Metastatic potential of NET in neoplastic disease
Iwona Homa-Mlak 1 , Aleksandra Majdan 1 , Radosław Mlak 1 , Teresa Małecka-Massalska 1Abstract
In response to various stimuli, neutrophils and eosinophils can release neutrophil extracellular traps (NET) consisting of proteolytic enzymes, DNA and other components of the cell nucleus. The NETosis process has been characterized as a mechanism of programmed cell death, which leads to chromatin decondensation and disintegration of organelles, followed by lysis of the cell membrane. In recent years the significant role of neutrophils in the pathogenesis of cancer has been highlighted. The presence of two subpopulations of TAN with different phenotypes and functions – acting antitumor “N1” and the pro-cancerous “N2” – has been discovered. By the release of cytokines and chemokines neutrophils may affect angiogenesis and contribute to escape of tumor cells from immune surveillance. Interactions between cells and the microenvironment are of vital importance both for the preservation of homeostasis in normal tissue and tumor growth. They affect the initiation of disease progression and prognosis. The impact of NETosis on the process of metastasis is evaluated in the context of the functions of the individual components of the NET (MMP-9, CG, NE). Furthermore, presumably the pro- or anti-tumor effect of NETosis depends on many factors including the status of the immune system or tumor microenvironment. Probably the cancer cells can be captured by the NET microenvironment in the same manner as microorganisms. However, the high concentration of proteins released during NETosis can induce their proliferation and inhibit apoptosis, thus promoting tumor growth. A better understanding of NETosis function in tumor progression may lead to the emergence of new prognostic factors and targets for therapy in many types of cancer.
References
- 1. Akizuki M., Fukutomi T., Takasugi M., Takahashi S., Sato T., HaraoM., Mizumoto T., Yamashita J.: Prognostic significance of immunoreactiveneutrophil elastase in human breast cancer: long-term follow–up results in 313 patients. Neoplasia, 2007; 9: 260-264
Google Scholar - 2. Benito-Martin A., Di Giannatale A., Ceder S., Peinado H.: The newdeal: a potential role for secreted vesicles in innate immunity andtumor progression. Front Immunol., 2015; 6: 66
Google Scholar - 3. Brinkmann V., Laube B., Abu Abed U., Goosmann C., ZychlinskyA.: Neutrophil extracellular traps: how to generate and visualizethem. J. Vis. Exp., 2010; 36: 1724
Google Scholar - 4. Brinkmann V., Reichard U., Goosmann C., Fauler B., UhlemannY., Weiss D.S., Weinrauch Y., Zychlinsky A.: Neutrophil extracellulartraps kill bacteria. Science, 2004; 303: 1532-1535
Google Scholar - 5. Chen F., Zhuang X., Lin L., Yu P., Wang Y., Shi Y., Hu G., Sun Y.:New horizons in tumor microenvironment biology: challenges andopportunities. BMC Med., 2015; 13: 45
Google Scholar - 6. Cools-Lartigue J., Spicer J., McDonald B., Gowing S., Chow S.,Giannias B., Bourdeau F., Kubes P., Ferri L.: Neutrophil extracellulartraps sequester circulating tumor cells and promote metastasis. J.Clin. Invest., 2013; 123: 3446-3458
Google Scholar - 7. Cools-Lartigue J., Spicer J., Najmeh S., Ferri L.: Neutrophil extracellulartraps in cancer progression. Cell. Mol. Life Sci., 2014; 71:4179-4194
Google Scholar - 8. Demers M., Wagner D.D.: NETosis: a new factor in tumor progressionand cancer-associated thrombosis. Semin Thromb Hemost.,2014; 40: 277-283
Google Scholar - 9. Demers M., Wagner D.D.: Neutrophil extracellular traps: A newlink to cancer-associated thrombosis and potential implications fortumor progression. Oncoimmunology, 2013; 2: e22946
Google Scholar - 10. Droeser R.A., Hirt C., Eppenberger-Castori S., Zlobec I., ViehlC.T., Frey D.M., Nebiker C.A., Rosso R., Zuber M., Amicarella F., IezziG., Sconocchia G., Heberer M., Lugli A., Tornillo L. i wsp.: High myeloperoxidasepositive cell infiltration in colorectal cancer is anindependent favorable prognostic factor. PLoS One, 2013; 8: e64814
