The classification, structure and functioning of Ago proteins in Eukaryotes

COMMENTARY ON THE LAW

The classification, structure and functioning of Ago proteins in Eukaryotes

Aleksandra Poterala 1 , Joanna Rzeszowska-Wolny 2

1. Centrum Biotechnologii Politechniki Śląskiej
2. Centrum Biotechnologii Politechniki Śląskiej; Grupa Biosystemów, Instytut Automatyki, Zakład Inżynierii Systemów, Politechnika Śląska, Gliwice

Published: 2016-09-28
DOI: 10.5604/17322693.1220383
GICID: 01.3001.0009.6879
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1005-1016

 

Abstract

Ago proteins are members of the highly specialized and conserved Argonaute family, primarily responsible for regulation of gene expression. As a part of RNA-induced silencing complexes (RISCs) Ago proteins are responsible for binding a short RNA and cleavage/inhibition of translation of target mRNAs. Phosphorylation may work as the switch between those two functions, but the role of magnesium ion concentration is also taken into consideration. Recent reports indicate that Ago proteins can interact with an mRNA and cause inhibition of translation without the participation of a short RNA. As key elements in RNA interference processes, Ago proteins are an important and intensively exploited area of research. Furthermore, these proteins are involved in the repair of DNA double-strand breaks by homologous recombination, modifications of chromatin, and alternative splicing. Their role in the cell cycle and senescence is also being studied. In addition, Ago expression is tissue-specific, which potentially may be used for diagnostic purposes. Understanding the mechanisms of Ago functioning is therefore crucial for understanding many cellular processes. The following article presents a detailed description of the Ago proteins including their post-translational modifications, recent data and hypotheses concerning their interactions with short RNAs and mRNAs as well as the mechanisms of siRNA/miRNA sorting into individual members of the Ago subfamily, and their role in eukaryotic cells. The latest classification of Ago proteins within the Argonaute family based on evolutionary studies and their possible interactions with DNA are also described.

References

  • 1. Ameres S.L., Horwich M.D., Hung J.H., Xu J., Ghildiyal M., WengZ., Zamore P.D.: Target RNA-directed trimming and tailing of smallsilencing RNAs. Science, 2010; 328: 1534-1539
    Google Scholar
  • 2. Ameyar-Zazoua M., Rachez C., Souidi M., Robin P., Fritsch L.,Young R., Morozova N., Fenouil R., Descostes N., Andrau J., MathieuJ., Hamiche A., Ait-Si-Ali S., Muchardt C., Batsche E., Harel-BellanA.: Argonaute proteins couple chromatin silencing to alternativesplicing. Nat. Struct. Mol. Biol., 2012; 19: 998-1004
    Google Scholar
  • 3. Aravin A.A., Hannon G.J.: Small RNA silencing pathways in germand stem cells. Cold Spring Harbor Symposia on Quantitative Biology,2008; 73: 283-290
    Google Scholar
  • 4. Batsche E., Ameyar-Zazoua M.: The influence of Argonaute proteinson alternative RNA splicing. Wiley Interdiscip. Rev. RNA, 2015;6: 141-156
    Google Scholar
  • 5. Biernacki K.: Analiza wpływu struktury miRNA na regulacjęekspresji genów. http://www.zis.ia.polsl.pl/images/dokumenty/ProgramistreszczeniaIISlaskieSpotkaniaNaukowe2015v2.pdfPiśmiennictwo(25.05.2015)
    Google Scholar
  • 6. Buck A.H., Blaxter M.: Functional diversification of Argonautesin nematodes: an expanding universe. Biochem. Soc. Trans., 2013;41: 881-886
