Endogenous mechanisms of reactive oxygen species (ROS) generation

COMMENTARY ON THE LAW

Endogenous mechanisms of reactive oxygen species (ROS) generation

Agata Sarniak 1 , Joanna Lipińska 2 , Karol Tytman 3 , Stanisława Lipińska 1

1. Zakład Fizjologii Ogólnej Uniwersytetu Medycznego w Łodzi
2. Klinika Kardiologii i Reumatologii Dziecięcej Uniwersytetu Medycznego w Łodzi
3. Klinika Kardiologii Uniwersytetu Medycznego w Białymstoku

Published: 2016-11-14
DOI: 10.5604/17322693.1224259
GICID: 01.3001.0009.6894
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1150-1165

 

Abstract

The main cellular source of reactive oxygen species (ROS) is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

References

  • 1. Abo A., Webb M.R., Grogan A., Segal A.W.: Activation of NADPHoxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to theplasma membrane. Biochem. J., 1994, 298: 585-591
    Google Scholar
  • 2. Ackrell B.A.: Progress in understanding structure-function relationshipsin respiratory chain complex II. FEBS Lett., 2000; 466: 1-5
    Google Scholar
  • 3. Adams J.D. Jr, Chang M.L., Klaidman L.: Parkinson’s disease – redoxmechanisms. Curr. Med. Chem., 2001; 8: 809-814
    Google Scholar
  • 4. Adam-Vizi V., Chinopoulos C.: Bioenergetics and the formationof mitochondrial reactive oxygen species. Trends Pharmacol. Sci.,2006; 27: 639-645
    Google Scholar
  • 5. Ambasta R.K., Kumar P., Griendling K.K., Schmidt H.H., BusseR.,Brandes R.P.: Direct interaction of the novel Nox proteins withp22phox is required for the formation of a functionally active NADPHoxidase. J. Biol. Chem., 2004, 279: 45935-45941
    Google Scholar
  • 6. Andersen J.K.: Oxidative stress in neurodegeneration: cause orconsequence? Nat. Med., 2004; 10: 18-25
    Google Scholar
  • 7. Assari T.: Chronic granulomatous disease; fundamental stages inour understanding of CGD. Med. Immunol., 2006; 21: 5:4
    Google Scholar
  • 8. Babior B.M.: NADPH oxidase: an update. Blood. 1999; 93: 1464-1476
    Google Scholar
  • 9. Babior B.M.: The respiratory burst of phagocytes. J. Clin. Invest.,1984; 73: 599-601
    Google Scholar
  • 10. Babior B.M., Kipnes R.S., Curnutte J.T.: Biological defense mechanisms.Theproduction by leukocytes of superoxide, a potentialbactericidal agent. J. Clin. Invest., 1973; 52: 741-744
    Google Scholar
  • 11. Babior B.M., Takeuchi C., Ruedi J., Gutierrez A., Wentworth P.Jr.:Investigating antibody-catalyzed ozone generation by human neutrophils.Proc. Natl. Acad. Sci. USA, 2003, 100: 3031-3034
    Google Scholar
  • 12. Balaban R.S., Nemoto S., Finkel T.: Mitochondria, oxidants, andaging. Cell, 2005; 120: 483-495
    Google Scholar
  • 13. Baldridge C.W., Gerard R.W.: The extra respiration of phagocytosis.Am. J. Physiol., 1933; 103: 235-236
    Google Scholar
  • 14. Bánfi B., Clark R.A., Steger K., Krause K.H.: Two novel proteinsactivate superoxide generation by the NADPH oxidase NOX1. J. Biol.Chem., 2003; 278: 3510-3513
    Google Scholar
  • 15. Bartosz G.: Druga twarz tlenu. Wolne rodniki w przyrodzie. Wydawnictwonaukowe PWN, 2008
    Google Scholar
  • 16. Bartosz G.: Reactive oxygen species: destroyers or messengers?Biochem Pharmacol., 2009; 77: 1303-1315
    Google Scholar
  • 17. Bedard K., Krause K.H.: The NOX family of ROS-generatingNADPH oxidases: physiology and pathophysiology. Physiol. Rev.,2007; 87: 245-313
    Google Scholar
  • 18. Benham A.M, van Lith M., Sitia R., Braakman I.: Ero1-PDI interactions,the response to redox flux and the implications for disulfidebond formation in the mammalian endoplasmic reticulum. Philos.Trans R Soc. Lond. B Biol. Sci., 2013; 368: 20110403
    Google Scholar
  • 19. Berrisford J.M., Sazanov L.A.: Structural basis for the mechanismof respiratory complex I. J. Biol. Chem., 2009; 284: 29773-29783
