Expression and activity of SNAIL transcription factor during Epithelial to Mesenchymal Transition (EMT) in cancer progression
Izabela Papiewska-Pająk 1 , Maria A. Kowalska 1 , Joanna Boncela 1Abstract
Inhibition of E-cadherin gene expression by transcription factor SNAIL is known to be a crucial element of Epithelial to Mesenchymal Transition; EMT. Epigenetic regulation of E-cadherin expression is regulated by SNAIL binding to E-box sequences in the CDH1 gene promoter and recruiting enzymes belonging to repressor complexes that are directly engaged in histone modifications and DNA methylation leading to the modification of chromatin structure. SNAIL involvement in cell acquisition of invasive phenotype is based on direct suppression of tight-junction and gap junction proteins.The nuclear localization of SNAIL is required for SNAIL activity and protects this factor fromproteasomal degradation in the cytoplasm. The main factor engaged in that process is GSK- 3β kinase. Expression and stability of SNAIL is regulated on the transctriptional and posttranscriptional levels by a number of signaling molecules and biological factors, for example: TGF-β, TNF-α, ILK and NFκB. The expression of SNAIL in cancer cells is also regulated by micro-RNA, mainly by miR-34.Increased expression of SNAIL, observed in many human cancers, has been correlated with increased resistance to chemio-, radio – or immunotherapy, gain of cancer stem cells features and migrative and invasive characteristics, which leads to tumor metastases. Understanding of the SNAIL’s mechanism of action may lead to new treatment strategies in cancer directed to interfere with signaling pathways that either activate SNAIL or are activated by SNAIL.
References
- 1. Acloque H., Adams M.S., Fishwick K., Bronner-Fraser M., Nieto M.A.:Epithelial-mesenchymal transitions: The importance of changing cellstate in development and disease. J. Clin. Invest., 2009; 119: 1438-1449
Google Scholar - 2. Alba-Castellón L., Batlle R., Francí C., Fernández-Aceñero M.J.,Mazzolini R., Peña R., Loubat J., Alameda F., Rodríguez R., Curto J.,Albanell J., Muñoz A., Bonilla F., Ignacio Casal J., Rojo F., García deHerreros A.: Snail1 expression is required for sarcomagenesis. Neoplasia,2014; 16: 413-421
Google Scholar - 3. Alberga A., Boulay J., Kempe E., Dennefeld C., Haenlin M.: Thesnail gene required for mesoderm formation in Drosophila is expresseddynamically in derivatives of all three germ layers. Development,1991; 111: 983-992
Google Scholar - 4. Bachelder R.E., Yoon S.O., Franci C., de Herreros A.G., MercurioA.M.: Glycogen synthase kinase-3 is an endogenous inhibitor of Snailtranscription: implications for the epithelial-mesenchymal transition.J. Cell Biol., 2005; 168: 29-33
Google Scholar - 5. Bannister A.J., Kouzarides T.: Regulation of chromatin by histonemodifications. Cell Res., 2011; 21: 381-395
Google Scholar - 6. Barberà M.J., Puig I., Domínguez D., Julien-Grille S., Guaita-EsteruelasS., Peiró S., Baulida J., Francí C., Dedhar S., Larue L., Garciade Herreros A.: Regulation of Snail transcription during epithelialto mesenchymal transition of tumor cells. Oncogene, 2004; 23:7345-7354
Google Scholar - 7. Batlle E., Sancho E., Francí C., Domínguez D., Monfar M., BaulidaJ., García De Herreros A.: The transcription factor snail is a repressorof E-cadherin gene expression in epithelial tumour cells. Nat.Cell Biol., 2000; 2: 84-89
Google Scholar - 8. Blanco M.J., Moreno-Bueno G., Sarrio D., Locascio A., Cano A.,Palacios J., Nieto M.A.: Correlation of Snail expression with histologicalgrade and lymph node status in breast carcinomas. Oncogene,2002; 21: 3241-3246
Google Scholar - 9. Bolós V., Peinado H., Pérez-Moreno M.A., Fraga M.F., Esteller M.,Cano A.: The transcription factor Slug represses E-cadherin expressionand induces epithelial to mesenchymal transitions: a comparisonwith Snail and E47 repressors. J. Cell Sci., 2003; 116: 499-511