    Google Scholar
  • 7. Burroughs A.M., Ando Y., de Hoon M.J., Tomaru Y., Suzuki H.,Hayashizaki Y., Daub C.O.: Deep-sequencing of human argonauteassociatedsmall RNAs provides insight into miRNA sorting and revealsArgonaute association with RNA fragments of diverse origin.RNA Biol., 2011; 8: 158-177
    Google Scholar
  • 8. Carissimi C., Laudadio I., Cipolletta E., Gioiosa S., Mihailovich M.,Bonaldi T., Macino G., Fulci V.: Argonaute2 cooperates with SWI/SNFcomplex to determine nucleosome occupancy at human transcriptionstart sites. Nucleic Acids Res., 2015; 43: 1498-1512
    Google Scholar
  • 9. Carthew R.W., Sontheimer E.J.: Origins and mechanisms of miRNAsand siRNAs. Cell, 2009; 136: 642-655
    Google Scholar
  • 10. Cheloufi S., Dos Santos C.O., Chong M.M., Hannon G.J.: A Dicerindependent miRNA biogenesis pathway that requires Ago catalysis.Nature, 2010; 465: 584-589
    Google Scholar
  • 11. Czech B., Zhou R., Erlich Y., Brennecke J., Binari R., Villalta C.,Gordon A., Perrimon N., Hannon G.J.: Hierarchical rules for Argonauteloading in Drosophila. Mol. Cell, 2009; 36: 445-456
    Google Scholar
  • 12. Deleavey G.F., Frank F., Hassler M., Wisnovsky S., Nagar B. DamhaM.J.: The 5’binding MID domain of human Argonaute2 tolerateschemically modified nucleotide analogues. Nucleic Acid Ther.,2013; 23: 81-87
    Google Scholar
  • 13. Djikeng A., Shi H., Tschudi C., Ullu E.: RNA interference in Trypanosomabrucei: cloning of small interfering RNAs provides evidencefor retroposon-derived 24-26 nucleotide RNAs. RNA, 2001;7: 1522-1530
    Google Scholar
  • 14. Drinnenberg I.A., Weinberg D.E., Xie K.T., Mower J.P., WolfeK.H., Fink G.R., Bartel D.P.: RNAi in budding yeasts. Science, 2009;326: 544-550
    Google Scholar
  • 15. Dueck A., Ziegler C., Eichner A., Berezikov E., Meister G.: microRNAsassociated with the different human Argonaute proteins.Nucleic Acids Res., 2012; 40: 9850-9862
    Google Scholar
  • 16. Elkayam E., Kuhn C.D., Tocilj A., Haase A.D., Greene E.M., HannonG.J., Joshua-Tor L.: The structure of human argonaute-2 in complexwith miR-20a. Cell, 2012; 150: 100-110
    Google Scholar
  • 17. Ender C., Meister G.: Argonaute proteins at a glance. J. Cell Sci.,2010; 123: 1819-1823
    Google Scholar
  • 18. Faehnle C., Elkayam E., Haase A.D., Hannon G.J., Joshua-Tor L.:The making of a slicer: activation of human Argonaute-1. Cell Rep.,2013; 3: 1901-1909
    Google Scholar
  • 19. Frank F., Hauver J., Sonenberg N., Nagar B.: Arabidopsis ArgonauteMID domains use their nucleotide specificity loop to sort small RNAs.EMBO J., 2012; 31: 3588-3595
    Google Scholar
  • 20. Frank F., Sonenberg N., Nagar B.: Structural basis for 5’-nucleotidebase-specific recognition of guide RNA by human AGO2. Nature,2010; 465: 818-822
    Google Scholar
  • 21. Friend K.F., Campbell Z.T., Cooke A., Kroll-Conner P., Wickens M.,Kimble J.: A conserved PUF-Ago-eEF1A complex attenuates translationelongation. Nat. Struct. Mol. Biol., 2012; 19: 176-183
    Google Scholar
  • 22. Frohn A., Eberl H.C., Stohr J., Glasmacher E., Rudel S., HeissmeyerV., Mann M., Meister G.: Dicer-dependent and independentArgonaute protein interaction networks in mammalian cells. Mol.Cell. Proteomics, 2012; 11: 1442-1456
    Google Scholar