Google Scholar - 11. Erler J.T., Bennewith K.L, Cox T.R., Lang G., Bird D., Koong A., LeQ.T., Giaccia A.J.: Hypoxia-induced lysyl oxidase is a critical mediatorof bone marrow cell recruitment to form the premetastatic niche.Cancer Cell., 2009; 15: 35-44
Google Scholar - 12. Fridlender Z.G., Albelda S.M.: Tumor-associated neutrophils:friend or foe? Carcinogenesis, 2012; 33: 949-955
Google Scholar - 13. Fuchs T.A., Abed U., Goosmann C., Hurwitz R., Schulze I., Wahn V.,Weinrauch Y., Brinkmann V., Zychlinsky A.: Novel cell death programleads to neutrophil extracellular traps. J. Cell. Biol., 2007; 176: 231-241
Google Scholar - 14. Golbach L.A., Scheer M.H., Cuppen J.J., Savelkoul H., Verburg-vanKemenade B.M.: Low-frequency electromagnetic field exposure enhancesextracellular trap formation by human neutrophils throughthe NADPH pathway. J. Innate Immun., 2015; 7: 459-465
Google Scholar - 15. Gong L., Cumpian A.M., Caetano M.S., Ochoa C.E., De la GarzaM.M., Lapid D.J., Mirabolfathinejad S.G., Dickey B.F., Zhou Q., MoghaddamS.J.: Promoting effect of neutrophils on lung tumorigenesisis mediated by CXCR2 and neutrophil elastase. Mol. Cancer,2013; 12: 154
Google Scholar - 16. Granot Z., Henke E., Comen E.A., King T.A., Norton L., Benezra R.:Tumor entrained neutrophils inhibit seeding in the premetastaticlung. Cancer Cell., 2011; 20: 300-314
Google Scholar - 17. Gregory A.D., Houghton A.M.: Tumor-associated neutrophils:new targets for cancer therapy. Cancer Res., 2011; 71: 2411-2416
Google Scholar - 18. Gupta G.P., Massagué J.: Cancer metastasis: building a framework.Cell, 2006; 127: 679-695
Google Scholar - 19. Itagaki K., Kaczmarek E., Lee Y.T., Tang I.T., Isal B., Adibnia Y.,Sandler N., Grimm M.J., Segal B.H., Otterbein L.E., Hauser C.J.: MitochondrialDNA released by trauma induces neutrophil extracellulartraps. PLoS One, 2015; 10: e0120549
Google Scholar - 20. Korkmaz B., Horwitz M.S., Jenne D.E., Gauthier F.: Neutrophilelastase, proteinase 3, and cathepsin G as therapeutic targets in humandiseases. Pharmacol. Rev., 2010; 62: 726-759
Google Scholar - 21. Kudo T., Kigoshi H., Hagiwara T., Takino T., Yamazaki M., YuiS.: Cathepsin G, a neutrophil protease, induces compact cell-celladhesion in MCF-7 human breast cancer cells. Mediators Inflamm.,2009; 2009: 850940
Google Scholar - 22. López-Lago M.A., Posner S., Thodima V.J., Molina A.M., MotzerR.J., Chaganti R.S.: Neutrophil chemokines secreted by tumor cellsmount a lung antimetastatic response during renal cell carcinomaprogression. Oncogene, 2013; 32: 1752-1760
Google Scholar - 23. Masson V., de la Ballina L.R., Munaut C., Wielockx B., Jost M.,Maillard C., Blacher S., Bajou K., Itoh T., Itohara S., Werb Z., LibertC., Foidart J.M., Noël A.: Contribution of host MMP-2 and MMP-9 topromote tumor vascularization and invasion of malignant keratinocytes.FASEB J., 2005; 19: 234-236
Google Scholar - 24. Matoszka N., Działo J., Tokarz-Deptuła B., Deptuła W.: NET i NEToza– nowe zjawisko w immunologii. Postępy Hig. Med. Dośw., 2012;66: 437-445
Google Scholar - 25. Mayadas T.N., Cullere X., Lowell C.A.: The multifaceted functionsof neutrophils. Annu. Rev. Pathol., 2014; 9: 181-218
Google Scholar - 26. Morimoto-Kamata R., Mizoguchi S., Ichisugi T., Yui S.: CathepsinG induces cell aggregation of human breast cancer MCF-7 cellsvia a 2-step mechanism: catalytic site-independent binding to thecell surface and enzymatic activity-dependent induction of the cellaggregation. Mediators Inflamm., 2012; 2012: 456462
Google Scholar - 27. Moroy G., Alix A.J., Sapi J., Hornebeck W., Bourguet E.: Neutrophilelastase as a target in lung cancer. Anticancer Agents Med.Chem., 2012; 12: 565-579
Google Scholar - 28. Odajima T., Onishi M., Hayama E., Motoji N., Momose Y., ShigematsuA.: Cytolysis of B-16 melanoma tumor cells mediated by themyeloperoxidase and lactoperoxidase systems. Biol, Chem., 1996;377: 689-693
