Metabolism of endocannabinoids

COMMENTARY ON THE LAW

Metabolism of endocannabinoids

Michał Biernacki 1 , Elżbieta Skrzydlewska 1

1. Zakład Chemii Nieorganicznej i Analitycznej, Uniwersytet Medyczny w Białymstoku

Published: 2016-08-11
DOI: 10.5604/17322693.1213898
GICID: 01.3001.0009.6861
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 830-843

 

Abstract

Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.

References

  • 1. Aaltonen N., Riera Ribas C., Lehtonen M., Savinainen J.R., LaitinenJ.T.: Brain regional cannabinoid CB1 receptor signalling and alternativeenzymatic pathways for 2-arachidonoylglycerol generation inbrain sections of diacylglycerol lipase deficient mice. Eur. J. Pharm.Sci., 2014; 51: 87-95
    Google Scholar
  • 2. Alhouayek M., Muccioli G.G.: COX-2-derived endocannabinoidmetabolites as novel inflammatory mediators. Trends Pharmacol.Sci., 2014; 35: 284-292
    Google Scholar
  • 3. Amoako A.A., Marczylo T.H., Lam P.M., Willets J.M., Derry A., ElsonJ., Konje J.C.: Quantitative analysis of anandamide and relatedacylethanolamides in human seminal plasma by ultra performanceliquid chromatography tandem mass spectrometry. J. Chromatogr. BAnalyt. Technol. Biomed. Life Sci., 2010; 878: 3231-3237
    Google Scholar
  • 4. Andradas C., Caffarel M.M., Pérez-Gómez E., Salazar M., LorenteM., Velasco G., Guzmán M., Sánchez C.: The orphan G protein-coupledPiśmiennictworeceptor GPR55 promotes cancer cell proliferation via ERK. Oncogene,2011; 30: 245-252
    Google Scholar
  • 5. Annuzzi G., Piscitelli F., Di Marino L., Patti L., Giacco R., CostabileG., Bozzetto L., Riccardi G., Verde R., Petrosino S., Rivellese A.A., DiMarzo V.: Differential alterations of the concentrations of endocannabinoidsand related lipids in the subcutaneous adipose tissue ofobese diabetic patients. Lipids Health Dis., 2010; 9: 43
    Google Scholar
  • 6. Awumey E.M., Hill S.K., Diz D.I., Bukoski R.D.: Cytochrome P-450metabolites of 2-arachidonoylglycerol play a role in Ca2+-inducedrelaxation of rat mesenteric arteries. Am. J. Physiol. Heart Circ.Physiol., 2008; 294: 2363-2370
    Google Scholar
  • 7. Balvers M.G., Verhoeckx K.C., Witkamp R.F.: Development andvalidation of a quantitative method for the determination of 12endocannabinoids and related compounds in human plasma usingliquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009; 877: 1583-1590
    Google Scholar
  • 8. Bari M., Battista N., Fezza F., Finazzi-Agro A., Maccarrone M.: Lipidrafts control signaling of type-1 cannabinoid receptors in neuronalcells. Implications for anandamide-induced apoptosis. J. Biol. Chem.,2005; 280: 12212-12220
    Google Scholar
  • 9. Barricklow J., Blatnik M.: 2-Arachidonoylglycerol is a substratefor butyrylcholinesterase: A potential mechanism for extracellularendocannabinoid regulation. Arch. Biochem. Biophys., 2013; 536: 1-5
    Google Scholar
  • 10. Bisogno T., Berrendero F., Ambrosino G., Cebeira M., RamosJ.A., Fernandez – Ruiz J.J., Di Marzo V.: Brain regional distribution ofendocannabinoids: implications for their biosynthesis and biologicalfunction. Biochem. Biophys. Res. Commun., 1999; 256: 377-380
    Google Scholar
  • 11. Bisogno T., Howell F., Williams G., Minassi A., Cascio M.G., LigrestiA., Matias I., Schiano-Moriello A., Paul P., Williams E.J., GangadharanU., Hobbs C., Di Marzo V., Doherty P.: Cloning of the first sn1-DAGlipases points to the spatial and temporal regulation of endocannabinoidsignaling in the brain. J. Cell. Biol., 2003; 163: 463-468
    Google Scholar
