The CRISPR-Cas system – from bacterial immunity to genome engineering
Maria Czarnek 1 , Joanna Bereta 2Abstract
Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called “programmable” nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease – Cas9 – to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.
References
- 1. Anton T., Bultmann S., Leonhardt H., Markaki Y.: Visualization ofspecific DNA sequences in living mouse embryonic stem cells witha programmable fluorescent CRISPR/Cas system. Nucleus, 2014; 5:163-172
Google Scholar - 2. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P.,Moineau S., Romero D.A., Horvath P.: CRISPR provides acquired resistanceagainst viruses in prokaryotes. Science, 2007; 315: 1709-1712
Google Scholar - 3. Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., MarraffiniL.A.: Programmable repression and activation of bacterial geneexpression using an engineered CRISPR-Cas system. Nucleic AcidsRes., 2013; 41: 7429-7437
Google Scholar - 4. Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I.: FokI dimerizationis required for DNA cleavage. Proc. Natl. Acad. Sci. USA,1998; 95: 10570-10575
Google Scholar - 5. Blasco R.B., Karaca E., Ambrogio C., Cheong T.C., Karayol E., MineroV.G., Voena C., Chiarle R.: Simple and rapid in vivo generationof chromosomal rearrangements using CRISPR/Cas9 technology.Cell Rep., 2014; 9: 1219-1227
Google Scholar - 6. Bogdanove A.J., Voytas D.F.: TAL effectors: customizable proteinsfor DNA targeting. Science, 2011; 333: 1843-1846
Google Scholar - 7. Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D.: Clustered regularlyinterspaced short palindrome repeats (CRISPRs) have spacersof extrachromosomal origin. Microbiology, 2005; 151: 2551-2561
Google Scholar - 8. Brouns S.J., Jore M.M., Lundgren M., Westra E.R., Slijkhuis R.J.,Snijders A.P., Dickman M.J., Makarova K.S., Koonin E.V., van der OostJ.: Small CRISPR RNAs guide antiviral defense in prokaryotes. Science,2008; 321: 960-964
Google Scholar - 9. Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., SuttonG.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., KerlavageA.R., Dougherty B.A., Tomb J.F., Adams M.D., Reich C.I. i wsp.: Completegenome sequence of the methanogenic archaeon, Methanococcusjannaschii. Science, 1996; 273: 1058-1073
Google Scholar - 10. Capecchi M.R.: Altering the genome by homologous recombination.Science, 1989; 244: 1288-1292
Google Scholar - 11. Carte J., Wang R., Li H., Terns R.M., Terns M.P.: Cas6 is an endoribonucleasethat generates guide RNAs for invader defense inprokaryotes. Genes Dev., 2008; 22: 3489-3496
Google Scholar - 12. Chen B., Gilbert L.A., Cimini B.A., Schnitzbauer J., Zhang W., LiG.W., Park J., Blackburn E.H., Weissman J.S., Qi L.S., Huang B.: Dynamicimaging of genomic loci in living human cells by an optimizedCRISPR/Cas system. Cell, 2013; 155: 1479-1491
Google Scholar - 13. Chen F., Pruett-Miller S.M., Huang Y., Gjoka M., Duda K., Taunton J., Collingwood T.N., Frodin M., Davis G.D.: High-frequency genomeediting using ssDNA oligonucleotides with zinc-finger nucleases.Nat. Methods, 2011; 8: 753-755