    Google Scholar
  • 20. Bhandary B., Marahatta A., Kim H.R., Chae H.J.: An involvementof oxidative stress in endoplasmic reticulum stress and its associateddiseases. Int. J. Mol. Sci., 2012; 14: 434-456
    Google Scholar
  • 21. Blum D., Torch S., Lamberg N., Nissou M.F., Benabid A.L., SadoulR., Verna J.M.: Molecular pathways involved in the neurotoxicity of6-OHDA, dopamine and MPTP: contribution to the apoptotic theoryin Parkinson’s disease. Prog Neurobiol., 2001; 65: 135-172
    Google Scholar
  • 22. Bonekamp N.A., Völkl A., Fahimi H.D., Schrader M.: Reactiveoxygen species and peroxisomes: struggling for balance. Biofactors,2009; 35: 346-355
    Google Scholar
  • 23. Bréchard S., Plançon S., Tschirhart E.J.: New insights into theregulation of neutrophil NADPH oxidase activity in the phagosome:a focus on the role of lipid and Ca2+ signaling. Antioxid RedoxSignal., 2013; 18: 661-676
    Google Scholar
  • 24. Brunori M., Giuffrè A., Sarti P.: Cytochrome c oxidase, ligandsand electrons. J. Inorg. Biochem., 2005; 99: 324-336
    Google Scholar
  • 25. Carroll J., Fearnley I.M., Skehel J.M., Shannon R.J., Hirst J., WalkerJ.E.: Bovine complex I is a complex of 45 different subunits., J.Biol. Chem., 2006; 281: 32724-32727
    Google Scholar
  • 26. Cecchini G., Maklashina E., Yankovskaya V., Iverson T.M., IwataS.: Variationin proton donor/acceptor pathways in succinate:quinoneoxidoreductases. FEBS Lett., 2003; 545: 31-38
    Google Scholar
  • 27. Champe P.C., Harvey R.A.: Lippicott’s Illustrated Reviews: Biochemistry3rd edition. Lippincott, Williams & Wilkins, 2005
    Google Scholar
  • 28. Cheng G., Lambeth J.D.: NOXO1, regulation of lipid binding, localization,and activation of Nox1 by the Phox homology (PX) domain.J. Biol. Chem., 2004; 279: 4737-4742
    Google Scholar
  • 29. Cross A.R.: p40phox participates in the activation of NADPH oxidaseby increasing the affinity of p47phox for flavocytochrome b558.Biochem. J., 2000, 349: 113-117
    Google Scholar
  • 30. Cross A.R., Curnutte J.T.: The cytosolic activating factor p47phoxand p67phox have distinct roles in the regulation of electron flow inNADPH oxidase. J. Biol. Chem., 1995; 270: 6543-6548
    Google Scholar
  • 31. Cross A.R, Segal A.W.: The NADPH oxidase of professional phagocytes- prototype of the NOX electron transport chain systems.Biochim. Biophys. Acta, 2004; 1657: 1-22
    Google Scholar
  • 32. Dang P.M., Babior B.M., Smith R.M.: NADPH dehydrogenase activityof p67PHOX, a cytosolic subunit of the leukocyte NADPH oxidase.Biochemistry, 1999; 38: 5746-5753
    Google Scholar
  • 33. Dang P.M., Morel F., Gougerot-Pocidalo M.A., El Benna J.: Phosphorylationof the NADPH oxidase component p67PHOX by ERK2and P38MAPK: selectivity of phosphorylated sites and existence ofan intramolecular regulatory domain in the tetratricopeptide-richregion. Biochemistry, 2003; 42: 4520-4526
    Google Scholar
  • 34. Dang P.M., Raad H., Derkawi R.A., Boussetta T., Paclet M.H., BelambriS.A., Makni-Maalej K., Kroviarski Y., Morel F., Gougerot-PocidaloM.A., El-Benna J.: The NADPH oxidase cytosolic componentp67phox is constitutively phosphorylated in human neutrophils:Regulation by a protein tyrosine kinase, MEK1/2 and phosphatases1/2A. Biochem Pharmacol., 2011; 82: 1145-1152
    Google Scholar
  • 35. Davis W.B., Mohammed B.S., Mays D.C., She Z.W., MohammedJ.R., Husney R.M., Sagone A.L.: Hydroxylation of salicylate by activatedneutrophils. Biochem. Pharmacol., 1989, 38: 4013-4019
    Google Scholar
  • 36. DeLeo F.R., Burritt J.B., Yu L., Jesaitis A.J., Dinauer M.C., NauseefW.M.: Processing and maturation of flavocytochrome b558 includeincorporation of heme as a prerequisite for heterodimer assembly.J. Biol. Chem., 2000; 275: 13986-13993