  • 12. Blankman J.L., Cravatt B.F.: Chemical probes of endocannabinoidmetabolism. Pharmacol. Rev., 2013; 65: 849-871
    Google Scholar
  • 13. Blankman J.L., Simon G.M., Cravatt B.F.: A comprehensive profileof brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.Chem. Biol., 2007; 14: 1347-1356
    Google Scholar
  • 14. Blázquez C., Galve-Roperh I., Guzmán M.: De novo-synthesizedceramide signals apoptosis in astrocytes via extracellular signalregulatedkinase. FASEB J., 2000; 14: 2315-2322
    Google Scholar
  • 15. Booz G.W.: Cannabidiol as an emergent therapeutic strategyfor lessening the impact of inflammation on oxidative stress. FreeRadic. Biol. Med., 2011; 51: 1054-1061
    Google Scholar
  • 16. Bostwick J.M.: Blurred boundaries: the therapeutics and politicsof medical marijuana. Mayo Clin. Proc., 2012; 87: 172-186
    Google Scholar
  • 17. Bradshaw H.B., Rimmerman N., Krey J.F., Walker J.M.: Sex andhormonal cycle differences in rat brain levels of pain-related cannabimimeticlipid mediators. Am. J. Physiol. Regul. Integr. Comp.Physiol., 2006; 291: R349-R358
    Google Scholar
  • 18. Butini S., Brindisi M., Gemma S., Minetti P., Cabri W., Gallo G.,Vincenti S., Talamonti E., Borsini F., Caprioli A., Stasi M.A., Di SerioS., Ros S., Borrelli G., Maramai S. i wsp.: Discovery of potent inhibitorsof human and mouse fatty acid amide hydrolases. J. Med. Chem.,2012; 55: 6898-6915
    Google Scholar
  • 19. Cadas H., di Tomaso E., Piomelli D.: Occurrence and biosynthesisof endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine,in rat brain. J. Neurosci., 1997; 17: 1226-1242
    Google Scholar
  • 20. Cadas H., Gaillet S., Beltramo M., Venance L., Piomelli D.: Biosynthesisof an endogenous cannabinoid precursor in neurons andits control by calcium and cAMP. J. Neurosci., 1996; 16: 3934-3942
    Google Scholar
  • 21. Cao Z., Mulvihill M.M., Mukhopadhyay P., Xu H., Erdélyi K., HaoE., Holovac E., Haskó G., Cravatt B.F., Nomura D.K., Pacher P.: Monoacylglycerollipase controls endocannabinoid and eicosanoid signalingand hepatic injury in mice. Gastroenterology, 2013; 144: 808-817
    Google Scholar
  • 22. Carracedo A., Gironella M., Lorente M., Garcia S., Guzmán M.,Velasco G., Iovanna J.L.: Cannabinoids induce apoptosis of pancreatictumor cells via endoplasmic reticulum stress-related genes. CancerRes., 2006; 66: 6748-6755
    Google Scholar
  • 23. Cheng L.J., Xie J.H., Chen Y., Wang L.X., Zhou Q.L.: Enantioselectivetotal synthesis of (-)-Δ8-THC and (-)-Δ9-THC via catalyticasymmetric hydrogenation and S(N)Ar cyclization. Org. Lett., 2013;15: 764-767
    Google Scholar
  • 24. Cianchi F., Papucci L., Schiavone N., Lulli M., Magnelli L., VinciM.C., Messerini L., Manera C., Ronconi E., Romagnani P., Donnini M.,Perigli G., Trallori G., Tanganelli E., Capaccioli S., Masini E.: Cannabinoidreceptor activation induces apoptosis through tumor necrosisfactor α-mediated ceramide de novo synthesis in colon cancer cells.Clin. Cancer Res., 2008; 14: 7691-7700
    Google Scholar
  • 25. Correa F., Docagne F., Mestre L., Clemente D., Hernangómez M.,Loría F., Guaza C.: A role for CB2 receptors in anandamide signallingpathways involved in the regulation of IL-12 and IL-23 in microglialcells. Biochem. Pharmacol., 2009; 77: 86-100
    Google Scholar
  • 26. Deutsch D.G., Chin S.A.: Enzymatic synthesis and degradationof anandamide, a cannabinoid receptor agonist. Biochem. Pharmacol.,1993; 46: 791-796
    Google Scholar
