
  • 15. Clark S.F.: Iron deficiency anemia: diagnosis and management.Curr. Opin. Gastroenterol. 2009; 25: 122-128
    Google Scholar
  • 16. Cozzolino M., Ferri A., Valle C., Carrì M.T.: Mitochondria andALS: implications from novel genes and pathways. Mol. Cell. Neurosci.,2013; 55: 44-49
    Google Scholar
  • 17. Curtis A.R., Fey C., Morris C.M., Bindoff L.A., Ince P.G., ChinneryP.F., Coulthard A., Jackson M.J., Jackson A.P., McHale D.P., Hay D.,Barker W.A., Markham A.F., Bates D., Curtis A., Burn J.: Mutation inthe gene encoding ferritin light polypeptide causes dominant adultonsetbasal ganglia disease. Nat. Genet., 2001; 28: 350-354
    Google Scholar
  • 18. Danzeisen R., Achsel T., Bederke U., Cozzolino M., Crosio C., FerriA., Frenzel M., Gralla E.B., Huber L., Ludolph A., Nencini M., Rotilio G.,Valentine J.S., Carrì M.T.: Superoxide dismutase 1 modulates expressionof transferrin receptor. J. Biol. Inorg. Chem., 2006; 11: 489-498
    Google Scholar
  • 19. Dobrowolny G., Aucello M., Rizzuto E., Beccafico S., MammucariC., Boncompagni S., Belia S., Wannenes F., Nicoletti C., Del Prete Z.,Rosenthal N., Molinaro M., Protasi F., Fanò G., Sandri M., Musarò A.:Skeletal muscle is a primary target of SOD1G93A-mediated toxicity.Cell Metab., 2008; 8: 425-436
    Google Scholar
  • 20. Duce J.A., Tsatsanis A., Cater M.A., James S.A., Robb E., Wikhe K.,Leong S.L., Perez K., Johanssen T., Greenough M.A., Cho H.H., GalatisD., Moir R.D., Masters C.L., McLean C. i wsp.: Iron-export ferroxidaseactivity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’sdisease. Cell, 2010; 142: 857-867
    Google Scholar
  • 21. Ebrahimi K.H., Hagedoorn P.L., Hagen W.R.: A synthetic peptidewith the putative iron binding motif of amyloid precursor protein(APP) does not catalytically oxidize iron. PLoS One, 2012; 7: e40287
    Google Scholar
  • 22. Farquhar J., Zerkle A.L., Bekker A.: Geological constraints on theorigin of oxygenic photosynthesis. Photosynth. Res., 2011; 107: 11-36
    Google Scholar
  • 23. Friedman A., Gałązka-Friedman J.: The history of the researchof iron in parkinsonian substantia nigra. J. Neural. Transm., 2012;119: 1507-1510
    Google Scholar
  • 24. Gajowiak A., Styś A., Starzyński R.R, Bednarz A., Lenartowicz M.,Staroń R., Lipiński P.: Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental modelfor studying iron metabolism in amyotrophic lateral sclerosis. Front.Mol. Neurosci., 2016; 8: 82
    Google Scholar
  • 25. Galy B., Ferring D., Minana B., Bell O., Janser H.G., MuckenthalerM., Schümann K., Hentze M.W.: Altered body iron distribution andmicrocytosis in mice deficient in iron regulatory protein 2 (IRP2).Blood, 2005; 106: 2580-2589
    Google Scholar
  • 26. Gladman M., Zinman L.: The economic impact of amyotrophiclateral sclerosis: a systematic review. Expert Rev. Pharmacoecon.Outcomes Res., 2015; 15: 439-450
    Google Scholar
  • 27. Golub M.S., Germann S.L., Araiza R.S., Reader J.R., Griffey S.M.,Lloyd K.C.: Movement disorders in the Hfe knockout mouse. Nutr.Neurosci., 2005; 8: 239-244
    Google Scholar
  • 28. Goodall E.F., Haque M.S., Morrison K.E.: Increased serum ferritinlevels in amyotrophic lateral sclerosis (ALS) patients. J. Neurol.,2008; 255: 1652-1656