Google Scholar - 10. Boulay J.L., Dennefeld C., Alberga A.: The Drosophila developmentalgene snail encodes a protein with nucleic acid binding fingers.Nature, 1987; 330: 395-398
Google Scholar - 11. Boutet A., De Frutos C.A, Maxwell P.H., Mayol M.J., Romero J.,Nieto M.A.: Snail activation disrupts tissue homeostasis and inducesfibrosis in the adult kidney. EMBO J., 2006; 25: 5603-5613
Google Scholar - 12. Cai W., Ye Q., She Q.B.: Loss of 4E-BP1 function induces EMTand promotes cancer cell migration and invasion via cap-dependenttranslational activation of snail. Oncotarget, 2014; 5: 6015-6027
Google Scholar - 13. Cano A., Pérez-Moreno M.A., Rodrigo I., Locascio A., BlancoM.J., del Barrio M.G., Portillo F., Nieto M.A.: The transcription factorSnail controls epithelial-mesenchymal transitions by repressingE-cadherin expression. Nat. Cell Biol., 2000; 2: 76-83
Google Scholar - 14. Caramel J., Papadogeorgakis E., Hill L., Browne G., Richard G.,Wierinckx A., Saldanha G., Osborne J., Hutchinson P., Tse G., LachuerJ., Puisieux A., Pringle J.H., Ansieau S., Tulchinsky E.: A switch in theexpression of embryonic EMT-inducers drives the development ofmalignant melanoma. Cancer Cell, 2013; 24: 466-480
Google Scholar - 15. Chapnick D.A., Warner L., Bernet J., Rao T., Liu X.: Partners incrime: the TGFβ and MAPK pathways in cancer progression. CellBiosci., 2011; 1: 42
Google Scholar - 16. Chen D., Zhang Y., Zhang X., Li J., Han B., Liu S., Wang L., LingY., Mao S., Wang X.: Overexpression of integrin-linked kinase correlateswith malignant phenotype in non-small cell lung cancerand promotes lung cancer cell invasion and migration via regulatingepithelial-mesenchymal transition (EMT)-related genes. ActaHistochem., 2013; 115: 128-136
Google Scholar - 17. Chen J., Xu H., Zou X., Wang J., Zhu Y., Chen H., Shen B., DengX., Zhou A., Chin Y.E., Rauscher F.J., Peng C., Hou Z.: Snail recruitsRing1B to mediate transcriptional repression and cell migration inpancreatic cancer cells. Cancer Res., 2014;74: 4353-4363
Google Scholar - 18. Chen X.H., Liu Z.C., Zhang G., Wei W., Wang X.X., Wang H., KeH.P., Zhang F., Wang H.S., Cai S.H., Du J.: TGF-β and EGF inducedHLA-I downregulation is associated with epithelial-mesenchymaltransition (EMT) through upregulation of snail in prostate cancercells. Mol. Immunol., 2015; 65: 34-42
Google Scholar - 19. Cicchini C., Filippini D., Coen S., Marchetti A., Cavallari C., LaudadioI., Spagnoli F.M., Alonzi T., Tripodi M.: Snail controls differentiationof hepatocytes by repressing HNF4α expression. J. Cell.Physiol., 2006; 209: 230-238
Google Scholar - 20. Ciruna B., Rossant J.: FGF signaling regulates mesoderm cell fatespecification and morphogenetic movement at the primitive streak.Dev. Cell, 2001; 1: 37-49
Google Scholar - 21. Comijn J., Berx G., Vermassen P., Verschueren K., Van GrunsvenL., Bruyneel E., Mareel M., Huylebroeck D., Van Roy F.: The two-handedE box binding zinc finger protein SIP1 downregulates E-cadherinand induces invasion. Mol. Cell, 2001; 7: 1267-1278
Google Scholar - 22. Dave N., Guaita-Esteruelas S., Gutarra S., Frias À., Beltran M.,Peiró S., García De Herreros A.: Functional cooperation betweensnail1 and twist in the regulation of ZEB1 expression during epithelialto mesenchymal transition. J. Biol. Chem., 2011; 286: 12024-12032
Google Scholar - 23. de Boer T.P., van Veen T.A., Bierhuizen M.F., Kok B., Rook M.B.,Boonen K.J., Vos M.A., Doevendans P.A., de Bakker J.M., van der HeydenM.A.: Connexin43 repression following epithelium-to-mesenchymetransition in embryonal carcinoma cells requires Snail1 transcriptionfactor. Differentiation, 2007; 75: 208-218
Google Scholar - 24. De Craene B., Gilbert B., Stove C., Bruyneel E., van Roy F., Berx G.:The transcription factor Snail induces tumor cell invasion throughmodulation of the epithelial cell differentiation program. CancerRes., 2005; 65: 6237-6244