  • 27. Di S., Malcher-Lopes R., Marcheselli V.L., Bazan N.G., TaskerJ.G.: Rapid glucocorticoid-mediated endocannabinoid release andopposing regulation of glutamate and g-aminobutyric acid inputsto hypothalamic magnocellular neurons. Endocrinology, 2005; 146:4292-4301
    Google Scholar
  • 28. Di Marzo V., Breivogel C.S., Tao Q., Bridgen D.T., Razdan R.K., ZimmerA.M., Zimmer A., Martin B.R.: Levels, metabolism, and pharmacologicalactivity of anandamide in CB1 cannabinoid receptor knockoutmice: evidence for non-CB1, non-CB2 receptor-mediated actionsof anandamide in mouse brain. J. Neurochem., 2000; 75: 2434-2444
    Google Scholar
  • 29. Di Marzo V., Ligresti A., Cristino L.: The endocannabinoid systemas a link between homoeostatic and hedonic pathways involved inenergy balance regulation. Int. J. Obes., 2009; 33: S18-S24
    Google Scholar
  • 30. Di Marzo V., Melck D., Bisogno T., De Petrocellis L.: Endocannabinoids:endogenous cannabinoid receptor ligands with neuromodulatoryaction. Trends Neurosci., 1998; 21: 521-528
    Google Scholar
  • 31. Di Marzo V., Piscitelli F., Mechoulam R.: Cannabinoids and endocannabinoidsin metabolic disorders with focus on diabetes. Handb.Exp. Pharmacol., 2011; 203: 75-104
    Google Scholar
  • 32. Di Marzo V., Verrijken A., Hakkarainen A., Petrosino S., MertensI., Lundbom N., Piscitelli F., Westerbacka J., Soro-Paavonen A., MatiasI., Van Gaal L., Taskinen M.R.: Role of insulin as a negative regulatorof plasma endocannabinoid levels in obese and nonobese subjects.Eur. J. Endocrinol., 2009; 161: 715-722
    Google Scholar
  • 33. Dinh T.P., Carpenter D., Leslie F.M., Freund T.F., Katona I., SensiS.L., Kathuria S., Piomelli D.: Brain monoglyceride lipase participatingin endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA,2002; 99: 10819-10824
    Google Scholar
  • 34. Felder C.C., Nielsen A., Briley E.M., Palkovits M., Priller J., AxelrodJ., Nguyen D.N., Richardson J.M., Riggin R.M., Koppel G.A., PaulS.M., Becker G.W.: Isolation and measurement of the endogenouscannabinoid receptor agonist, anandamide, in brain and peripheraltissues of human and rat. FEBS Lett., 1996; 393: 231-235
    Google Scholar
  • 35. Fonseca B.M., Correia-da-Silva G., Teixeira N.A.: Anandamideinducedcell death: dual effects in primary rat decidual cell cultures.Placenta, 2009: 30: 686-692
    Google Scholar
  • 36. Fonseca B.M., Costa M.A., Almada M., Correia-da-Silva G., TeixeiraN.A.: Endogenous cannabinoids revisited: a biochemistry perspective.Prostaglandins Other Lipid Mediat., 2013; 102: 13-30
    Google Scholar
  • 37. Frampton G., Coufal M., Li H., Ramirez J., DeMorrow S.: Opposingactions of endocannabinoids on cholangiocarcinoma growthis via the differential activation of Notch signaling. Exp. Cell Res.,2010; 316: 1465-1478
    Google Scholar
  • 38. Giuffrida A., Leweke F.M., Gerth C.W., Schreiber D., Koethe D.,Faulhaber J., Klosterkötter J., Piomelli D.: Cerebrospinal anandamidelevels are elevated in acute schizophrenia and are inversely correlatedwith psychotic symptoms. Neuropsychopharmacology, 2004;29: 2108-2114
    Google Scholar
  • 39. Giuffrida A., Piomelli D.: Isotope dilution GC/MS determinationof anandamide and other fatty acylethanolamides in rat bloodplasma. FEBS Lett., 1998; 422: 373-376
    Google Scholar