    Google Scholar
  • 29. Grantham-McGregor S., Ani C.: A review of studies on the effectof iron deficiency on cognitive development in children. J. Nutr.,2001; 131: 649S-666S
    Google Scholar
  • 30. Grieb P.: Transgenic models of amyotrophic lateral sclerosis.Folia Neuropathol., 2004; 42: 239-248
    Google Scholar
  • 31. Gurney M.E., Pu H., Chiu A.Y., Dal Canto M.C., Polchow C.Y., AlexanderD.D., Caliendo J., Hentati A., Kwon Y.W, Deng H.X. i wsp.: Motorneuron degeneration in mice that express a human Cu,Zn superoxidedismutase mutation. Science, 1994; 264: 1772-1775
    Google Scholar
  • 32. Hadzhieva M., Kirches E., Mawrin C.: Review: iron metabolismand the role of iron in neurodegenerative disorders. Neuropathol.Appl. Neurobiol., 2014; 40: 240-57
    Google Scholar
  • 33. Hadzhieva M., Kirches E., Wilisch-Neumann A., Pachow D., WalleschM., Schoenfeld P., Paege I., Vielhaber S., Petri S., Keilhoff G.,Mawrin C.: Dysregulation of iron protein expression in the G93A modelof amyotrophic lateral sclerosis. Neuroscience, 2013; 230: 94-101
    Google Scholar
  • 34. Hadziahmetovic M., Song Y., Ponnuru P., Iacovelli J., Hunter A.,Haddad N., Beard J., Connor J.R., Vaulont S., Dunaief J.L.: Age-dependentretinal iron accumulation and degeneration in hepcidin knockoutmice. Invest. Ophthalmol. Vis. Sci., 2011; 52: 109-118
    Google Scholar
  • 35. Hallgren B, Sourander P.: The effect of age on the non-haeminiron in the human brain. J. Neurochem., 1958; 3: 41-51
    Google Scholar
  • 36. Halon M., Kaczor J.J., Ziółkowski W., Flis D.J., Borkowska A., PopowskaU., Nyka W., Wozniak M., Antosiewicz J.: Changes in skeletalmuscle iron metabolism outpace amyotrophic lateral sclerosis onsetin transgenic rats bearing the G93A hmSOD1 gene mutation. FreeRadic. Res., 2014; 48: 1363-1370
    Google Scholar
  • 37. Halon M., Sielicka-Dudzin A., Wozniak M., Ziolkowski W., NykaW., Herbik M., Grieb P., Figarski A., Antosiewicz J.: Up-regulation offerritin ubiquitination in skeletal muscle of transgenic rats bearingthe G93A hmSOD1 gene mutation. Neuromuscul. Disord., 2010; 20:29-33
    Google Scholar
  • 38. Harrison P.M., Arosio P.: The ferritins: molecular properties,iron storage function and cellular regulation. Biochim. Biophys.Acta, 1996; 1275: 161-203
    Google Scholar
  • 39. Haverkamp L.J., Appel V., Appel S.H.: Natural history of amyotrophiclateral sclerosis in a database population. Validation of a scoringsystem and a model for survival prediction. Brain, 1995; 118: 707-719
    Google Scholar
  • 40. Hebbrecht G., Maenhaut W., De Reuck J.: Brain trace elementsand aging. Nucl. Instrum. Methods Phys. Res., 1999; 150: 208-213
    Google Scholar
  • 41. Henderson B.R., Seiser C., Kühn L.C.: Characterization of a secondRNA-binding protein in rodents with specificity for iron-responsiveelements. J. Biol. Chem., 1993; 268: 27327-27334
    Google Scholar
  • 42. Ignjatović A., Stević Z., Lavrnić S., Daković M., Bačić G.: Brainiron MRI: a biomarker for amyotrophic lateral sclerosis. J. Magn.Reson. Imaging., 2013; 38: 1472-1479
    Google Scholar