Google Scholar - 14. Cho S.W., Kim S., Kim J.M., Kim J.S.: Targeted genome engineeringin human cells with the Cas9 RNA-guided endonuclease. Nat.Biotechnol., 2013; 31: 230-232
Google Scholar - 15. Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.S.:Analysis of off-target effects of CRISPR/Cas-derived RNA-guidedendonucleases and nickases. Genome Res., 2014; 24: 132-141
Google Scholar - 16. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., WuX., Jiang W., Marraffini L.A., Zhang F.: Multiplex genome engineeringusing CRISPR/Cas systems. Science, 2013; 339: 819-823
Google Scholar - 17. Cornu T.I., Thibodeau-Beganny S., Guhl E., Alwin S., EichtingerM., Joung J.K., Cathomen T.: DNA-binding specificity is a major determinantof the activity and toxicity of zinc-finger nucleases. Mol.Ther., 2008; 16: 352-358
Google Scholar - 18. Cradick T.J., Fine E.J., Antico C.J., Bao G.: CRISPR/Cas9 systemstargeting β-globin and CCR5 genes have substantial off-target activity.Nucleic Acids Res., 2013; 41: 9584-9592
Google Scholar - 19. Datsenko K.A., Pougach K., Tikhonov A., Wanner B.L., SeverinovK., Semenova E.: Molecular memory of prior infections activatesthe CRISPR/Cas adaptive bacterial immunity system. Nat. Commun.,2012; 3: 945
Google Scholar - 20. Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y.,Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E.: CRISPR RNA maturationby trans-encoded small RNA and host factor RNase III. Nature,2011; 471: 602-607
Google Scholar - 21. Deveau H., Barrangou R., Garneau J.E., Labonté J., Fremaux C.,Boyaval P., Romero D.A., Horvath P., Moineau S.: Phage response toCRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol.,2008; 190: 1390-1400
Google Scholar - 22. Essletzbichler P., Konopka T., Santoro F., Chen D., Gapp B.V., KralovicsR., Brummelkamp T.R., Nijman S.M., Bürckstümmer T.: Megabase-scaledeletion using CRISPR/Cas9 to generate a fully haploidhuman cell line. Genome Res., 2014; 24: 2059-2065
Google Scholar - 23. Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K.,Sander J.D.: High-frequency off-target mutagenesis induced by CRISPR-Casnucleases in human cells. Nat. Biotechnol., 2013; 31: 822-826
Google Scholar - 24. Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K.: ImprovingCRISPR-Cas nuclease specificity using truncated guide RNAs. Nat.Biotechnol., 2014; 32: 279-284
Google Scholar - 25. Garneau J.E., Dupuis M.E., Villion M., Romero D.A., BarrangouR., Boyaval P., Fremaux C., Horvath P., Magadán A.H., Moineau S.:The CRISPR/Cas bacterial immune system cleaves bacteriophageand plasmid DNA. Nature, 2010; 468: 67-71
Google Scholar - 26. Gilbert L.A., Larson M.H., Morsut L., Liu Z., Brar G.A., Torres S.E.,Stern-Ginossar N., Brandman O., Whitehead E.H., Doudna J.A., LimW.A., Weissman J.S., Qi L.S.: CRISPR-mediated modular RNA-guidedregulation of transcription in eukaryotes. Cell, 2013; 154: 442-451
Google Scholar - 27. Gratz S.J., Ukken F.P., Rubinstein C.D., Thiede G., Donohue L.K.,Cummings A.M., O›Connor-Giles K.M.: Highly specific and efficientCRISPR/Cas9-catalyzed homology-directed repair in Drosophila.Genetics, 2014; 196: 961-971
Google Scholar - 28. Grissa I., Vergnaud G., Pourcel C.: The CRISPRdb database andtools to display CRISPRs and to generate dictionaries of spacers andrepeats. BMC Bioinformatics, 2007; 8: 172