  • 40. Goparaju S.K., Ueda N., Yamaguchi H., Yamamoto S.: Anandamideamidohydrolase reacting with 2-arachidonoylglycerol, anothercannabinoid receptor ligand. FEBS Lett., 1998; 422: 69-73[41] Guo J., Ikeda S.R.: Endocannabinoids modulate N-type calciumchannels and G-protein-coupled inwardly rectifying potassiumchannels via CB1 cannabinoid receptors heterologously expressedin mammalian neurons. Mol. Pharmacol., 2004; 65: 665-674 42 Hansen H.S., Moesgaard B., Hansen H.H., Schousboe A., PetersenG.: Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine(including anandamide) during glutamate-inducedneurotoxicity. Lipids, 1999; 34: S327-S330 43 Herkenham M., Lynn A.B., Little M.D., Johnson M.R., Melvin L.S.,de Costa B.R., Rice K.C.: Cannabinoid receptor localization in brain.Proc. Natl. Acad. Sci. USA, 1990; 87: 1932-1936 44 Herrera B., Carracedo A., Diez-Zaera M., del Pulgar T.G., GuzmánM., Velasco G.: The CB2 cannabinoid receptor signals apoptosis viaceramide-dependent activation of the mitochondrial intrinsic pathway.Exp. Cell Res., 2006; 312: 2121-2131 45 Hiley C.R., Ford W.R.: Cannabinoid pharmacology in the cardiovascularsystem: potential protective mechanisms through lipidsignalling. Biol. Rev. Camb. Philos. Soc., 2004; 79: 187-205 46 Ho W.S., Randall M.D.: Endothelium-dependent metabolism byendocannabinoid hydrolases and cyclooxygenases limits vasorelaxationto anandamide and 2-arachidonoylglycerol. Br. J. Pharmacol.,2007; 150: 641-651 47 Hu S.S., Bradshaw H.B., Chen J.S., Tan B., Walker J.M.: ProstaglandinE2 glycerol ester, an endogenous COX-2 metabolite of 2-arachidonoylglycerol,induces hyperalgesia and modulates NFκB activity.Br. J. Pharmacol., 2008; 153: 1538-1549 48 Jacobsson S.O., Wallin T., Fowler C.J.: Inhibition of rat C6 gliomacell proliferation by endogenous and synthetic cannabinoids. Relativeinvolvement of cannabinoid and vanilloid receptors. J. Pharmacol.Exp. Ther., 2001; 299: 951-959 49 Jin X.H., Okamoto Y., Morishita J., Tsuboi K., Tonai T., Ueda N.:Discovery and characterization of a Ca2+-independent phosphatidylethanolamineN-acyltransferase generating the anandamide precursorand its congeners. J. Biol. Chem., 2007; 282: 3614-3623 50 Johannes L., Lamaze C.: Clathrin-dependent or not: is it still thequestion? Traffic, 2002; 3: 443-451 51 Johnston M., Bhatt S.R., Sikka S., Mercier R.W., West J.M., MakriyannisA., Gatley S.J., Duclos R.I. Jr.: Assay and inhibition of diacylglycerollipase activity. Bioorg. Med. Chem. Lett., 2012; 22: 4585-4592 52 Julien B., Grenard P., Teixeira-Clerc F., Van Nhieu J.T., Li L., KarsakM., Zimmer A., Mallat A., Lotersztajn S.: Antifibrogenic role ofthe cannabinoid receptor CB2 in the liver. Gastroenterology, 2005;128: 742-755 53 Kaczocha M., Glaser S.T., Chae J., Brown D.A., Deutsch D.G.: Lipiddroplets are novel sites of N-acylethanolamine inactivation by fattyacid amide hydrolase-2. J. Biol. Chem., 2010; 285: 2796-2806 54 Kaczocha M., Hermann A., Glaser S.T., Bojesen I.N., DeutschD.G.: Anandamide uptake is consistent with rate-limited diffusionand is regulated by the degree of its hydrolysis by fatty acid amidehydrolase. J. Biol. Chem., 2006; 281: 9066-9075 55 Katayama K., Ueda N., Kurahashi Y., Suzuki H., Yamamoto S.,Kato I.: Distribution of anandamide amidohydrolase in rat tissueswith special reference to small intestine. Biochim. Biophys. Acta,1997; 1347: 212-218 56 Kim Y.H., Back S.K., Davies A.J., Jeong H., Jo H.J., Chung G., NaH.S., Bae Y.C., Kim S.J., Kim J.S., Jung S.J., Oh S.B..: TRPV1 in GABAergicinterneurons mediates neuropathic mechanical allodyniaand disinhibition of the nociceptive circuitry in the spinal cord.Neuron, 2012; 74: 640-647 57 Koga D., Santa T., Fukushima T., Homma H., Imai K.: Liquidchromatographic-atmospheric pressure chemical ionization massspectrometric determination of anandamide and its analogs in ratbrain and peripheral tissues. J. Chromatogr. B Biomed. Sci. Appl., 1997; 690: 7-13 58 Kondo S., Kondo