  • 43. Ikeda K., Hirayama T., Takazawa T., Kawabe K., Iwasaki Y.: Relationshipsbetween disease progression and serum levels of lipid,urate, creatinine and ferritin in Japanese patients with amyotrophiclateral sclerosis: a cross-sectional study. Intern. Med., 2012;51: 1501-1508
    Google Scholar
  • 44. Jeong S.Y., Crooks D.R., Wilson-Ollivierre H., Ghosh M.C., SougratR., Lee J., Cooperman S., Mitchell J.B., Beaumont C., Rouault T.A.: Ironinsufficiency compromises motor neurons and their mitochondrialfunction in Irp2-null mice. PLoS One, 2011; 6: e25404
    Google Scholar
  • 45. Jeong S.Y., Rathore K.I., Schulz K., Ponka P., Arosio P., David S.:Dysregulation of iron homeostasis in the CNS contributes to diseaseprogression in a mouse model of amyotrophic lateral sclerosis. J.Neurosci., 2009; 29: 610-619
    Google Scholar
  • 46. Jiménez A.J., Domínguez-Pinos M.D., Guerra M.M., FernándezLlebrezP., Pérez-Fígares J.M.: Structure and function of the ependymalbarrier and diseases associated with ependyma disruption.Tissue Barriers, 2014; 2: e28426
    Google Scholar
  • 47. Kasarskis E.J., Tandon L., Lovell M.A., Ehmann W.D.: Aluminum,calcium, and iron in the spinal cord of patients with sporadic amyotrophiclateral sclerosis using laser microprobe mass spectroscopy:a preliminary study. J. Neurol. Sci., 1995; 130: 203-208
    Google Scholar
  • 48. Keep R.F., Jones H.C.: A morphometric study on the developmentof the lateral ventricle choroid plexus, choroid plexus capillariesand ventricular ependyma in the rat. Brain Res. Dev. BrainRes., 1990; 56: 47-53
    Google Scholar
  • 49. Krawiec P., Pac-Kozuchowska E.: The role of hepcidin in iron metabolismin inflammatory bowel diseases. Postępy Hig. Med. Dośw.,2014; 68: 936-943
    Google Scholar
  • 50. Kruszewski M.: Labile iron pool: the main determinant of cellularresponse to oxidative stress. Mutat. Res., 2003; 531: 81-92
    Google Scholar
  • 51. Kupershmidt L., Weinreb O., Amit T., Mandel S., Carri M.T.,Youdim M.B.: Neuroprotective and neuritogenic activities of novelmultimodal iron-chelating drugs in motor-neuron-like NSC-34 cellsand transgenic mouse model of amyotrophic lateral sclerosis. FASEBJ., 2009; 23: 3766-3779
    Google Scholar
  • 52. Kwan J.Y., Jeong S.Y., Van Gelderen P., Deng H.X., Quezado M.M.,Danielian L. E., Butman J.A., Chen L., Bayat E., Russell J., Siddique T.,Duyn J.H., Rouault T.A., Floeter M.K.: Iron accumulation in deep corticallayers accounts for MRI signal abnormalities in ALS: correlating
    Google Scholar
  • 53. Lai C.H., Kuo K.H.: The critical component to establish in vitroBBB model: pericyte. Brain Res. Brain Res. Rev., 2005; 50: 258-265
    Google Scholar
  • 54. Lambert J.F., Beris P.: Pathophysiology and different diagnosisof anemia. W: Disorders of iron homeostasis, erythrocytes, erythropoiesis.Red.: C. Beaumont, P. Beris, Y. Beuzard. C. Brugnara. Eur.School Haematology, Paris. 2006; 73-101
    Google Scholar
  • 55. LaVaute T., Smith S., Cooperman S., Iwai K., Land W., MeyronHoltzE., Drake S.K., Miller G., Abu-Asab M., Tsokos M., Switzer R. III,Grinberg A., Love P., Tresser N., Rouault T.A.: Targeted deletion ofthe gene encoding iron regulatory protein-2 causes misregulationof iron metabolism and neurodegenerative disease in mice. Nat.Genet., 2001; 27: 209-214