    Google Scholar
  • 37. Dexter D.T, Jenner P.: Parkinson disease: from pathology to moleculardisease mechanisms. Free Radic. Biol. Med., 2013; 62: 132-144
    Google Scholar
  • 38. Dikalova A., Clempus R., Lassègue B., Cheng G., McCoy J., DikalovS., San Martin A., Lyle A., Weber, D.S., Weiss D., Taylor W.R., SchmidtH.H., Owens G. K., Lambeth J.D., Griendling K.K.: Nox1 overexpressionpotentiates angiotensin II-induced hypertension and vascularsmooth muscle hypertrophy in transgenic mice circulation. Circulation,2005; 112: 2668-2676
    Google Scholar
  • 39. Dinauer M.C.: Chronic granulomatous disease and other disordersof phagocyte function. Hematology Am. Soc. Hematol. Educ.Program, 2005; 2005: 89-95
    Google Scholar
  • 40. Dröge W.: Free radicals in the physiological control of cell function.Physiol. Rev., 2002: 82: 47-95
    Google Scholar
  • 41. Dröge W.: Oxidative stress and aging. Adv. Exp. Med. Biol., 2003;543: 191-200
    Google Scholar
  • 42. Dusi S., Donini M., Rossi F.: Mechanisms of NADPH oxidase activation:translocation of p40phox, Rac1 and Rac2 from the cytosolto the membranes in human neutrophils lacking p47phox or p67phox.Biochem. J., 1996; 314: 409-412
    Google Scholar
  • 43. El-Benna J., Dang P.M., Gougerot-Pocidalo M.A., Marie J.C., Braut–Boucher F.: p47phox, the phagocyte NADPH oxidase/NOX2 organizer:structure, phosphorylation and implication in diseases. Exp.Mol. Med., 2009; 41: 217-225
    Google Scholar
  • 44. El-Benna J., Dang P.M., Périanin A.: Peptide-based inhibitorsof the phagocyte NADPH oxidase. Biochem. Pharmacol., 2010; 80:778-785
    Google Scholar
  • 45. Esser L., Quinn B., Li Y.F., Zhang M., Elberry M., Yu L., Yu C.A.,Xia D.: Crystallographic studies of quinol oxidation site inhibitors:a modified classification of inhibitors for the cytochrome bc1 complex.J. Mol. Biol., 2004; 341: 281-302
    Google Scholar
  • 46. Ferro E., Goitre L., Retta S.F., Trabalzini L.: The interplay betweenROS and Ras GTPases: physiological and pathological implications.J. Signal Transduct., 2012; 2012: 365769
    Google Scholar
  • 47. Fisher N., Meunier B.: Molecular basis of resistance to cytochromebc1 inhibitors. FEMS Yeast Res., 2008; 8: 183-192
    Google Scholar
  • 48. Fontanesi F., Soto I.C., Horn D., Barrientos A.: Assembly of mitochondrialcytochrome c-oxidase, a complicated and highly regulatedcellular process. Am. J. Physiol. Cell Physiol., 2006; 291: C1129-C1147
    Google Scholar
  • 49. Foubert T.R., Bleazard J.B., Burritt J.B., Gripentrog J.M., BaniulisD.,Taylor R.M., Jesaitis A.J.: Identification of a spectrally stable proteolyticfragment of human neutrophil flavocytochrome b composedof the NH2-terminal regions of gp91phox and p22phox. J. Biol. Chem.,2001; 276: 38852-38861
    Google Scholar
  • 50. Fransen M., Nordgren M., Wang B., Apanasets O.: Role of peroxisomesin ROS/RNS-metabolism: implications for human disease.Biochim. Biophys. Acta, 2012; 1822: 1363-1373
    Google Scholar
  • 51. Freeman J.L., Abo A., Lambeth J.D.: Rac “insert region” is a noveleffector region that is implicated in the activation of NADPH oxidase,but not PAK65. J. Biol. Chem., 1996; 271: 19794-19801
    Google Scholar
  • 52. Geiszt M., Lekstrom K., Brenner S., Hewitt S.M., Dana R., MalechH.L., Leto T.L.: NAD(P)H oxidase 1, a product of differentiatedcolon epithelial cells, can partially replace glycoprotein 91phox inthe regulated production of superoxide by phagocytes. J. Immunol.,2003; 171: 299-306
    Google Scholar
  • 53. Geiszt M., Lekstrom K., Witta J., Leto T.L.: Proteins homologous top47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem., 2003, 278: 20006-20012
    Google Scholar