H., Nakane S., Kodaka T., Tokumura A., WakuK., Sugiura T.: 2-arachidonoylglycerol, an endogenous cannabinoidreceptor agonist: identification as one of the major species of monoacylglycerolsin various rat tissues, and evidence for its generationthrough Ca2+-dependent and –independent mechanisms. FEBS Lett.,1998; 429:152-156 59 Kozak K.R., Crews B.C., Morrow J.D., Wang L.H., Ma Y.H., WeinanderR., Jakobsson P.J., Marnett L.J.: Metabolism of the endocannabinoids,2-arachidonylglycerol and anandamide, into prostaglandin,thromboxane, and prostacyclin glycerol esters and ethanolamides.J. Biol. Chem., 2002; 277: 44877-44885 60 Kozak K.R., Marnett L.J.: Oxidative metabolism of endocannabinoids.Prostaglandins Leukot. Essent. Fatty Acids, 2002; 66: 211-220 61 Kozak K.R., Rowlinson S.W., Marnett L.J.: Oxygenation of the endocannabinoid,2-arachidonylglycerol, to glyceryl prostaglandins bycyclooxygenase-2. J. Biol. Chem., 2000; 275: 33744-33749 62 Kuc C., Jenkins A., Van Dross R.T.: Arachidonoyl ethanolamide(AEA)-induced apoptosis is mediated by J-series prostaglandins andis enhanced by fatty acid amide hydrolase (FAAH) blockade. Mol.Carcinog., 2012; 51: 139-149 63 Li K., Fichna J., Schicho R., Saur D., Bashashati M., Mackie K., LiY., Zimmer A., Göke B., Sharkey K.A., Storr M.: A role for O-1602 andG protein-coupled receptor GPR55 in the control of colonic motilityin mice. Neuropharmacology, 2013; 71: 255-263 64 Liao Y.S., Wu J., Wang P., Zhang H.: Anandamide inhibits thegrowth of colorectal cancer cells through CB1 and lipid rafts. ZhonghuaZhong Liu Za Zhi, 2011; 33: 256-259 65 Liu J., Wang L., Harvey-White J., Huang B.X., Kim H.Y., Luquet S.,Palmiter R.D., Krystal G., Rai R., Mahadevan A., Razdan R.K., KunosG.: Multiple pathways involved in the biosynthesis of anandamide.Neuropharmacology, 2008; 54: 1-7 66 Liu J., Wang L., Harvey-White J., Osei-Hyiaman D., Razdan R.,Gong Q., Chan A.C., Zhou Z., Huang B.X., Kim H.Y., Kunos G.: A biosyntheticpathway for anandamide. Proc. Natl. Acad. Sci. USA, 2006;103: 13345-13350 67 Long J.Z., Nomura D.K., Cravatt B.F.: Characterization of monoacylglycerollipase inhibition reveals differences in central and peripheralendocannabinoid metabolism. Chem. Biol., 2009; 16: 744-753 68 Maccarrone M., Lorenzon T., Bari M., Melino G., Finazzi-AgroA.: Anandamide induces apoptosis in human cells via vanilloid receptors.Evidence for a protective role of cannabinoid receptors. J.Biol. Chem., 2000; 275: 31938-31945 69 Matias I., Gonthier M.P., Orlando P., Martiadis V., De PetrocellisL., Cervino C., Petrosino S., Hoareau L., Festy F., Pasquali R., RocheR., Maj M., Pagotto U., Monteleone P., Di Marzo V.: Regulation, function,and dysregulation of endocannabinoids in models of adiposeand β-pancreatic cells and in obesity and hyperglycemia. J. Clin.Endocrinol. Metab., 2006; 91: 3171-3180 70 Matsuda K., Mikami Y., Takeda K., Fukuyama S., Egawa S., SunamuraM., Maruyama I., Matsuno S.: The cannabinoid 1 receptorantagonist, AM251, prolongs the survival of rats with severe acutepancreatitis. Tohoku J. Exp. Med., 2005; 207: 99-107 71 Melck D., Rueda D., Galve-Roperh I., De Petrocellis L., GuzmánM., Di Marzo V.: Involvement of the cAMP/protein kinase A pathwayand of mitogen-activated protein kinase in the anti-proliferativeeffects of anandamide in human breast cancer cells. FEBS Lett.,1999; 463: 235-240 72 Melvin L.S., Milne G.M., Johnson M.R., Subramaniam B., WilkenG.H., Howlett A.C.: Structure-activity relationships for cannabinoidreceptor-binding and analgesic activity: studies of bicyclic cannabinoidanalogs. Mol. Pharmacol., 1993; 44: 1008-1015