Google Scholar - 25. Díaz-López A., Díaz-Martín J., Moreno-Bueno G., Cuevas E.P.,Santos V., Olmeda D., Portillo F., Palacios J., Cano, A.: Zeb1 and Snail1engage miR-200f transcriptional and epigenetic regulation duringEMT. Int. J. Cancer, 2015; 136: E62-E73
Google Scholar - 26. Domminguez D., Montserrat-Sentís B., Virgós-Soler A.,GuaitaS., Grueso J., Porta M., Puig I., Baulida J., Francí C., García de HerrerosA.: Phosphorylation regulates the subcellular location andactivity of the Snail transcriptional repressor. Mol. Cell. Biol., 2003;23: 5078-5089
Google Scholar - 27. Dong C., Wu Y., Wang Y., Wang C., Kang T., Rychahou P.G., ChiY.I., Evers B.M., Zhou B.P.: Interaction with Suv39H1 is critical forSnail-mediated E-cadherin repression in breast cancer. Oncogene,2013; 32: 1351-1362
Google Scholar - 28. Dong C., Wu Y., Yao J., Wang Y., Yu Y., Rychahou P.G., Evers B.M.,Zhou B.P.: G9a interacts with Snail and is critical for Snail-mediatedE-cadherin repression in human breast cancer. J. Clin. Invest., 2012;122: 1469-1486
Google Scholar - 29. Espada J., Peinado H., Lopez-Serra L., Setién F., Lopez-Serra P.,Portela A., Renart J., Carrasco E., Calvo M., Juarranz A., Cano A., EstellerM.: Regulation of SNAIL1 and E-cadherin function by DNMT1in a DNA methylation-independent context. Nucleic Acids Res., 2011;39: 9194-9205
Google Scholar - 30. Evdokimova V., Tognon C., Ng T., Ruzanov P., Melnyk N., FinkD., Sorokin A., Ovchinnikov L.P., Davicioni E., Triche T.J., SorensenP.H.: Translational activation of Snail1 and other developmentallyregulated transcription factors by YB-1 promotes an epithelial-mesenchymaltransition. Cancer Cell, 2009; 15:402-415
Google Scholar - 31. Fan F., Samuel S., Evans K.W., Lu J., Xia L., Zhou Y., Sceusi E.,Tozzi F., Ye X.C., Mani S. A, Ellis L.M.: Overexpression of snail inducesepithelial-mesenchymal transition and a cancer stem cell-like phenotypein human colorectal cancer cells. Cancer Med., 2012; 1: 5-16
Google Scholar - 32. Francí C., Gallén M., Alameda F., Baró T., Iglesias M., VirtanenI., Garcia de Herreros A.: Snail1 protein in the stroma as a new putativeprognosis marker for colon tumours. PLoS One, 2009; 4: 1-7
Google Scholar - 33. Fuse N., Hirose S., Hayashi S.: Diploidy of Drosophila imaginalcells is maintained by a transcriptional repressor encoded by escargot.Genes Dev., 1994; 8: 2270-2281
Google Scholar - 34. Gotzmann J., Huber H., Thallinger C., Wolschek M., Jansen B.,Schulte-Hermann R., Beug H., Mikulits W.: Hepatocytes convert toa fibroblastoid phenotype through the cooperation of TGF-β1 andHa-Ras: steps towards invasiveness. J. Cell Sci., 2002; 115: 1189-1202
Google Scholar - 35. Gou Y., Ding W., Xu K., Wang H., Chen Z., Tan J., Xia G., Ding Q.:Snail is an independent prognostic indicator for predicting recurrenceand progression in non-muscle-invasive bladder cancer. Int.Urol. Nephrol., 2015; 47: 289-293
Google Scholar - 36. Grille S.J., Bellacosa A., Upson J., Klein-Szanto A.J., van Roy F.,Lee-Kwon W., Donowitz M., Tsichlis P.N., Larue L.: The protein kinaseAkt induces epithelial mesenchymal transition and promotesenhanced motility and invasiveness of squamous cell carcinomalines. Cancer Res., 2003; 63: 2172-2178
Google Scholar - 37. Grooteclaes M.L., Frisch S.M.: Evidence for a function of CtBP inepithelial gene regulation and anoikis. Oncogene, 2000; 19: 3823-3828
Google Scholar - 38. Grotegut S., von Schweinitz D., Christofori G., Lehembre F.: Hepatocytegrowth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J., 2006; 25: 3534-3545
Google Scholar - 39. Hemavathy K., Ashraf S.I., Ip Y.T.: Snail/Slug family of repressors:slowly going into the fast lane of development and cancer.Gene, 2000; 257: 1-12