Google Scholar - 29. Guilinger J.P., Thompson D.B., Liu D.R.: Fusion of catalyticallyinactive Cas9 to FokI nuclease improves the specificity of genomemodification. Nat. Biotechnol., 2014; 32: 577-582
Google Scholar - 30. Hale C.R., Zhao P., Olson S., Duff M.O., Graveley B.R., Wells L.,Terns R.M., Terns M.P.: RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell, 2009; 139: 945-956
Google Scholar - 31. Hatoum-Aslan A., Samai P., Maniv I., Jiang W., Marraffini L.A.:A ruler protein in a complex for antiviral defense determines thelength of small interfering CRISPR RNAs. J. Biol. Chem., 2013; 288:27888-27897
Google Scholar - 32. Hou Z., Zhang Y., Propson N.E., Howden S.E., Chu L.F., SontheimerE.J., Thomson J.A.: Efficient genome engineering in humanpluripotent stem cells using Cas9 from Neisseria meningitidis. Proc.Natl. Acad. Sci. USA, 2013; 110: 15644-15649
Google Scholar - 33. Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S.,Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., MarraffiniL.A., Bao G., Zhang F.: DNA targeting specificity of RNA-guided Cas9nucleases. Nat. Biotechnol., 2013; 31: 827-832
Google Scholar - 34. Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., CharpentierE.: A programmable dual-RNA-guided DNA endonuclease inadaptive bacterial immunity. Science, 2012; 337: 816-821
Google Scholar - 35. Jurica M.S., Stoddard B.L.: Homing endonucleases: structure,function and evolution. Cell. Mol. Life Sci., 1999; 55: 1304-1326
Google Scholar - 36. Karvelis T., Gasiunas G., Miksys A., Barrangou R., Horvath P.,Siksnys V.: crRNA and tracrRNA guide Cas9-mediated DNA interferencein Streptococcus thermophilus. RNA Biol., 2013; 10: 841-851
Google Scholar - 37. Kearns N.A., Genga R.M., Enuameh M.S., Garber M., Wolfe S.A.,Maehr R.: Cas9 effector-mediated regulation of transcription anddifferentiation in human pluripotent stem cells. Development, 2014;141: 219-223
Google Scholar - 38. Kleinstiver B.P., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T.,Zheng Z., Gonzales A.P., Li Z., Peterson R.T., Yeh J.R., Aryee M.J., JoungJ.K.: Engineered CRISPR-Cas9 nucleases with altered PAM specificities.Nature, 2015; 523: 481-485
Google Scholar - 39. Kuscu C., Arslan S., Singh R., Thorpe J., Adli M.: Genome-wideanalysis reveals characteristics of off-target sites bound by the Cas9endonuclease. Nat. Biotechnol., 2014; 32: 677-683
Google Scholar - 40. Lagutina I.V., Valentine V., Picchione F., Harwood F., ValentineM.B., Villarejo-Balcells B., Carvajal J.J., Grosveld G.C.: Modeling ofthe human alveolar rhabdomyosarcoma Pax3-Foxo1 chromosometranslocation in mouse myoblasts using CRISPR-Cas9 nuclease. PLoSGenet., 2015; 11: e1004951
Google Scholar - 41. Lemak S., Nocek B., Beloglazova N., Skarina T., Flick R., BrownG., Joachimiak A., Savchenko A., Yakunin A.F.: The CRISPR-associatedCas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe–2S] cluster: crystal structure and nuclease activity. Nucleic AcidsRes., 2014; 42: 11144-11155