    Google Scholar
  • 73. Meyer R.P., Gehlhaus M., Knoth R., Volk B.: Expression and function of cytochrome p450 in brain drug metabolism. Curr. Drug.Metab., 2007; 8: 297-306
    Google Scholar
  • 74. Moesgaard B., Hansen H.H., Hansen S.L., Hansen S.H., PetersenG., Hansen H.S.: Brain levels of N-acylethanolamine phospholipidsin mice during pentylenetetrazol-induced seizure. Lipids, 2003; 38:387-390
    Google Scholar
  • 75. Moesgaard B., Petersen G., Jaroszewski J.W., Hansen H.S.: Agedependent accumulation of N-acyl-ethanolamine phospholipids inischemic rat brain. A 31P NMR and enzyme activity study. J. Lipid.Res., 2000; 41: 985-990
    Google Scholar
  • 76. Monteleone P., Matias I., Martiadis V., De Petrocellis L., Maj M.,Di Marzo V.: Blood levels of the endocannabinoid anandamide areincreased in anorexia nervosa and in binge-eating disorder, but notin bulimia nervosa. Neuropsychopharmacology, 2005; 30: 1216-1221
    Google Scholar
  • 77. Muccioli G.G., Xu C., Odah E., Cudaback E., Cisneros J.A., LambertD.M., López Rodríguez M.L., Bajjalieh S., Stella N.: Identification ofa novel endocannabinoid-hydrolyzing enzyme expressed by microglialcells. J. Neurosci., 2007; 27: 2883-2889
    Google Scholar
  • 78. Nakane S., Oka S., Arai S., Waku K., Ishima Y., Tokumura A., SugiuraT.: 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acidcontaining lysophosphatidic acid: occurrence and rapid enzymaticconversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptorligand, in rat brain. Arch. Biochem. Biophys., 2002; 402: 51-58
    Google Scholar
  • 79. Oddi S., Fezza F., Pasquariello N., De Simone C., Rapino C., DaineseE., Finazzi-Agrò A., Maccarrone M.: Evidence for the intracellularaccumulation of anandamide in adiposomes. Cell. Mol. LifeSci., 2008; 65: 840-850
    Google Scholar
  • 80. Okamoto Y., Morishita J., Tsuboi K., Tonai T., Ueda N.: Molecularcharacterization of a phospholipase D generating anandamide andits congeners. J. Biol. Chem. 2004; 279: 5298-5305
    Google Scholar
  • 81. Oz M.: Receptor-independent actions of cannabinoids on cellmembranes: Focus on endocannabinoids. Pharmacol. Ther., 2006;111: 114-144
    Google Scholar
  • 82. Pacher P., Bátkai S., Kunos G.: The endocannabinoid system asan emerging target of pharmacotherapy. Pharmacol. Rev., 2006;58: 389-462
    Google Scholar
  • 83. Pacher P., Mechoulam R.: Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res., 2011;50: 193-211
    Google Scholar
  • 84. Pisani A., Fezza F., Galati S., Battista N., Napolitano S., FinazziAgroA., Bernardi G., Brusa L., Pierantozzi M., Stanzione P., MaccarroneM.: High endogenous cannabinoid levels in the cerebrospinalfluid of untreated Parkinson’s disease patients. Ann. Neurol., 2005;57: 777-779
    Google Scholar
  • 85. Pollastro F., Taglialatela-Scafati O., Allarà M., Muñoz E., Di MarzoV., De Petrocellis L., Appendino G.: Bioactive prenylogous cannabinoidfrom fiber hemp (Cannabis sativa). J. Nat. Prod., 2011; 74:2019-2022
    Google Scholar
  • 86. Premkumar L.S., Abooj M.: TRP channels and analgesia. LifeSci., 2013; 92: 415-424
    Google Scholar
  • 87. Richardson D., Ortori C.A., Chapman V., Kendall D.A., BarrettD.A.: Quantitative profiling of endocannabinoids and related compoundsin rat brain using liquid chromatography-tandem electrosprayionization mass spectrometry. Anal. Biochem., 2007; 360: 216-226
    Google Scholar
  • 88. Rouzer C.A., Marnett L.J.: Endocannabinoid oxygenation bycyclooxygenases, lipoxygenases, and cytochromes P450: cross-talkbetween the eicosanoid and endocannabinoid signaling pathways.Chem. Rev., 2011; 111: 5899-5921