Google Scholar - 40. Herranz N., Pasini D., Díaz V.M., Franci C., Gutierrez A., DaveN., Escrivà M., Hernandez-Muñoz I., Di Croce L., Helin K., García deHerreros A., Peiró S.: Polycomb complex 2 is required for E-cadherinrepression by the Snail1 transcription factor. Mol. Cell. Biol., 2008;28: 4772-4781
Google Scholar - 41. Herrera A., Herrera M., Alba-Castellõn L., Silva J., García V.,Loubat-Casanovas J., Álvarez-Cienfuegos A., Miguel García J., RodriguezR., Gil B., Ma Jesús Citores, Ma Jesús Larriba, Ignacio CasalJ., de Herreros A.G., Bonilla F., Pena C.: Protumorigenic effects ofSnail-expression fibroblasts on colon cancer cells. Int. J. Cancer,2014; 134: 2984-2990
Google Scholar - 42. Hotz B., Visekruna A., Buhr H.J., Hotz H.G.: Beyond epithelialto mesenchymal transition: a novel role for the transcription factorSnail in inflammation and wound healing. J. Gastrointest. Surg.,2010; 14: 388-397
Google Scholar - 43. Hou Z., Peng H., Ayyanathan K., Yan K.P., Langer E.M., LongmoreG.D., Rauscher F.J.: The LIM protein AJUBA recruits protein argininemethyltransferase 5 to mediate SNAIL-dependent transcriptionalrepression. Mol. Cell. Biol., 2008; 28: 3198-3207
Google Scholar - 44. Hwang W.L., Yang M.H., Tsai M.L., Lan H.Y., Su S.H., Chang S.C.,Teng H.W., Yang S.H., Lan Y.T., Chiou S.H., Wang H.W.: SNAIL regulatesinterleukin-8 expression, stem cell-like activity, and tumorigenicityof human colorectal carcinoma cells. Gastroenterology,2011; 141: 279-291
Google Scholar - 45. Ikenouchi J., Matsuda M., Furuse M., Tsukita S.: Regulation oftight junctions during the epithelium-mesenchyme transition: directrepression of the gene expression of claudins/occludin by Snail.J. Cell Sci., 2003; 116: 1959-1967
Google Scholar - 46. Isaac A., Cohn M.J., Ashby P., Ataliotis P., Spicer D.B., Cooke J.,Tickle C.: FGF and genes encoding transcription factors in early limbspecification. Mech. Dev., 2000; 93: 41-48
Google Scholar - 47. Jackstadt R., Röh S., Neumann J., Jung P., Hoffmann R., HorstD., Berens C., Bornkamm G.W., Kirchner T., Menssen A., HermekingH.: AP4 is a mediator of epithelial-mesenchymal transition andmetastasis in colorectal cancer. J. Exp. Med., 2013; 210: 1331-1350
Google Scholar - 48. Jiao W., Miyazaki K., Kitajima Y.J.: Inverse correlation betweenE-cadherin and Snail expression in hepatocellular carcinoma celllines in vitro and in vivo. Br. J. Cancer, 2002; 86: 98-101
Google Scholar - 49. Jordà M., Olmeda D., Vinyals A., Valero E., Cubillo E., Llorens A.,Cano A., Fabra A.: Upregulation of MMP-9 in MDCK epithelial cellline in response to expression of the Snail transcription factor. J.Cell Sci., 2005: 118: 3371-3385
Google Scholar - 50. Julien S., Puig I., Caretti E., Bonaventure J., Nelles L., van Roy F.,Dargemont C., de Herreros A.G., Bellacosa A., Larue L.: Activation ofNF-κB by Akt upregulates Snail expression and induces epitheliummesenchyme transition. Oncogene, 2007; 26: 7445-7456
Google Scholar - 51. Kajita M., Mcclinic K.N., Wade P.A.: Aberrant expression of thetranscription factors Snail and Slug alters the response to genotoxicstress. Mol. Cell. Biol., 2004; 24: 7559-7566
Google Scholar - 52. Kashyap A., Zimmerman T., Ergül N., Bosserhoff A., HartmanU., Alla V., Bataille F., Galle P.R., Strand S., Strand D.: The human Lglpolarity gene, Hugl-2, induces MET and suppresses Snail tumorigenesis.Oncogene, 2013; 32: 1396-1407
Google Scholar - 53. Katoh M., Katoh M.: Identification and characterization of humanSNAIL3 (SNAI3) gene in silico. Int. J. Mol. Med., 2003; 11: 383-388
Google Scholar - 54. Kim N.H., Kim H.S., Li X.Y., Lee I., Choi H.S., Kang S.E., Cha S.Y.,Ryu J.K., Yoon D., Fearon E.R., Rowe R.G., Lee S., Maher C.A., WeissS.J., Yook J.I.: A p53/miRNA-34 axis regulates Snail1-dependent cancercell epithelial-mesenchymal transition. J. Cell Biol., 2011; 195:417-433