  • 23. Gao M., Wei W., Li M.M., Wu Y.S., Ba Z., Jin KY.., Li M.M., LiaoY.Q, Adhikari S., Chong Z., Zhang T., Guo C.X., Tang T.S., Zhu B.T.,Hu X.Z. i wsp.: Ago2 facilitates Rad51 recruiment and DNA doublestrandbreak repair by homologous recombination. Cell Res., 2014;24: 532-541
    Google Scholar
  • 24. Garcia Silva M.R., Tosar J.P., Frugier M., Pantano S., Bonilla B.,Esteban L., Serra E., Rovira C., Robello C., Cayota A.: Cloning, characterization,and subcellular localization of a Trypanosoma cruzi argonauteprotein defining a new subfamily distinctive of trypanosomatids.Gene, 2010; 466: 26-35
    Google Scholar
  • 25. Ghildiyal M., Zamore P.D.: Small silencing RNAs: an expandinguniverse. Nat. Rev. Genet., 2009; 10: 94-108
    Google Scholar
  • 26. Gu S., Jin L., Zhang F., Huang Y., Grimm D., Rossi J.J., Kay M.A.:Thermodynamic stability of small hairpin RNAs highly influencesthe loading process of different mammalian Argonautes. Proc. Natl.Acad. Sci. USA, 2011; 108: 9208-9213
    Google Scholar
  • 27. Guang S., Bochner A. F., Burkhart K.B., Burton N., Pavelec D.M.,Kennedy S.: Small regulatory RNAs inhibit RNA polymerase II duringthe elongation phase of transcription. Nature, 2010; 465: 1097-1101
    Google Scholar
  • 28. Hauptmann J., Dueck A., Harlander S., Pfaff J., Merkl R., MeisterG.: Turning catalytically inactive human Argonaute proteinsinto active slicer enzymes. Nat. Struct. Mol. Biol., 2013; 20: 814-817
    Google Scholar
  • 29. Haussecker D., Huang Y., Lau A., Parameswaran P., Fire A.Z., KayM.A.: Human tRNA-derived small RNAs in the global regulation ofRNA silencing. RNA, 2010; 16: 673-695
    Google Scholar
  • 30. Hock J., Meister G.: The Argonaute protein family. Genome Biol.,2008; 9: 2102-2108
    Google Scholar
  • 31. Holoch D., Moazed D.: Small-RNA loading licenses Argonautefor assembly into a transcriptional silencing complex. Nat. Struct.Mol. Biol., 2015; 22: 328-335
    Google Scholar
  • 32. Horman S. R., Janas M. M., Litterst C., Wang B., MacRae I. J., SeverM. J., Morrissey D. V., Graves P., Luo B., Umesalma S., Qi H. H., MiragliaL. J., Novina C. D., Orth A. P.: Akt-mediated phosphorylation ofArgonaute 2 downregulates cleavage and upregulates translationalrepression of microRNA targets. Mol. Cell, 2013; 50: 356-367
    Google Scholar
  • 33. Hosokawa M., Shoji M., Kitamura K., Tanaka T., Noce T., ChumaS., Nakatsuji N.: Tudor-related proteins TDRD1/MTR-1, TDRD6 andTDRD7/TRAP: domain composition, intracellular localization, andfunction in male germ cells in mice. Dev. Biol., 2007, 301: 38-52
    Google Scholar
  • 34. Huang V., Zheng J., Qi Z., Wang J., Place R.F., Yu J., Li H., Li L.C.:Ago1 interacts with RNA polymerase II and binds to the promotersof actively transcribed genes in human cancer cells. PLoS Gen.,2013; 9: e1003821
    Google Scholar
  • 35. Huntzinger E., Kuzuoglu-Öztürk D., Braun J. E., Eulalio A., WohlboldL., Izaurralde E.: The interactions of GW182 proteins with PABPand deadenylases are required for both translational repression anddegradation of miRNA targets. Nucleic Acids Res., 2013; 41: 978-994
    Google Scholar
  • 36. Hur J.K., Zinchenko M.K., Djuranovic S., Green R.: Regulation ofArgonaute slicer activity by guide RNA 3’ end interactions with theN-terminal lobe. J. Biol. Chem., 2013; 288: 7829-7840
    Google Scholar
  • 37. Hutvagner G., Simard M.J.: Argonaute proteins: key players inRNA silencing. Nat. Rev. Mol. Cell Biol., 2008; 9: 22-32
    Google Scholar
  • 38. Jakymiw A., Lian S., Eystathioy T., Li S., Satoh M., Hamel J.C.,Fritzler M.J., Chan E.K.: Disruption of GW bodies impairs mammalianRNA interference. Nat. Cell Biol., 2005; 7: 1267-1274