    Google Scholar
  • 89. Rueda D., Galve-Roperh I., Haro A., Guzman M.: The CB1 cannabinoidreceptor is coupled to the activation of c-Jun N-terminalkinase. Mol. Pharmacol., 2000; 58: 814-820
    Google Scholar
  • 90. Sałaga M., Sobczak M., Fichna J.: Inhibition of fatty acid amidehydrolase (FAAH) as a novel therapeutic strategy in the treatmentof pain and inflammatory diseases in the gastrointestinal tract. Eur.J. Pharm. Sci., 2014; 52: 173-179
    Google Scholar
  • 91. Sang N., Zhang J., Chen C.: COX-2 oxidative metabolite of endocannabinoid2-AG enhances excitatory glutamatergic synaptictransmission and induces neurotoxicity. J. Neurochem., 2007; 102:1966-1977
    Google Scholar
  • 92. Savinainen J.R., Järvinen T., Laine K., Laitinen J.T.: Despite substantialdegradation, 2-arachidonoylglycerol is a potent full efficacyagonist mediating CB1 receptor-dependent G-protein activationin rat cerebellar membranes. Br. J. Pharmacol., 2001; 134: 664-672
    Google Scholar
  • 93. Siegmund S.V., Qian T., De Minicis S., Harvey-White J., KunosG., Vinod K.Y., Hungund B., Schwabe R.F.: The endocannabinoid2-arachidonoyl glycerol induces death of hepatic stellate cells viamitochondrial reactive oxygen species. FASEB J., 2007; 21: 2798-2806
    Google Scholar
  • 94. Siegmund S.V., Seki E., Osawa Y., Uchinami H., Cravatt B.F.,Schwabe R.F.: Fatty acid amide hydrolase determines anandamideinducedcell death in the liver. J. Biol. Chem., 2006; 281: 10431-10438
    Google Scholar
  • 95. Sigel E., Baur R., Rácz I., Marazzi J., Smart T.G., Zimmer A.,Gertsch J.: The major central endocannabinoid directly acts at GABAAreceptors. Proc. Natl. Acad. Sci. USA, 2011; 108: 18150-18155
    Google Scholar
  • 96. Simon G.M., Cravatt B.F.: Anandamide biosynthesis catalyzedby the phosphodiesterase GDE1 and detection of glycerophosphoN-acylethanolamine precursors in mouse brain. J. Biol. Chem., 2008;283: 9341-9349
    Google Scholar
  • 97. Simon G.M., Cravatt B.F.: Endocannabinoid biosynthesis proceedingthrough glycerophospho-N-acyl ethanolamine and a rolefor α/β-hydrolase 4 in this pathway. J. Biol. Chem., 2006; 281: 26465-26472
    Google Scholar
  • 98. Smith W.L., Urade Y., Jakobsson P.J.: Enzymes of the cyclooxygenasepathways of prostanoid biosynthesis. Chem. Rev., 2011; 111:5821-5865
    Google Scholar
  • 99. Snider N.T., Kornilov A.M., Kent U.M., Hollenberg P.F.: Anandamidemetabolism by human liver and kidney microsomal cytochromep450 enzymes to form hydroxyeicosatetraenoic and epoxyeicosatrienoicacid ethanolamides. J. Pharmacol. Exp. Ther., 2007;321: 590-597
    Google Scholar
  • 100. Steffens M., Feuerstein T.J., Van Velthoven V., Schnierle P.,Knörle R.: Quantitative measurement of depolarization-inducedanandamide release in human and rat neocortex. Naunyn-SchmiedebergsArch. Pharmacol., 2003; 368: 432-436
    Google Scholar
  • 101. Sugiura T., Kishimoto S., Oka S., Gokoh M.: Biochemistry, pharmacologyand physiology of 2-arachidonoylglycerol, an endogenouscannabinoid receptor ligand. Prog. Lipid. Res., 2006; 45: 405-446
    Google Scholar
  • 102. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., ItohK., Yamashita A., Waku K.: 2-Arachidonoylglycerol: a possible endogenouscannabinoid receptor ligand in brain. Biochem. Biophys.Res. Commun., 1995; 215: 89-97
    Google Scholar
  • 103. Sun Y.X., Tsuboi K., Okamoto Y., Tonai T., Murakami M., Kudo I.,Ueda N.: Biosynthesis of anandamide and N-palmitoylethanolamineby sequential actions of phospholipase A2 and lysophospholipase D.Biochem. J., 2004; 380: 749-756