    Google Scholar
  • 56. Leitner D.F., Connor J.R.: Functional roles of transferrin in thebrain. Biochim. Biophys. Acta, 2012; 1820: 393-402
    Google Scholar
  • 57. Levi S., Corsi B., Bosisio M., Invernizzi R., Volz A., Sanford D.,Arosio P., Drysdale J.: A human mitochondrial ferritin encoded byan intronless gene. J. Biol. Chem., 2001; 276: 24437-24440
    Google Scholar
  • 58. Ling S.C., Polymenidou M., Cleveland D.W.: Converging mechanismsin ALS and FTD: disrupted RNA and protein homeostasis.Neuron, 2013; 79: 416-38
    Google Scholar
  • 59. Lipiński P., Starzyński R.R.: Regulation of body iron homeostasisby hepcidin. Postępy Hig. Med. Dośw., 2004; 58: 65-73
    Google Scholar
  • 60. Lipiński P., Starzyński R.R.: The role of iron regulatory proteins (IRPs) in the regulation of systemic iron homeostasis: lessons fromstudies on IRP1 and IRP2 knock out mice. Postępy Hig. Med. Dośw.,2006; 60: 322-330
    Google Scholar
  • 61. Lipiński P., Starzyński R.R., Styś A., Gajowiak A., Staroń R.: Hememetabolism as an integral part of iron homeostasis. Postępy Hig.Med. Dośw., 2014; 68: 557-570
    Google Scholar
  • 62. Lipiński P, Starzyński R.R., Styś A., Straciło M.: Iron homeostasis,a defense mechanism in oxidative stress. Postępy Biochem.,2010; 56: 305-316
    Google Scholar
  • 63. Lipiński P., Styś A., Starzyński R.R.: Molecular insights into theregulation of iron metabolism during the prenatal and early postnatalperiods. Cell. Mol. Life Sci., 2013; 70: 23-38
    Google Scholar
  • 64. Lozoff B., Georgieff M.K.: Iron deficiency and brain development.Semin. Pediatr. Neurol., 2006; 13: 158-165
    Google Scholar
  • 65. Lozoff B., Jimenez E., Smith J.B.: Double burden of iron deficiencyin infancy and low socioeconomic status: a longitudinal analysis ofcognitive test scores to age 19 years. Arch. Pediatr. Adolesc. Med.,2006; 160: 1108-1113
    Google Scholar
  • 66. Maktabi M.A., Heistad D.D., Faraci F.M.: Effects of angiotensin IIon blood flow to choroid plexus. Am. J. Physiol., 1990; 258: H414-H418
    Google Scholar
  • 67. Massignan T., Casoni F., Basso M., Stefanazzi P., Biasini E., TortaroloM., Salmona M., Gianazza E., Bendotti C., Bonetto V.: Proteomicanalysis of spinal cord of presymptomatic amyotrophic lateralsclerosis G93A SOD1 mouse. Biochem. Biophys. Res. Commun.,2007; 353: 719-725
    Google Scholar
  • 68. McCarthy R.C., Kosman D.J.: Ferroportin and exocytoplasmicferroxidase activity are required for brain microvascular endothelialcell iron efflux. J. Biol. Chem., 2013; 288: 17932-17940
    Google Scholar
  • 69. McCarthy R.C., Kosman D.J.: Glial cell ceruloplasmin and hepcidindifferentially regulate iron efflux from brain microvascularendothelial cells. PLoS One, 2014; 9: e89003
    Google Scholar
  • 70. McCarthy R.C., Kosman D.J.: Iron transport across the bloodbrainbarrier: development, neurovascular regulation and cerebralamyloid angiopathy. Cell. Mol. Life Sci., 2015; 72: 709-727
    Google Scholar