    Google Scholar
  • 39. Jinek M., Doudna J.A.: A three-dimensional view of the molecularmachinery of RNA interference. Nature, 2009; 457: 405-412
    Google Scholar
  • 40. Johnston M., Geoffroy M.C., Sobala A., Hay R., Hutvagner G.:HSP90 protein stabilizes unloaded argonaute complexes and microscopicP-bodies in human cells. Mol. Biol. Cell, 2010; 21: 1462-1469
    Google Scholar
  • 41. Kirino Y., Kim N., de Planell-Saquer M., Khandros E., Chiorean S.,Klein P.S., Rigoutsos J., Jongens T.A,. Mourelatos Z.: Arginine methylationof Piwi proteins catalysed by dPRMT5 is required for Ago3and Aub stability. Nat. Cell Biol., 2009; 11: 652-658
    Google Scholar
  • 42. Künne T., Swarts D.C., Brouns S.J.: Planting the seed: teargetrecognition of short guide RNAs. Trends Microbiol., 2014; 22: 74-83
    Google Scholar
  • 43. Kurzynska-Kokorniak A., Koralewska N., Pokornowska M., UrbanowiczA., Tworak A., Mickiewicz A., Figlerowicz M.: The manyfaces of Dicer: the complexity of the mechanisms regulating Dicergene expression and enzyme activities. Nucleic Acids Res., 2015; 9:4365-4380
    Google Scholar
  • 44. Kwak P.B., Tomari Y.: The N domain of Argonaute drives duplexunwinding during RISC assembly. Nat. Struct. Mol. Biol., 2012;19: 145-151
    Google Scholar
  • 45. Leung A.K., Vyas S., Rood J.E., Bhutkar A., Sharp P.A., Chang P.:Poly(ADP-ribose) regulates stress responses and microRNA activityin the cytoplasm. Mol. Cell, 2011; 42: 489-499
    Google Scholar
  • 46. Leung A.K., Young A.G., Bhutkar A., Zheng G.X., Bosson A.D.,Nielsen C.B., Sharp P.A.: Genome-wide identification of Ago2 bindingsites from mouse embryonic stem cells with and without maturemicroRNAs. Nat. Struct. Mol. Biol., 2011; 18: 237-244
    Google Scholar
  • 47. Leushner P.J., Ameres S.L., Kueng S., Martinez J.: Cleavage ofthe siRNA passenger strand during RISC assembly in human cells.EMBO Rep., 2006; 7: 314-320
    Google Scholar
  • 48. Li S.C., Tang P., Lin W.C.: Intronic micro-RNA: discovery and biologicalimplications. DNA Cell Biol., 2007; 26: 195-207
    Google Scholar
  • 49. Lingel A., Simon B., Izaurralde E., Sattler M.: Nucleic acid 3’-endrecognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol.,2004; 11: 576-577
    Google Scholar
  • 50. Loedige I., Gaidatzis D., Sack R., Meister G., Filipowicz W.: Themammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor ofmRNA function. Nucleid Acids Res., 2013; 41: 518-532
    Google Scholar
  • 51. Luteijn M.J., Ketting R.F.: PIWI-interacting RNAs: from generationto transgenerational epigenetics. Nat. Rev. Genet., 2013;14: 523-534
    Google Scholar
  • 52. Ma J.B., Ye K., Patel D.J.: Structural basis for overhang-specificsmall interfering RNA recognition by the PAZ domain. Nature, 2004;429: 318-322
    Google Scholar
  • 53. Ma J.B., Yuan Y.R., Meister G., Pei Y., Tuschl T., Patel D.J.: Structuralbasis for 5’-end-specific recognition of guide RNA by the A.fulgidus Piwi protein. Nature, 2005; 434: 666-670
    Google Scholar
  • 54. Meister G.: Argonaute proteins: functional insights and emergingroles. Nat. Rev., 2013; 14: 447-459
    Google Scholar
  • 55. Meister G., Landthaler M., Peters L., Chen P. Y., Urlaub H., LührmannR., Tuschl T.: Identification of novel Argonaute-associatedproteins. Curr. Biol., 2005; 15: 2149-2155
    Google Scholar