Google Scholar - 55. Kim S., Lee J., Jeon M., Nam S.J., Lee J.E.: Elevated TGF-β1 and –β2 expression accelerates the epithelial to mesenchymal transitionin triple-negative breast cancer cells. Cytokine, 2015; 75: 151-158
Google Scholar - 56. Kumarswamy R., Mudduluru G., Ceppi P., Muppala S., KozlowskiM., Niklinski J., Papotti M., Allgayer H.: MicroRNA-30a inhibits epithelial-to-mesenchymaltransition by targeting Snai1 and is downregulatedin non-small cell lung cancer. Int. J. Cancer, 2012; 130:2044-2053
Google Scholar - 57. Lan L., Han H., Zuo H., Chen Z., Du Y., Zhao W., Gu J., Zhang Z.:Upregulation of myosin Va by snail is involved in cancer cell migrationand metastasis. Int. J. Cancer, 2010; 126: 53-64
Google Scholar - 58. Landskron G., De La Fuente M., Thuwajit P., Thuwajit C., HermosoM.A.: Chronic inflammation and cytokines in the tumor microenvironment.J. Immunol. Res., 2014; 2014: 149185
Google Scholar - 59. Larriba M.J., Bonilla F., Muñoz A.: The transcription factorsSnail1 and Snail2 repress vitamin D receptor during colon cancerprogression. J. Steroid Biochem. Mol. Biol., 2010; 121: 106-109
Google Scholar - 60. Lee S.H., Lee S.J., Jung Y.S., Xu Y., Kang H.S., Ha N.C., Park B.J.:Blocking of p53-Snail binding, promoted by oncogenic K-Ras, recoversp53 expression and function. Neoplasia, 2009; 11: 22-31
Google Scholar - 61. Lin Y., Dong C., Zhou B.P.: Epigenetic regulation of EMT: the Snailstory. Curr. Pharm. Des., 2014; 20: 1698-1705
Google Scholar - 62. Lin Y., Wu Y., Li J., Dong C., Ye X., Chi Y.I., Evers B.M., Zhou B.P.:The SNAG domain of Snail1 functions as a molecular hook for recruitinglysine-specific demethylase 1. EMBO J., 2010; 29: 1803-1816
Google Scholar - 63. Liu S., Kumar S.M., Lu H., Liu A., Yang R., Pushparajan A., GuoW., Xu X.: MicroRNA-9 up-regulates E-cadherin through inhibitionof NF-κB1-Snail1 pathway in melanoma. J. Pathol., 2012; 226: 61-72
Google Scholar - 64. Liu W., Liu Y., Liu H., Zhang W., An H., Xu J.: Snail predicts recurrenceand survival of patients with localized clear cell renal cell carcinomaafter surgical resection. Urol. Oncol., 2015; 33: 69.e1-e69.e10
Google Scholar - 65. Lu Z., Ghosh S., Wang Z., Hunter T.: Downregulation of caveolin-1function by EGF leads to the loss of E-cadherin, increased transcriptionalactivity of β-catenin, and enhanced tumor cell invasion.Cancer Cell, 2003; 4: 499-515
Google Scholar - 66. MacPherson M.R., Molina P., Souchelnytskyi S., Wernstedt C.,Martin-Pérez J., Portillo F., Cano A.: Phosphorylation of serine 11and serine 92 as new positive regulators of human Snail1 function:potential involvement of casein kinase-2 and the cAMP-activatedkinase protein kinase A. Mol. Biol. Cell, 2010; 21: 244-253
Google Scholar - 67. Martínez-Estrada O.M., Cullerés A., Soriano F.X., Peinado H.,Bolós V., Martínez F.O., Reina M., Cano A., Fabre M., Vilaró S.: Thetranscription factors Slug and Snail act as repressors of Claudin-1expression in epithelial cells. Biochem. J., 2006; 394: 449-457
Google Scholar - 68. Masui T., Ota I., Yook J.-I., Mikami S., Yane K., Yamanaka T., HosoiH.: Snail-induced epithelial-mesenchymal transition promotescancer stem cell-like phenotype in head and neck cancer cells. Int.J. Oncol., 2014; 44: 693-699
Google Scholar - 69. Miyoshi A., Kitajima Y., Sumi K., Sato K., Hagiwara A., Koga Y.,Miyazaki K.: Snail and SIP1 increase cancer invasion by upregulatingMMP family in hepatocellular carcinoma cells. Br. J. Cancer,2004; 90: 1265-1273
Google Scholar - 70. Moes M., Le Béchec A., Crespo I., Laurini C., Halavatyi A., VetterG., Del Soll A., Friederich E.: A novel network integrating a mirnRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymaltransition. PLoS One, 2012; 7: e35440
Google Scholar - 71. Molina-Ortiz P., Villarejo A., MacPherson M., Santos V., MontesA., Souchelnytskyi S., Portillo F., Cano A.: Characterization of theSNAG and SLUG domains of Snail2 in the repression of E-cadherinand EMT induction: modulation by serine 4 phosphorylation. PLoSOne, 2012; 7: e36132