  • 71. McCord J.M., Fridovich I.: Superoxide dismutase. An enzymicfunction for erythrocuprein (hemocuprein). J. Biol. Chem., 1969;244: 6049-6055
    Google Scholar
  • 72. McKie A.T.: The role of Dcytb in iron metabolism: an update.Biochem. Soc. Trans., 2008; 36: 1239-1241
    Google Scholar
  • 73. Mitchell R.M., Simmons Z., Beard J.L., Stephens H.E., ConnorJ.R.: Plasma biomarkers associated with ALS and their relationshipto iron homeostasis. Muscle Nerve, 2010; 42: 95-103
    Google Scholar
  • 74. Moos T.: Immunohistochemical localization of intraneuronaltransferrin receptor immunoreactivity in the adult mouse centralnervous system. J. Comp. Neurol., 1996; 375: 675-692
    Google Scholar
  • 75. Moos T., Skjoerringe T., Gosk S., Morgan E.H.: Brain capillaryendothelial cells mediate iron transport into the brain by segregatingiron from transferrin without the involvement of divalent metaltransporter 1. J. Neurochem., 2006; 98: 1946-1958
    Google Scholar
  • 76. Musarò A.: Understanding ALS: new therapeutic approaches.FEBS J., 2013; 280: 4315-4322
    Google Scholar
  • 77. Musci G., Polticelli F., Bonaccorsi di Patti M.C.: Ceruloplasminferroportinsystem of iron traffic in vertebrates. World J. Biol. Chem.,2014; 5: 204-215
    Google Scholar
  • 78. Nadjar Y., Gordon P., Corcia P., Bensimon G., Pieroni L., MeiningerV., Salachas F.: Elevated serum ferritin is associated with reducedsurvival in amyotrophic lateral sclerosis. PLoS One, 2012; 7: e45034
    Google Scholar
  • 79. Nagańska E., Matyja E.: Amyotrophic lateral sclerosis – lookingfor pathogenesis and effective therapy. Folia Neuropathol., 2011;49: 1-13
    Google Scholar
  • 80. Nandar W., Neely E.B., Simmons Z., Connor J.R.: H63D HFE genotype accelerates disease progression in animal models of amyotrophiclateral sclerosis. Biochim. Biophys. Acta, 2014; 1842: 2413-2426
    Google Scholar
  • 81. Nicolas G., Chauvet C., Viatte L., Danan J.L., Bigard X., DevauxI., Beaumont C., Kahn A., Vaulont S.: The gene encoding the ironregulatory peptide hepcidin is regulated by anemia, hypoxia, andinflammation. J. Clin. Invest., 2002; 110: 1037-1044
    Google Scholar
  • 82. Oshiro S., Morioka M.S., Kikuchi M.: Dysregulation of iron metabolismin Alzheimer’s disease, Parkinson’s disease, and amyotrophiclateral sclerosis. Adv. Pharmacol. Sci., 2011; 2011: 378278
    Google Scholar
  • 83. Oski F.A., Honig A.S., Helu B., Howanitz P.: Effect of iron therapyon behavior performance in nonanemic, iron-deficient infants. Pediatrics,1983; 71: 877-880
    Google Scholar
  • 84. Paradkar P.N., Zumbrennen K.B., Paw B.H., Ward D.M., KaplanJ.: Regulation of mitochondrial iron import through differentialturnover of mitoferrin 1 and mitoferrin 2. Mol. Cell. Biol., 2009;29: 1007-1016
    Google Scholar
  • 85. Patel B.N., Dunn R.J., David S.: Alternative RNA splicing generatesa glycosylphosphatidylinositol-anchored form of ceruloplasmin inmammalian brain. J. Biol. Chem., 2000; 275: 4305-4310
    Google Scholar
  • 86. Petrak J., Vyoral D.: Hephaestin – a ferroxidase of cellular ironexport. Int. J. Biochem. Cell. Biol., 2005; 37: 1173-1178
    Google Scholar