Google Scholar - 29. O’Donoghue G.T., Pidgeon G.P., Harmey J.H., Dedrick R., RedmondH.P., Bouchier-Hayes D.J.: Recombinant bactericidal permeabilityincreasing protein (rBPI21) inhibits surgery-induced tumourgrowth in a murine model of metastatic disease. Ir. J. Med. Sci.,2008; 177: 359-365
Google Scholar - 30. Roncucci L., Mora E., Mariani F., Bursi S., Pezzi A., Rossi G.,Pedroni M., Luppi D., Santoro L., Monni S., Manenti A., BertaniA., Merighi A., Benatti P., Di Gregorio C., de Leon P.M.: Myeloperoxidase-positivecell infiltration in colorectal carcinogenesis asindicator of colorectal cancer risk. Cancer Epidemiol, BiomarkersPrev., 2008; 17: 2291-2297
Google Scholar - 31. Rymaszewski A.L., Tate E., Yimbesalu J.P., Gelman A.E., JarzembowskiJ.A., Zhang H., Pritchard K.A. Jr, Vikis H.G.: The role of neutrophilmyeloperoxidase in models of lung tumor development.Cancers, 2014; 6: 1111-1127
Google Scholar - 32. Sato T., Takahashi S., Mizumoto T., Harao M., Akizuki M., TakasugiM., Fukutomi T., Yamashita J.: Neutrophil elastase and cancer.Surg. Oncol., 2006; 15: 217-222
Google Scholar - 33. Schreiber R.D., Old L.J., Smyth M.J.: Cancer immunoediting: integratingimmunity’s roles in cancer suppression and promotion.Science, 2011; 331: 1565-1570
Google Scholar - 34. Smith H.A., Kang Y.: The metastasis-promoting roles of tumor–associated immune cells. J. Mol. Med., 2013; 91: 411-429
Google Scholar - 35. Srikrishna G.: S100A8 and S100A9: new insights into their rolesin malignancy. J. Innate Immun., 2012; 4: 31-40
Google Scholar - 36. Staquicini F.I., Cardó-Vila M., Kolonin M.G., Trepel M., EdwardsJ.K., Nunes D.N., Sergeeva A., Efstathiou E., Sun J., AlmeidaN.F., Tu S.M., Botz G.H., Wallace M.J., O’Connell D.J., KrajewskiS. i wsp: Vascular ligand-receptor mapping by direct combinatorialselection in cancer patients. Proc. Natl. Acad. Sci. USA,2011; 108: 18637-18642
Google Scholar - 37. Stockmann C., Schadendorf D., Klose R., Helfrich I.: The impactof the immune system on tumor: angiogenesis and vascular remodeling.Front. Oncol., 2014; 4: 69
Google Scholar - 38. Tazzyman S., Niaz H., Murdoch C.: Neutrophil-mediated tumourangiogenesis: subversion of immune responses to promote tumourgrowth. Semin. Cancer Biol., 2013; 23: 149-158
Google Scholar - 39. van der Schaft D.W., Toebes E.A., Haseman J.R., Mayo K.H., GriffioenA.W.: Bactericidal/permeability-increasing protein (BPI) inhibitsangiogenesis via induction of apoptosis in vascular endothelialcells. Blood, 2000; 96: 176-181
Google Scholar - 40. van der Schaft D.W., Wagstaff J., Mayo K.H., Griffioen A.W.: Theantiangiogenic properties of bactericidal/permeability-increasingprotein (BPI). Ann. Med., 2002; 34: 19-27
Google Scholar - 41. Vesely M.D., Schreiber R.D.: Cancer immunoediting: antigens,mechanisms, and implications to cancer immunotherapy. Ann. NYAcad. Sci., 2013; 1284: 1-5
Google Scholar - 42. Webber J., Yeung V., Clayton A.: Extracellular vesicles as modulatorsof the cancer microenvironment. Semin. Cell. Dev. Biol.,2015; 40: 27-34
Google Scholar - 43. Weis S.M., Cheresh D.A.: Tumor angiogenesis: molecular pathwaysand therapeutic targets. Nat. Med., 2011; 17: 1359-1370
Google Scholar - 44. Wilson T.J., Nannuru K.C., Futakuchi M., Singh R.K.: CathepsinG-mediated enhanced TGF-β signaling promotes angiogenesis viaupregulation of VEGF and MCP-1. Cancer Lett., 2010; 288: 162-169
Google Scholar - 45. Witko-Sarsat V., Canteloup S., Durant S., Desdouets C., ChabernaudR., Lemarchand P., Descamps-Latscha B.: Cleavage of p21waf1by proteinase-3, a myeloid-specific serine protease, potentiates cellproliferation. J. Biol. Chem., 2002; 277: 47338-47347
Google Scholar - 46. Wu F.P., Boelens P.G., van Leeuwen P.A., Hoekman K., HansmaA.H., Wiezer M.J., Meijer C., Meijer S., Scotté M., Cuesta M.A.: Effectsof major liver resection, with or without recombinant bactericidal/permeability-increasing protein (rBPI21), on the angiogenic profileof patients with metastatic colorectal carcinoma. J. Surg. Oncol.,2003; 84: 137-142
Google Scholar