Google Scholar - 72. Muenst S., Däster S., Obermann E.C., Droeser R.A., Weber W.P.,von Holzen U., Gao F., Viehl C., Oertli D., Soysal S.D.: Nuclear expressionof Snail is an independent negative prognostic factor in humanbreast cancer. Dis. Markers, 2013; 35: 337-344
Google Scholar - 73. Nakayama H., Scott I.C., Cross J.C.: The transition to endoreduplicationin trophoblast giant cells is regulated by the mSNA zincfinger transcription factor. Dev. Biol., 1998; 199: 150-163
Google Scholar - 74. Ohkubo T., Ozawa M.: The transcription factor Snail downregulatesthe tight junction components independently of E-cadherindownregulation. J. Cell Sci., 2004; 117: 1675-1685
Google Scholar - 75. Peinado H., Ballestar E., Esteller M., Cano A.: Snail mediates Ecadherinrepression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol., 2004; 24: 306-319
Google Scholar - 76. Peinado H., Del Carmen Iglesias-de la Cruz M., Olmeda D., CsiszarK., Fong K.S., Vega S., Nieto M.A., Cano A., Portillo F.: A molecularrole for lysyl oxidase-like 2 enzyme in snail regulation and tumorprogression. EMBO J., 2005; 24: 3446-3458
Google Scholar - 77. Peinado H., Portillo F., Cano A.: Transcriptional regulation ofcadherins during development and carcinogenesis. Int. J. Dev. Biol.,2004; 48: 365-375
Google Scholar - 78. Peinado H., Quintanilla M., Cano A.: Transforming growth factorβ-1 induces Snail transcription factor in epithelial cell lines.Mechanisms for epithelial mesenchymal transitions. J. Biol. Chem.,2003; 278: 21113-21123
Google Scholar - 79. Peiró S., Escrivà M., Puig I., Barberà M.J., Dave N., Herranz N.,Larriba M.J., Takkunen M., Francí C., Muñoz A., Virtanen I., BaulidaJ., García de Herreros A.: Snail1 transcriptional repressor binds toits own promoter and controls its expression. Nucleic Acids Res.,2006; 34: 2077-2084
Google Scholar - 80. Pérez-Mancera P.A., Pérez-Caro M., González-Herrero I., FloresT., Orfao A., de Herreros A.G., Gutiérrez-Adán A., Pintado B., SagreraA., Sánchez-Martín M., Sánchez-García I.: Cancer developmentinduced by graded expression of Snail in mice. Hum. Mol. Genet.,2005; 14: 3449-3461
Google Scholar - 81. Pérez-Moreno M.A., Locascio A., Rodrigo I., Dhondt G., PortilloF., Nieto M.A., Cano A.: A new role for E12/E47 in the repression ofE-cadherin expression and epithelial-mesenchymal transitions. J.Biol. Chem., 2001; 276: 27424-27431
Google Scholar - 82. Poser I., Domínguez D., Garcia De Herreros A., Varnai A., BuettnerR., Bosserhoff A.K.: Loss of E-cadherin expression in melanoma cellsinvolves up-regulation of the transcriptional repressor Snail. J. Biol.Chem., 2001; 276: 24661-24666
Google Scholar - 83. Pupo M., Pisano A., Abonante S., Maggiolini M., Musti A.M.: GPERactivates Notch signaling in breast cancer cells and cancer-associatedfibroblasts (CAFs). Int. J. Biochem. Cell Biol., 2014; 46: 56-67
Google Scholar - 84. Rhim A.D., Mirek E.T., Aiello N.M., Maitra A., Bailey J.M., McAllisterF., Reichert M., Beatty G.L., Rustgi A.K., Vonderheide R.H., LeachS.D., Stanger B.Z.: EMT and dissemination precede pancreatic tumorformation. Cell, 2012; 148: 349-361
Google Scholar - 85. Rosivatz E., Becker I., Specht K., Fricke E., Luber B., Busch R., Hö-fler H., Becker K.F.: Differential expression of the epithelial-mesenchymaltransition regulators snail, SIP1, and twist in gastric cancer.Am. J. Pathol., 2002; 161; 1881-1891
Google Scholar - 86. Rowe R.G., Li X.Y., Hu Y., Saunders T.L., Virtanen I., Garcia deHerreros A., Becker K.F., Ingvarsen S., Engelholm L.H., Bommer G.T.,Fearon E.R., Weiss S.J.: Mesenchymal cells reactivate Snail1 expressionto drive three-dimensional invasion programs. J. Cell Biol.,2009; 184: 399-408