  • 87. Ramos P., Santos A., Pinto N.R., Mendes R., Magalhaes T., AlmeidaA.: Iron levels in the human brain: a post-mortem study of anatomicalregion differences and age-related changes. J. Trace Elem. Med.Biol., 2014; 28: 13-17
    Google Scholar
  • 88. Renton A.E., Chiò A., Traynor B.J.: State of play in amyotrophiclateral sclerosis genetics. Nat. Neurosci., 2014; 17: 17-23
    Google Scholar
  • 89. Rosen D.R., Siddique T., Patterson D., Figlewicz D.A., Sapp P.,Hentati A., Donaldson D., Goto J., O’Regan J.P., Deng H.X.: Mutationsin Cu/Zn superoxide dismutase gene are associated with familialamyotrophic lateral sclerosis. Nature, 1993; 362: 59-62
    Google Scholar
  • 90. Rouault T.A.: Iron metabolism in the CNS: implications for neurodegenerativediseases. Nat. Rev. Neurosci., 2013; 14: 551-564
    Google Scholar
  • 91. Rouault T.A., Cooperman S.: Brain iron metabolism. Semin. Pediatr.Neurol., 2006; 13: 142-148
    Google Scholar
  • 92. Rouault T.A., Zhang D.L., Jeong S.Y.: Brain iron homeostasis, thechoroid plexus, and localization of iron transport proteins. Metab.Brain Dis., 2009; 24: 673-684
    Google Scholar
  • 93. Schenck J.F.: Magnetic resonance imaging of brain iron. J. Neurol.Sci., 2003; 207: 99-102
    Google Scholar
  • 94. Schulz K., Vulpe C.D., Harris L.Z., David S.: Iron efflux from oligodendrocytesis differentially regulated in gray and white matter.J. Neurosci., 2011; 31: 13301-13311
    Google Scholar
  • 95. Skjørringe T., Møller L.B., Moos T.: Impairment of interrelatediron- and copper homeostatic mechanisms in brain contributes tothe pathogenesis of neurodegenerative disorders. Front. Pharmacol.,2012; 3: 169
    Google Scholar
  • 96. Speake T., Kibble J.D., Brown P.D.: Kv1.1 and Kv1.3 channels contributeto the delayed-rectifying K+ conductance in rat choroid plexusepithelial cells. Am. J. Physiol. Cell. Physiol. 2004; 286: C611-C620
    Google Scholar
  • 97. Sreedharan J., Brown R.H. Jr.: Amyotrophic lateral sclerosis:problems and prospects. Ann. Neurol., 2013; 74: 309-316
    Google Scholar
  • 98. Staroń R., Styś A., Starzyński R., Gajowiak A., Lipiński P.: Enterocyt– wąskie gardło metabolizmu żelaza. Postępy Biol. Kom.,2015; 42: 329-350
    Google Scholar
  • 99. Styś A., Starzyński R.R., Lipiński P.: The role of iron regulatoryproteins in the control of iron metabolism in mammals. Biotechnologia,2011; 92: 66-75
    Google Scholar
  • 100. Takeda A., Devenyi A., Connor J.R.: Evidence for non-transferrin-mediateduptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice. J. Neurosci. Res., 1998;51: 454-462
    Google Scholar
  • 101. Todorich B., Pasquini J.M., Garcia C.I., Paez P.M., Connor J.R.:Oligodendrocytes and myelination: the role of iron. Glia, 2009; 57:467-748
    Google Scholar
  • 102. Tomik B.: Diagnosis and treatment of amyotrophic lateral sclerosisaccording to EFNS recommendations (2005). Neurol. Neurochir.Pol., 2007; 41: 445-456
    Google Scholar
  • 103. Turner B.J., Talbot K.: Transgenics, toxicity and therapeuticsin rodent models of mutant SOD1-mediated familial ALS. Prog. Neurobiol.,2008; 85: 94-134
    Google Scholar