  • 56. Mi S., Cai T., Hu Y., Chen Y., Hodges E., Ni F., Wu L., Li S., ZhouH., Long C., Chen S., Hannon G.J., Qi Y.: Sorting of small RNAs intoArabidopsis Argonaute complexes is directed by the 5’ terminal nucleotide.Cell, 2008; 133: 116-127
    Google Scholar
  • 57. Mochizuki K., Gorovsky M.A.: A Dicer-like protein in Tetrahymenahas distinct functions in genome rearrangement, chromosome segregation,and meiotic prophase. Gene. Dev., 2005; 19: 77-89
    Google Scholar
  • 58. Moretti F., Kaiser C., Zdanowicz-Specht A., Hentze M.: PABP andthe poly(A) tail augment microRNA repression by facilitated miRISCbinding. Nat. Struct. Mol. Biol., 2012; 19: 603-608
    Google Scholar
  • 59. Nakanishi K., Weinberg D.E., Bartel D.P., Patel D.J.: Structure ofyeast Argonaute with guide RNA. Nature, 2012; 486: 368-374
    Google Scholar
  • 60. Nam S., Ryu H., Son W.J., Kim Y.H., Kim K.T., Balch C., NephewK.P., Lee J.: Mg2+ effect on argonaute and RNA duplex by moleculardynamics and bioinformatics implications. PLoS One, 2014; 9:e109745
    Google Scholar
  • 61. Nishi K., Nishi A., Nagasawa T., Ui-Tei K.: Human TNRC6A is anArgonaute-navigator protein for microRNA-mediated gene silencingin the nucleus. RNA, 2013; 19: 17-35
    Google Scholar
  • 62. Noland C.L., Ma E., Doudna J.A.: siRNA repositioning for guidestrand selection by human Dicer complexes. Mol. Cell, 2011; 43:110-121
    Google Scholar
  • 64. Oliver C., Santos J.L., Pradillo M.: On the role of some Argonauteproteins in meiosis and DNA repair in Arabidopsis thaliana. Front.Plant Sci., 2014; 5: 1-10
    Google Scholar
  • 65. Olovnikow I., Chan K., Sachidanandam R., Newman D.K., AravinA.A.: Bacterial argonaute samples the transcriptome to identify foreignDNA. Mol. Cell, 2013; 51: 594-605
    Google Scholar
  • 66. Peters L., Meister G.: Argonaute proteins: mediators of RNA silencing.Mol. Cell, 2007; 26: 611-623
    Google Scholar
  • 67. Pfaff J., Hennig J., Herzog F., Aebersold R., Sattler M., Niessing D.,Meister G.: Structural features of Argonaute GW182 protein interactions.Proc. Natl. Acad. Sci. USA, 2013; 110: E3770-E3779
    Google Scholar
  • 68. Pushpavalli S.N., Sarkar A., Bag I., Hunt C.R., Ramaiah M.J., PanditaT.K., Bhadra U., Pal-Bhadra M.: Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.FASEB J., 2014; 28: 655-666
    Google Scholar
  • 69. Qi H., Ongusaha P.P., Myllyharju J., Cheng D., Pakkanen O., Shi Y.,Lee S.W., Peng J., Shi Y.: Prolyl-4-hydroxylation regulates Argonaute 2 stability. Nature, 2008; 455: 421-424
    Google Scholar
  • 70. Reuter M., Chuma S., Tanaka T., Franz T., Stark A., Pillai R.S.: Lossof the Mili-interacting Tudor domain-containing protein-1 activatestransposons and alters the Mili-associated small RNA profile. Nat.Struct. Mol. Biol., 2009; 16: 639-646
    Google Scholar
  • 71. Rogers K., Chen X.: Biogenesis, turnover, and mode of action ofplant microRNAs. Plant Cell, 2013; 25: 2383-2399
    Google Scholar
  • 72. Ross J.P., Kassir Z.: The varied roles of nuclear argonaute-smallRNA complexes and avenues for therapy. Mol. Ther. Nucleic Acids,2014; 3: e203
    Google Scholar
  • 73. Rüdel S., Meister G.: Phosphorylation of Argonaute proteins:regulating gene regulators. Biochem. J., 2008; 413: e7-e9
    Google Scholar
  • 74. Rybak A., Fuchs H., Hadian K., Smirnova L., Wulczyn E.A., MichelG., Nitsch R., Krappmann D., Wulczyn F.G.: The let-7 target genemouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNApathway protein Ago2. Nat. Cell Biol., 2009; 11: 1411-1420