Google Scholar - 87. Sahlgren C., Gustafsson M.V., Jin S., Poellinger L., Lendahl U.:Notch signaling mediates hypoxia-induced tumor cell migration andinvasion. Proc. Natl. Acad. Sci. USA, 2008; 105: 6392-6397
Google Scholar - 88. Saito R.A., Watabe T., Horiguchi K., Kohyama T., Saitoh M., NagaseT., Miyazono K.: Thyroid transcription factor-1 inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transitionin lung adenocarcinoma cells. Cancer Res., 2009; 69: 2783-2791
Google Scholar - 89. Saitoh M.: Epithelial–mesenchymal transition is regulated atpost-transcriptional levels by transforming growth factor-β signalingduring tumor progression. Cancer Sci., 2015; 106: 481-488
Google Scholar - 90. Schaeffer D.F., Assi K., Chan K., Buczkowski A.K., Chung S.W.,Scudamore C.H., Weiss A., Salh B., Owen D.A.: Tumor expression ofIntegrin-linked kinase (ILK) correlates with the expression of theE-cadherin repressor Snail: an immunohistochemical study in ductalpancreatic adenocarcinoma. Virchows Arch., 2010; 456: 261-268
Google Scholar - 91. Shi Y.J., Matson C., Lan F., Iwase S., Baba T., Shi Y.: Regulationof LSD1 histone demethylase activity by its associated factors. Mol.Cell, 2005; 19: 857-864
Google Scholar - 92. Siemens H., Jackstadt R., Hünten S., Kaller M., Menssen A., GötzU., Hermeking H.: miR-34 and SNAIL form a double-negative feedbackloop to regulate epithelial-mesenchymal transitions. Cell Cycle,2011; 10: 4256-4271
Google Scholar - 93. Stemmer V., de Craene B., Berx G., Behrens J.: Snail promotesWnt target gene expression and interacts with β-catenin. Oncogene,2008; 27: 5075-5080
Google Scholar - 94. Sun M., Guo X., Qian X., Wang H., Yang C., Brinkman K.L., Serrano-GonzalezM., Jope R.S., Zhou B., Engler D.A., Zhan M., Wong S.T.,Fu L., Xu B.: Activation of the ATM-Snail pathway promotes breastcancer metastasis. J. Mol. Cell Biol., 2012; 4: 304-315
Google Scholar - 95. Tan C., Costello P., Sanghera J., Dominguez D., Baulida J., de HerrerosA.G., Dedhar S.: Inhibition of integrin linked kinase (ILK) suppressesβ-catenin-Lef/Tcf-dependent transcription and expressionof the E-cadherin repressor, snail, in APC-/ – human colon carcinomacells. Oncogene, 2001; 20: 133-140
Google Scholar - 96. Tao D., Pan Y., Jiang G., Lu H., Zheng S., Lin H., Cao F.: B-Myb regulatessnail expression to promote epithelial-to – mesenchymal transitionand invasion of breast cancer cell. Med. Oncol., 2015; 32: 412
Google Scholar - 97. Taube J.H., Herschkowitz J.I., Komurov K., Zhou A.Y., Gupta S.,Yang J., Hartwell K., Onder T.T., Gupta P.B., Evans K.W., Hollier B.G.,Ram P.T., Lander E.S., Rosen J.M., Weinberg R.A., Mani S.A.: Coreepithelial-to-mesenchymal transition interactome gene-expressionsignature is associated with claudin-low and metaplastic breastcancer subtypes. Proc. Natl. Acad. Sci. USA, 2010; 107: 15449-15454
Google Scholar - 98. Techasen A., Namwat N., Loilome W., Bungkanjana P., KhuntikeoN., Puapairoj A., Jearanaikoon P., Saya H., Yongvanit P.: Tumornecrosis factor-α (TNF-α) stimulates the epithelial-mesenchymaltransition regulator Snail in cholangiocarcinoma. Med. Oncol., 2012;29: 3083-3091
Google Scholar - 99. Whiteman E.L., Liu C.J., Fearon E.R., Margolis B.: The transcriptionfactor snail represses Crumbs3 expression and disrupts apicobasalpolarity complexes. Oncogene, 2008; 27: 3875-3879
Google Scholar - 100. Wong A.S., Gumbiner B.M.: Adhesion-independent mechanismfor suppression of tumor cell invasion by E-cadherin. J. Cell Biol.,2003; 161: 1191-1203
Google Scholar - 101. Wong M.M., Guo C., Zhang J.: Nuclear receptor corepressorcomplexes in cancer : mechanism, function and regulation. Am. J.Clin. Exp. Urol., 2014; 2: 169-187
Google Scholar - 102. Wu M.Z., Tsai Y.P., Yang M.H., Huang C.H., Chang S.Y., ChangC.C., Teng S.C., Wu K.J.: Interplay between HDAC3 and WDR5 Is Essentialfor Hypoxia-Induced Epithelial-Mesenchymal Transition.Mol. Cell, 2011; 43: 811-822