  • 104. Urrutia P., Aguirre P., Esparza A., Tapia V., Mena N.P., ArredondoM., González-Billault C., Núñez MT.: Inflammation alters the expressionof DMT1, FPN1 and hepcidin and it causes iron accumulationin central nervous system cells. J. Neurochem., 2013; 126: 541-549
    Google Scholar
  • 105. van Rheenen W., Diekstra F.P., van Doormaal P.T., Seelen M.,Kenna K., McLaughlin R., Shatunov A., Czell D., van Es M.A., vanVught P.W., van Damme P., Smith B.N., Waibel S., Schelhaas H.J., vander Kooi A.J. i wsp.: H63D polymorphism in HFE is not associated withamyotrophic lateral sclerosis. Neurobiol. Aging, 2013; 34: 1517.e5-e7
    Google Scholar
  • 106. Vaubel R.A., Isaya G.: Iron-sulfur cluster synthesis, iron homeostasisand oxidative stress in Friedreich ataxia. Mol. Cell. Neurosci.,2013; 55: 50-61
    Google Scholar
  • 107. Veyrat-Durebex C., Corcia P., Mucha A., Benzimra S., MalletC., Gendrot C., Moreau C., Devos D., Piver E., Pagès J.C., Maillot F.,Andres C.R., Vourc’h P., Blasco H.: Iron metabolism disturbance ina French cohort of ALS patients. Biomed. Res. Int., 2014; 2014: 485723
    Google Scholar
  • 108. Wang Q., Zhang X., Chen S., Zhang X., Zhang S., Youdium M., LeW.: Prevention of motor neuron degeneration by novel iron chelatorsin SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis.Neurodegener. Dis., 2011; 8: 310-321
    Google Scholar
  • 109. Wang W., Knovich M.A., Coffman L.G., Torti F.M., Torti S.V.:Serum ferritin: past, present and future. Biochim. Biophys. Acta,2010; 1800: 760-769
    Google Scholar
  • 110. Ward D.M., Kaplan J.: Ferroportin-mediated iron transport:expression and regulation. Biochim. Biophys. Acta, 2012; 1823: 1426-1433
    Google Scholar
  • 111. Wong B.X., Tsatsanis A., Lim L.Q., Adlard P.A., Bush A.I., DuceJ.A.: β-Amyloid precursor protein does not possess ferroxidase activitybut does stabilize the cell surface ferrous iron exporter ferroportin.PLoS One, 2014; 9: e114174
    Google Scholar
  • 112. Xu X., Pin S., Gathinji M., Fuchs R., Harris Z.L.: Aceruloplasminemia:an inherited neurodegenerative disease with impairment ofiron homeostasis. Ann. N.Y. Acad. Sci., 2004; 1012: 299-305
    Google Scholar
  • 113. Yu J., Qi F., Wang N., Gao P., Dai S., Lu Y., Su Q., Du Y., Che F.: Increasediron level in motor cortex of amyotrophic lateral sclerosispatients: an in vivo MR study. Amyotroph. Lateral Scler. FrontotemporalDegener., 2014; 15: 357-361
    Google Scholar
  • 114. Zahs K.R., Bigornia V., Deschepper C.F.: Characterization of“plasma proteins” secreted by cultured rat macroglial cells. Glia,1993; 7: 121-133
    Google Scholar
  • 115. Zecca L., Stroppolo A., Gatti A., Tampellini D., Toscani M., GalloriniM., Giaveri G., Arosio P., Santambrogio P., Fariello R.G., KaratekinE., Kleinman M.H., Turro N., Hornykiewicz O., Zucca F.A.: Therole of iron and copper molecules in the neuronal vulnerability oflocus coeruleus and substantia nigra during aging. Proc. Natl. Acad.Sci. USA, 2004; 101: 9843-9848
    Google Scholar
  • 116. Zechel S., Huber-Wittmer K., von Bohlen und Halbach O.: Distributionof the iron-regulating protein hepcidin in the murine centralnervous system. J. Neurosci. Res., 2006; 84: 790-800
    Google Scholar

Full text

Skip to content