Google Scholar - 42. Li H.L., Fujimoto N., Sasakawa N., Shirai S., Ohkame T., SakumaT., Tanaka M., Amano N., Watanabe A., Sakurai H., Yamamoto T.,Yamanaka S., Hotta A.: Precise correction of the dystrophin gene inDuchenne muscular dystrophy patient induced pluripotent stemcells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015; 4: 143-154
Google Scholar - 43. Lin Y., Cradick T.J., Brown M.T., Deshmukh H., Ranjan P., SarodeN., Wile B.M., Vertino P.M., Stewart F.J., Bao G.: CRISPR/Cas9 systemshave off-target activity with insertions or deletions betweentarget DNA and guide RNA sequences. Nucleic Acids Res., 2014; 42:7473-7485
Google Scholar - 44. Liu Y., Ma S., Wang X., Chang J., Gao J., Shi R., Zhang J., Lu W., LiuY., Zhao P., Xia Q.: Highly efficient multiplex targeted mutagenesisand genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect. Biochem. Mol. Biol., 2014; 49: 35-42
Google Scholar - 45. Long C., Amoasii L., Mireault A.A., McAnally J.R., Li H., Sanchez–Ortiz E., Bhattacharyya S., Shelton J.M., Bassel-Duby R., Olson E.N.:Postnatal genome editing partially restores dystrophin expressionin a mouse model of muscular dystrophy. Science, 2016; 351: 400-403
Google Scholar - 46. Long C., McAnally J.R., Shelton J.M., Mireault A.A., Bassel-DubyR., Olson E.N.: Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediatedediting of germline DNA. Science, 2014; 345:1184-1188
Google Scholar - 47. Ma H., Naseri A., Reyes-Gutierrez P., Wolfe S.A., Zhang S., PedersonT.: Multicolor CRISPR labeling of chromosomal loci in humancells. Proc. Natl. Acad. Sci. USA, 2015; 112: 3002-3007
Google Scholar - 48. Ma S., Chang J., Wang X., Liu Y., Zhang J., Lu W., Gao J., Shi R.,Zhao P., Xia Q.: CRISPR/Cas9 mediated multiplex genome editingand heritable mutagenesis of BmKu70 in Bombyx mori. Sci. Rep.,2014; 4: 4489
Google Scholar - 49. Ma Y., Zhang X., Shen B., Lu Y., Chen W., Ma J., Bai L., Huang X.,Zhang L.: Generating rats with conditional alleles using CRISPR/Cas9. Cell Res., 2014; 24: 122-125
Google Scholar - 50. Maddalo D., Manchado E., Concepcion C.P., Bonetti C., VidigalJ.A., Han Y.C., Ogrodowski P., Crippa A., Rekhtman N., de StanchinaE., Lowe S.W., Ventura A.: In vivo engineering of oncogenic chromosomalrearrangements with the CRISPR/Cas9 system. Nature,2014; 516: 423-427
Google Scholar - 51. Maeder M.L., Linder S.J., Cascio V.M., Fu Y., Ho Q.H., Joung J.K.:CRISPR RNA-guided activation of endogenous human genes. Nat.Methods, 2013; 10: 977-979
Google Scholar - 52. Makarova K.S., Haft D.H., Barrangou R., Brouns S.J., CharpentierE., Horvath P., Moineau S., Mojica F.J., Wolf Y.I., Yakunin A.F., van derOost J., Koonin E.V.: Evolution and classification of the CRISPR-Cassystems. Nat. Rev. Microbiol., 2011; 9: 467-477
Google Scholar - 53. Mali P., Aach J., Stranges P.B., Esvelt K.M., Moosburner M., KosuriS., Yang L., Church G.M.: CAS9 transcriptional activators for targetspecificity screening and paired nickases for cooperative genomeengineering. Nat. Biotechnol., 2013; 31: 833-838
Google Scholar - 54. Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., NorvilleJ.E., Church G.M.: RNA-guided human genome engineering viaCas9. Science, 2013; 339: 823-826
Google Scholar - 55. Marraffini L.A., Sontheimer E.J.: CRISPR interference limits horizontalgene transfer in staphylococci by targeting DNA. Science,2008; 322: 1843-1845