    Google Scholar
  • 75. Sahin U., Lapaquette P., Andrieux A., Faure G., Dejean A.: Sumoylationof human Argonaute 2 at lysine-402 regulates its stability.PLoS One, 2014; 9: e102957
    Google Scholar
  • 76. Schirle N.T., MacRae I.J.: The crystal structure of human Argonaute2.Science, 2012; 336: 1037-1040
    Google Scholar
  • 77. Shi H., Tschudi C., Ullu E.: An unusual Dicer-like 1 protein fuelsthe RNA interference pathway in Trypanosoma brucei. RNA, 2006;12: 2063-2072
    Google Scholar
  • 78. Smalheiser N.R., Gomes O.L.: Mammalian Argonaute-DNA binding?Biol. Direct, Biol. Direct, 2014; 9: 27
    Google Scholar
  • 79. Smibert P., Yang S.Jr., Azzam G., Liu J.L., Lai E.C.: Homeostaticcontrol of Argonaute stability by microRNA availability. Nat. Struct.Mol. Biol., 2013; 20: 789-795
    Google Scholar
  • 80. Song J.J., Smith S.K., Hannon G.J., Joshua-Tor L.: Crystal structureof Argonaute and its implications for RISC slicer activity. Science,2004; 305: 1434-1437
    Google Scholar
  • 81. Stoica C., Carmichael J.B., Parker H., Pare J., Hobman T.C.: Interactionsbetween the RNA interference effector protein Ago1 and 14-3-3 proteins: consequences for cell cycle progression. J. Biol. Chem.,2006; 281: 37646-37651
    Google Scholar
  • 82. Swarts D.C., Jore M.M., Westra E.R., Zhu Y., Janssen J.H., SnijdersA.P., Wang Y., Patel D.J., Berenguer J., Brouns S.J., van der Oost J.:DNA-guided DNA interference by prokaryotic Argonaute. Nature,2014; 507: 258-261
    Google Scholar
  • 83. Swarts D.C., Koehorst J.J., Westra E.R., Schaap P.J., van der OostJ.: Effects of Argonaute on gene expression in Thermus thermophilus.PLoS One, 2015; 10: e0124880
    Google Scholar
  • 84. Swarts D.C., Makarova K., Wanyg Y., Nakanishi K., Ketting R.F.,Koonin E.V., Patel D.J., van der Oost J.: The evolutionary journey ofArgonaute proteins. Nat. Struct. Mol. Biol., 2014; 21: 743-753
    Google Scholar
  • 85. Taft R.J., Glazov E.A., Lassmann T., Hayashizaki Y., Carninci P.,Mattick J.S.: Small RNAs derived from snoRNAs. RNA, 2009; 15: 1233-1240
    Google Scholar
  • 86. Thieme C.J., Schudoma C., May P., Walther D.: Give it AGO: thesearch for miRNA-Argonaute sorting signals in Arabidopsis thalianaindicates a relevance of sequence positions other than the 5’-positionalone. Front. Plant Sci., 2012; 3: 1-15
    Google Scholar
  • 87. Thomson D.W., Pillman K.A., Anderson M.L., Lawrence D.M.,Toubia J., Goodall G.J., Bracken C.P.: Assessing the gene regulatoryproperties of Argonaute-bound small RNAs of diverse genomic origin.Nucleic Acids Res., 2015; 43: 470-481
    Google Scholar
  • 88. Tomari Y., Du T., Zamore P.D.: Sorting of Drosophila small silencingRNAs. Cell, 2007; 130: 299-308
    Google Scholar
  • 89. Tschudi C., Shi H., Franklin J.B., Ullu E.: Small interfering RNAproducingloci in the ancient parasitic eukaryote Trypanosoma brucei.BMC Genomics, 2012; 13: 427
    Google Scholar
  • 90. Turchinovich A., Burwinkel B.: Distinct Ago1 and Ago2 associatedmiRNA profiles in human cells and blood plasma. RNA Biol.,2012; 9: 1066-1075
    Google Scholar
  • 91. Wang B., Li S., Qi H.H., Chowdhury D., Shi Y., Novina C.D.: Distinctpassenger strand and mRNA cleavage activities of human Argonauteproteins. Nat. Struct. Mol. Biol., 2009; 16: 1259-1266
    Google Scholar
  • 92. Wang D., Zhang Z., O’Loughlin E., Lee T., Houel S., O’Carroll D.,Tarakhovsky A., Ahn N.G., Yi R.: Quantitative functions of Argonauteproteins in mammalian development. Genes Dev., 2012; 26: 693-704