Google Scholar - 103. Wu Y., Deng J., Rychahou P.G., Qiu S., Evers B.M., Zhou B.P.: Stabilizationof Snail by NF-κB is required for inflammation-inducedcell migration and invasion. Cancer Cell, 2009; 15: 416-428
Google Scholar - 104. Wu Y., Evers B.M., Zhou B.P.: Small C-terminal domain phosphataseenhances snail activity through dephosphorylation. J. Biol.Chem., 2009; 284; 640-648
Google Scholar - 105. Xu Y., Lee S.H., Kim H.S., Kim N.H., Piao S., Park S.H., Jung Y.S., Yook J.I., Park B.J., Ha N.C.: Role of CK1 in GSK3β-mediated phosphorylationand degradation of snail. Oncogene, 2010; 29: 3124-3133
Google Scholar - 106. Yamasaki H., Sekimoto T., Ohkubo T., Douchi T., Nagata Y., OzawaM., Yoneda Y.: Zinc finger domain of Snail functions as a nuclearlocalization signal for importin β-mediated nuclear import pathway.Genes Cells, 2005; 10: 455-464
Google Scholar - 107. Yan Z., Yin H., Wang R., Wu D., Sun W., Liu B., Su Q.: Overexpressionof integrin-linked kinase (ILK) promotes migration and invasionof colorectal cancer cells by inducing epithelial-mesenchymaltransition via NF-κB signaling. Acta Histochem., 2014; 116: 527-533
Google Scholar - 108. Yang J., Mani S.A., Donaher J.L., Ramaswamy S., Itzykson R.A.,Come C., Savagner P., Gitelman I., Richardson A., Weinberg R.A.:Twist, a master regulator of morphogenesis, plays an essential rolein tumor metastasis. Cell, 2004;117: 927-939
Google Scholar - 109. Yang Z., Rayala S., Nguyen D., Vadlamudi R.K., Chen S., KumarR.: Pak1 phosphorylation of Snail, a master regulator of epithelialto-mesenchymetransition, modulates Snail’s subcellular localizationand functions. Cancer Res., 2005; 65: 3179-3184
Google Scholar - 110. Yokoyama K., Kamata N., Fujimoto R., Tsutsumi S., TomonariM., Taki M., Hosokawa H., Nagayama M.: Increased invasion andmatrix metalloproteinase-2 expression by Snail-induced mesenchymaltransition in squamous cell carcinomas. Int. J. Oncol., 2003;22: 891-898
Google Scholar - 111. Yokoyama K., Kamata N., Hayashi E., Hoteiya T., Ueda N., FujimotoR., Nagayama M.: Reverse correlation of E-cadherin and snailexpression in oral squamous cell carcinoma cells in vitro. Oral Oncol.,2001; 37: 65-71
Google Scholar - 112. Yook J.I., Li X.Y., Ota I., Fearon E.R., Weiss S.J.: Wnt-dependentregulation of the E-cadherin repressor snail. J. Biol. Chem., 2005; 280; 11740-11748
Google Scholar - 113. Yook J.I., Li X.Y., Ota I., Hu C., Kim H.S., Kim N.H., Cha S.Y., RyuJ.K., Choi Y.J., Kim J., Fearon E.R., Weiss S.J.: A Wnt-Axin2-GSK3β cascaderegulates Snail1 activity in breast cancer cells. Nat. Cell Biol.,2006; 8: 1398-1406
Google Scholar - 114. Zhang J., Zhang H., Liu J., Tu X., Zang Y., Zhu J., Chen J., Dong L.,Zhang J.: MiR-30 inhibits TGF-β1-induced epithelial-to-mesenchymaltransition in hepatocyte by targeting Snail1. Biochem. Biophys. Res.Commun., 2012; 417: 1100-1105
Google Scholar - 115. Zhao D., Tang X.F., Yang K., Liu J.Y., Ma X.R.: Over-expressionof integrin-linked kinase correlates with aberrant expression ofSnail, E-cadherin and N-cadherin in oral squamous cell carcinoma:Implications in tumor progression and metastasis. Clin. Exp. Metastasis,2012; 29: 957-969
Google Scholar - 116. Zhou B.P., Deng J., Xia W., Xu J., Li Y.M., Gunduz M., Hung M.C.:Dual regulation of Snail by GSK-3β-mediated phosphorylation incontrol of epithelial-mesenchymal transition. Nat. Cell Biol., 2004;6: 931-940
Google Scholar - 117. Zhou W., Lv R., Qi,W., Wu D., Xu Y., Liu W., Mou Y., Wang L.: Snailcontributes to the maintenance of stem cell-like phenotype cells inhuman pancreatic cancer. PLoS One, 2014; 9: e87409
Google Scholar - 118. Zucchini-Pascal N., Peyre L., Rahmani R.: Crosstalk betweenβ-catenin and snail in the induction of epithelial to mesenchymaltransition in hepatocarcinoma: role of the ERK1/2 pathway. Int. J.Mol. Sci., 2013; 14: 20768-20792
Google Scholar