Google Scholar - 56. Marraffini L.A., Sontheimer E.J.: Self versus non-self discriminationduring CRISPR RNA-directed immunity. Nature, 2010; 463:568-571
Google Scholar - 57. Mojica F.J., Diez-Villasenor C., Garcia-Martinez J., AlmendrosC.: Short motif sequences determine the targets of the prokaryoticCRISPR defence system. Microbiology, 2009; 155: 733-740
Google Scholar - 58. Mojica F.J., Diez-Villasenor C., Garcia-Martinez J., Soria E.: Interveningsequences of regularly spaced prokaryotic repeats derivefrom foreign genetic elements. J. Mol. Evol., 2005; 60: 174-182
Google Scholar - 59. Mojica F.J., Diez-Villasenor C., Soria E., Juez G.: Biological significanceof a family of regularly spaced repeats in the genomes of Archaea,Bacteria and mitochondria. Mol. Microbiol., 2000; 36: 244-246
Google Scholar - 60. Mussolino C., Morbitzer R., Lütge F., Dannemann N., Lahaye T.,Cathomen T.: A novel TALE nuclease scaffold enables high genomeediting activity in combination with low toxicity. Nucleic Acids Res.,2011; 39: 9283-9293
Google Scholar - 61. Nelson C.E., Hakim C.H., Ousterout D.G., Thakore P.I., MorebE.A., Rivera R.M., Madhavan S., Pan X., Ran F.A., Yan W.X., Asokan A.,Zhang F., Duan D., Gersbach C.A.: In vivo genome editing improvesmuscle function in a mouse model of Duchenne muscular dystrophy.Science, 2016; 351: 403-407
Google Scholar - 62. Niu Y., Shen B., Cui Y., Chen Y., Wang J., Wang L., Kang Y., Zhao X.,Si W., Li W., Xiang A.P., Zhou J., Guo X., Bi Y., Si C. i wsp: Generationof gene-modified cynomolgus monkey via Cas9/RNA-mediated genetargeting in one-cell embryos. Cell, 2014; 156: 836-843
Google Scholar - 63. Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R.:High-throughput profiling of off-target DNA cleavage reveals RNA–programmed Cas9 nuclease specificity. Nat. Biotechnol., 2013; 31:839-843
Google Scholar - 64. Pennisi E.: The CRISPR craze. Science, 2013; 341: 833-836
Google Scholar - 65. Perez E.E., Wang J., Miller J.C., Jouvenot Y., Kim K.A., Liu O.,Wang N., Lee G., Bartsevich V.V., Lee Y.L., Guschin D.Y., RupniewskiI., Waite A.J., Carpenito C., Carroll R.G. i wsp: Establishment of HIV-1resistance in CD4+ T cells by genome editing using zinc-finger nucleases.Nat. Biotechnol., 2008; 26: 808-816
Google Scholar - 66. Perez-Pinera P., Kocak D.D., Vockley C.M., Adler A.F., KabadiA.M., Polstein L.R., Thakore P.I., Glass K.A., Ousterout D.G., LeongK.W., Guilak F., Crawford G.E., Reddy T.E., Gersbach C.A.: RNA-guidedgene activation by CRISPR-Cas9-based transcription factors.Nat. Methods, 2013; 10: 973-976
Google Scholar - 67. Price C.M.: Fluorescence in situ hybridization. Blood Rev., 1993;7: 127-134
Google Scholar - 68. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S.,Arkin A.P., Lim W.A.: Repurposing CRISPR as an RNA-guided platformfor sequence-specific control of gene expression. Cell, 2013;152: 1173-1183
Google Scholar - 69. Ran F.A., Cong L., Yan W.X., Scott D.A., Gootenberg J.S., Kriz A.J.,Zetsche B., Shalem O., Wu X., Makarova K.S., Koonin E.V., Sharp P.A.,Zhang F.: In vivo genome editing using Staphylococcus aureus Cas9.Nature, 2015; 520: 186-191