    Google Scholar
  • 93. Wang Y., Juranek S., Li H., Sheng G., Tuschl T., Patel D.J.: Structureof an argonaute silencing complex with a seed-containing guideDNA and target RNA duplex. Nature, 2008; 456: 921-926
    Google Scholar
  • 94. Wang Y., Juranek S., Li H., Sheng G., Wardle G.S., Tuschl T., PatelD.J.: Nucleation, propagation and cleavage of target RNAs in Agosilencing complexes. Nature, 2009; 461: 754-761
    Google Scholar
  • 95. Wang Y., Mercier R., Hobman T.C., LaPointe P.: Regulation ofRNA interference by Hsp90 is an evolutionarily conserved process.Biochim. Biophys. Acta, 2013; 1833: 2673-2681
    Google Scholar
  • 96. Wedeles C., Wu M.Z., Claycomb J.M.: Protection of germlinegene expression by the C. elegans Argonaute CSR-1. Dev. Cell, 2013;27: 664-671
    Google Scholar
  • 97. Wei W., Ba Z., Gao M., Wu Y., Ma Y., Amiard S., White C.I., RendtlewDanielsen J.M., Yang Y.G., Qi Y.: A role for small RNAs in DNAdouble-strand break repair. Cell, 2012; 149: 101-112
    Google Scholar
  • 98. Williams A.E.: Functional aspect of animal microRNAs. Cell. Mol.Life Sci., 2008; 65: 545-562
    Google Scholar
  • 99. Willkomm S., Zander A., Gust A., Grohmann D.: A prokaryotictwist on Argonaute function. Life, 2015; 5: 538-553
    Google Scholar
  • 100. Winter J., Diederichs S.: Argonaute-3 activates the let-7a passengerstrand microRNA. RNA Biol., 2013; 10: 1631-1643
    Google Scholar
  • 101. Woolnough J.L., Atwood B.L., Giles K.E.: Argonaute2 binds directlyto tRNA genes and promotes gene repression in cis. Moll. Cell.Biol., 2015; 35: 2278-2294
    Google Scholar
  • 103. Ye X., Huang N., Liu Y., Paroo Z., Huerta C., Li P., Chen S., LiuQ., Zhang H.: Structure of C3PO and mechanism of HUMAN RISCactivation. Nat. Struct. Mol. Biol., 2011; 18: 650-657
    Google Scholar
  • 104. Yigit E., Batista P.J., Bei Y., Pang K.M., Chen C.C., Tolia N.H.,Joshua-Tor L., Mitani S., Simard M.J., Mello C.C.: Analysis of the C.elegans Argonaute family reveals that distinct Argonaute family actsequentially during RNAi. Cell, 2006; 127: 747-757
    Google Scholar
  • 105. Yuan Y.R., Pei Y., Ma J.B., Kuryavyi V., Zhadina M., MeisterG., Chen H.Y., Dauter Z., Tuschl T., Patel D.J.: Crystal structure of A.aeolicus argonaute, a site-specific DNA-guided endoribonuclease,provides insights into RISC-mediated mRNA cleavage. Mol. Cell,2005; 19: 405-419
    Google Scholar
  • 106. Zekri L., Huntzinger E., Heimstädt S., Izaurralde E.: The silencingdomain of GW182 interacts with PABPC1 to promote translationalrepression and degradation of microRNA targets and is requiredfor target release. Mol. Cell. Biol., 2009; 29: 6220-6231
    Google Scholar
  • 107. Zeng Y., Sankala H., Zhang X., Graves P.R.: Phosphorylation ofArgonaute 2 at serine-387 facilitates its localization to processingbodies. Biochem J., 2008; 413: 429-436
    Google Scholar
  • 108. Zhu L., Masaki Y., Tatsuke T., Li Z., Mon H., Xu J., Lee J.M., KusakabeT.: A MC motif in silkworm Argonaute 1 is indispensible fortranslation repression. Insect Mol. Biol., 2013; 10: 1-11
    Google Scholar
  • 109. Zisoulis D.G., Lovci M.T., Wilbert M.L., Hutt K.R., Liang T.Y.,Pasquinelli A.E., Yeo G.W.: Comprehensive discovery of endogenousArgonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol.Biol., 2010; 17: 173-179
    Google Scholar

Full text

Skip to content