    Google Scholar
  • 104. Suplita R.L.2nd, Gutierrez T., Fegley D., Piomelli D., HohmannA.G.: Endocannabinoids at the spinal level regulate, but do not mediate,nonopioid stress induced analgesia. Neuropharmacology, 2006;50: 372-379
    Google Scholar
  • 105. Teixeira-Clerc F., Belot M.P., Manin S., Deveaux V., CadoudalT., Chobert M.N., Louvet A., Zimmer A., Tordjmann T., Mallat A.,Lotersztajn S.: Beneficial paracrine effects of cannabinoid receptor 2 on liver injury and regeneration. Hepatology, 2010; 52: 1046-1059
    Google Scholar
  • 106. Trezza V., Vanderschuren L.J.: Divergent effects of anandamidetransporter inhibitors with different target selectivity on social play behavior in adolescent rats. J. Pharmacol. Exp. Ther., 2009;328: 343-350
    Google Scholar
  • 107. Ueda H., Kobayashi T., Kishimoto M., Tsutsumi T., Okuyama H.:A possible pathway of phosphoinositide metabolism through EDTAinsensitivephospholipase A1 followed by lysophosphoinositide-specificphospholipase C in rat brain. J. Neurochem., 1993; 61: 1874-1881
    Google Scholar
  • 108. Ueda N., Tsuboi K.: Discrimination between two endocannabinoids.Chem. Biol., 2012; 19: 545-547
    Google Scholar
  • 109. Ueda N., Tsuboi K., Uyama T.: N-acylethanolamine metabolismwith special reference to N-acylethanolamine-hydrolyzing acid amidase(NAAA). Prog. Lipid Res., 2010; 49: 299-315
    Google Scholar
  • 110. Van Dross R., Soliman E., Jha S., Johnson T., Mukhopadhyay S.:Receptor-dependent and receptor-independent endocannabinoidsignaling: a therapeutic target for regulation of cancer growth. LifeSci., 2013; 92: 463-466
    Google Scholar
  • 111. Vannacci A., Giannini L., Passani M.B., Di Felice A., Pierpaoli S.,Zagli G., Fantappie O., Mazzanti R., Masini E., Mannaioni P.F.: The endocannabinoid2-arachidonylglycerol decreases the immunologicalactivation of guinea pig mast cells: involvement of nitric oxide andeicosanoids. J. Pharmacol. Exp. Ther., 2004; 311: 256-264
    Google Scholar
  • 112. Wagner J.A., Abesser M., Karcher J., Laser M., Kunos G.: Coronaryvasodilator effects of endogenous cannabinoids in vasopressinpreconstrictedunpaced rat isolated hearts. J. Cardiovasc. Pharmacol., 2005; 46: 348-355
    Google Scholar
  • 113. Wahn H., Wolf J., Kram F., Frantz S., Wagner J.A.: The endocannabinoidarachidonyl ethanolamide (anandamide) increases pulmonaryarterial pressure via cyclooxygenase-2 products in isolatedrabbit lungs. Am. J. Physiol. Heart Circ. Physiol., 2005; 289: 2491-2496
    Google Scholar
  • 114. Wei B.Q., Mikkelsen T.S., McKinney M.K., Lander E.S., CravattB.F.: A second fatty acid amide hydrolase with variable distributionamong placental mammals. J. Biol. Chem., 2006; 281: 36569-36578
    Google Scholar
  • 115. Wellner N., Diep T.A., Janfelt C., Hansen H.S.: N-acylation ofphosphatidylethanolamine and its biological functions in mammals.Biochim. Biophys. Acta, 2013; 1831: 652-662
    Google Scholar
  • 116. Woodward D.F., Krauss A.H., Wang J.W., Protzman C.E., NievesA.L., Liang Y., Donde Y., Burk R.M., Landsverk K., Struble C.: Identificationof an antagonist that selectively blocks the activity ofprostamides (prostaglandin-ethanolamides) in the feline iris. Br. J.Pharmacol., 2007; 150: 342-352
    Google Scholar
  • 117. Yang H., Zhang J., Andreasson K., Chen C.: COX-2 oxidativemetabolism of endocannabinoids augments hippocampal synapticplasticity. Mol. Cell. Neurosci., 2008; 37: 682-695
    Google Scholar

Full text

Skip to content