Google Scholar - 70. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., TrevinoA.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F.: Doublenicking by RNA-guided CRISPR Cas9 for enhanced genome editingspecificity. Cell, 2013; 154: 1380-1389
Google Scholar - 71. Rouet P., Smih F., Jasin M.: Expression of a site-specific endonucleasestimulates homologous recombination in mammalian cells.Proc. Natl. Acad. Sci. USA, 1994; 91: 6064-6068
Google Scholar - 72. Rudin N., Sugarman E., Haber J.E.: Genetic and physical analysisof double-strand break repair and recombination in Saccharomycescerevisiae. Genetics, 1989; 122: 519-534
Google Scholar - 73. Samai P., Pyenson N., Jiang W., Goldberg G.W., Hatoum-Aslan A.,Marraffini L.A.: Co-transcriptional DNA and RNA Cleavage duringType III CRISPR-Cas Immunity. Cell, 2015; 161: 1164-1174
Google Scholar - 74. Sinkunas T., Gasiunas G., Fremaux C., Barrangou R., Horvath P.,Siksnys V.: Cas3 is a single-stranded DNA nuclease and ATP-dependenthelicase in the CRISPR/Cas immune system. EMBO J., 2011;30: 1335-1342
Google Scholar - 75. Tabebordbar M., Zhu K., Cheng J.K., Chew W.L., Widrick J.J.,Yan W.X., Maesner C., Wu E.Y., Xiao R., Ran F.A., Cong L., Zhang F.,Vandenberghe L.H., Church G.M., Wagers A.J.: In vivo gene editingin dystrophic mouse muscle and muscle stem cells. Science, 2016;351: 407-411
Google Scholar - 76. Tachibana M., Sparman M., Ramsey C., Ma H., Lee H.S., PenedoM.C., Mitalipov S.: Generation of chimeric rhesus monkeys. Cell,2012; 148: 285-295
Google Scholar - 77. Tan W., Carlson D.F., Lancto C.A., Garbe J.R., Webster D.A., HackettP.B., Fahrenkrug S.C.: Efficient nonmeiotic allele introgressionin livestock using custom endonucleases. Proc. Natl. Acad. Sci. USA,2013; 110: 16526-16531
Google Scholar - 78. Tebas P., Stein D., Tang W.W., Frank I., Wang S.Q., Lee G., SprattS.K., Surosky R.T., Giedlin M.A., Nichol G., Holmes M.C., GregoryP.D., Ando D.G., Kalos M., Collman R.G. i wsp: Gene editing of CCR5in autologous CD4 T cells of persons infected with HIV. N. Engl. J.Med., 2014; 370: 901-910
Google Scholar - 79. Thompson A.J., Yuan X., Kudlicki W., Herrin D.L.: Cleavage andrecognition pattern of a double-strand-specific endonuclease (I–creI) encoded by the chloroplast 23SrRNA intron of Chlamydomonasreinhardtii. Gene, 1992; 119: 247-251
Google Scholar - 80. Tsai S.Q., Wyvekens N., Khayter C., Foden J.A., Thapar V., ReyonD., Goodwin M.J., Aryee M.J., Joung J.K.: Dimeric CRISPR RNA-guidedFokI nucleases for highly specific genome editing. Nat. Biotechnol.,2014; 32: 569-576
Google Scholar - 81. Vasquez K.M., Marburger K., Intody Z., Wilson J.H.: Manipulating the mammalian genome by homologous recombination. Proc. Natl.Acad. Sci. USA, 2001; 98: 8403-8410
Google Scholar - 82. Wang W., Ye C., Liu J., Zhang D., Kimata J.T., Zhou P.: CCR5 genedisruption via lentiviral vectors expressing Cas9 and single guidedRNA renders cells resistant to HIV-1 infection. PLoS One, 2014; 9:e115987
Google Scholar - 83. Wang X., Wang Y., Wu X., Wang J., Wang Y., Qiu Z., Chang T.,Huang H., Lin R.J., Yee J.K.: Unbiased detection of off-target cleavageby CRISPR-Cas9 and TALENs using integrase-defective lentiviralvectors. Nat. Biotechnol., 2015; 33: 175-178
Google Scholar - 84. Wang Y., Fan N., Song J., Zhong J., Guo X., Tian W., Zhang Q., CuiF., Li L., Newsome P.N., Frampton J., Esteban M.A., Lai L.: Generationof knockout rabbits using transcription activator-like effector nucleases.Cell Regen, 2014; 3: 3
Google Scholar - 85. Westra E.R., Semenova E., Datsenko K.A., Jackson R.N., WiedenheftB., Severinov K., Brouns S.J.: Type I-E CRISPR-cas systemsdiscriminate target from non-target DNA through base pairing-independentPAM recognition. PLoS Genet, 2013; 9: e1003742
Google Scholar - 86. Wiedenheft B., Sternberg S.H., Doudna J.A.: RNA-guided geneticsilencing systems in bacteria and archaea. Nature, 2012; 482: 331-338
Google Scholar - 87. Wyvekens N., Topkar V.V., Khayter C., Joung J.K., Tsai S.Q.: DimericCRISPR RNA-guided FokI-dCas9 nucleases directed by truncatedgRNAs for highly specific genome editing. Hum. Gene Ther.,2015; 26: 425-431
Google Scholar - 88. Xiao A., Wang Z., Hu Y., Wu Y., Luo Z., Yang Z., Zu Y., Li W., HuangP., Tong X., Zhu Z., Lin S., Zhang B.: Chromosomal deletions and inversionsmediated by TALENs and CRISPR/Cas in zebrafish. NucleicAcids Res., 2013; 41: e141
Google Scholar - 89. Xie F., Ye L., Chang J.C., Beyer A.I., Wang J., Muench M.O., KanY.W.: Seamless gene correction of β-thalassemia mutations in patient-specificiPSCs using CRISPR/Cas9 and piggyBac. Genome Res.,2014; 24: 1526-1533
Google Scholar - 90. Yan Q., Zhang Q., Yang H., Zou Q., Tang C., Fan N., Lai L.: Generationof multi-gene knockout rabbits using the Cas9/gRNA system.Cell Regen, 2014; 3: 12
Google Scholar - 91. Yang H., Wang H., Shivalila C.S., Cheng A.W., Shi L., JaenischR.: One-step generation of mice carrying reporter and conditionalalleles by CRISPR/Cas-mediated genome engineering. Cell, 2013;154: 1370-1379
Google Scholar - 92. Yin H., Xue W., Chen S., Bogorad R.L., Benedetti E., Grompe M.,Koteliansky V., Sharp P.A., Jacks T., Anderson D.G.: Genome editingwith Cas9 in adult mice corrects a disease mutation and phenotype.Nat. Biotechnol., 2014; 32: 551-553
Google Scholar - 93. Yin L., Maddison L.A., Li M., Kara N., LaFave M.C., Varshney G.K.,Burgess S.M., Patton J.G., Chen W.: Multiplex conditional mutagenesisusing transgenic expression of Cas9 and sgRNAs. Genetics,2015; 200: 431-441
Google Scholar - 94. Yosef I., Goren M.G., Qimron U.: Proteins and DNA elements essentialfor the CRISPR adaptation process in Escherichia coli. NucleicAcids Res., 2012; 40: 5569-5576
Google Scholar - 95. Zhang J., Kasciukovic T., White M.F.: The CRISPR associated proteinCas4 Is a 5› to 3› DNA exonuclease with an iron-sulfur cluster.PLoS One, 2012; 7: e47232
Google Scholar - 96. Zhang J., Rouillon C., Kerou M., Reeks J., Brugger K., GrahamS., Reimann J., Cannone G., Liu H., Albers S.V., NaismithJ.H., Spagnolo L., White M.F.: Structure and mechanism of theCMR complex for CRISPR-mediated antiviral immunity. Mol. Cell,2012; 45: 303-313
Google Scholar - 97. Zhang Y., Ge X., Yang F., Zhang L., Zheng J., Tan X., Jin Z.B., Qu J.,Gu F.: Comparison of non-canonical PAMs for CRISPR/Cas9-mediatedDNA cleavage in human cells. Sci. Rep., 2014; 4: 5405
Google Scholar