  • 54. Gorzalczany Y., Sigal N., Itan M., Lotan O., Pick E.: Targetingof Rac1 to the phagocyte membrane is sufficient for the inductionof NADPH oxidase assembly. J. Biol. Chem., 2000; 275: 40073-40081
    Google Scholar
  • 55. Groemping Y., Rittinger K.: Activation and assembly of theNADPH oxidase:a structural perspective. Biochem. J., 2005; 386:401-416
    Google Scholar
  • 56. Gutteridge J.M., Halliwell B.: Antioxidants: molecules, medicines,and myths. Biochem. Biophys. Res. Commun., 2010; 393: 561-564
    Google Scholar
  • 57. Halliwell B.: Phagocyte-derived reactive species: salvation orsuicide? Trends Biochem. Sci., 2006; 31: 509-515
    Google Scholar
  • 58. Han C.H., Lee M.H.: Activation domain in P67phox regulates thesteady state reduction of FAD in gp91phox. J. Vet. Sci., 2000; 1: 27-31
    Google Scholar
  • 59. Hanna I.R., Hilenski L.L., Dikalova A., Taniyama Y., Dikalov S., LyleA., Quinn M.T., Lassègue B., Griendling K.K.: Functional associationof nox1 with p22phox in vascular smooth muscle cells. Free Radic.Biol. Med., 2004; 37: 1542-1549
    Google Scholar
  • 60. Hashida S., Yuzawa S., Suzuki N.N., Fujioka Y., Takikawa T., SumimotoH., Inagaki F., Fujii H.: Binding of FAD to cytochrome b558 is facilitatedduring activation of the phagocyte NADPH oxidase, leadingto superoxide production. J. Biol. Chem., 2004; 279: 26378-26386
    Google Scholar
  • 61. Hinchliffe P., Sazanov L.A.: Organization of iron-sulfur clustersin respiratory complex I. Science, 2005; 309: 771-774
    Google Scholar
  • 62. Hirst J., Carroll J, Fearnley I.M., Shannon R.J., Walker J.E.: The nuclear encoded subunits of complex I from bovine heart mitochondria.Biochim. Biophys. Acta, 2003; 1604: 135-150
    Google Scholar
  • 63. Holland S.M.: Chronic granulomatous disease. Hematol. Oncol.Clin. North Am., 2013; 27: 89-99
    Google Scholar
  • 64. Horsefield R., Yankovskaya V., Sexton G., Whittingham W., ShiomiK., Omura S., Byrne B., Cecchini G., Iwata S.: Structural and computationalanalysis of the quinone-binding site of complex II (succinate-ubiquinoneoxidoreductase): a mechanism of electron transferand proton conduction during ubiquinone reduction. J. Biol. Chem.,2006; 281: 7309-7316
    Google Scholar
  • 65. Hosler J.P.: The influence of subunit III of cytochrome c oxidaseon the D pathway, the proton exit pathway and mechanism-basedinactivation in subunit I. Biochim. Biophys. Acta, 2004; 1655: 332-339
    Google Scholar
  • 66. Hunte C., Palsdottir H., Trumpower B.L.: Protonmotive pathwaysand mechanisms in the cytochrome bc1 complex. FEBS Lett.,2003; 545: 39-46
    Google Scholar
  • 67. Hyslop P.A., Hinshaw D.B., Scraufstatter I.U., Cochrane C.G.,Kunz S.,Vosbeck K.: Hydrogen peroxide as a potent bacteriostaticantibiotic: implications for host defense. Free Radic. Biol. Med.,1995; 19: 31-37
    Google Scholar
  • 68. Isogai Y., Iizuka T., Makino R., Iyanagi T., Orii Y.: Superoxide–producing cytochrome b. Enzymatic and electron paramagneticresonance properties of cytochrome b558 purified from neutrophils.J. Biol. Chem., 1993; 268: 4025-4031
    Google Scholar
  • 69. Iyer G.Y., Islam D.M., Quastel J.H.: Biochemical aspects of phagocytosis.Nature, 1961, 192: 535-541
    Google Scholar
  • 70. Kawahara T., Kuwano Y., Teshima-Kondo S., Takeya R., SumimotoH., Kishi K., Tsunawaki S., Hirayama T., Rokutan K.: Role of nicotinamideadenine dinucleotide phosphate oxidase 1 in oxidativeburst response to Toll-like receptor 5 signaling in large intestinalepithelial cells. J. Immunol., 2004; 172: 3051-3058
    Google Scholar
  • 71. Kawahara T., Ritsick D., Cheng G., Lambeth J.D.: Point mutationsin the proline-rich region of p22phox are dominant inhibitorsof Nox1- and Nox2-dependent reactive oxygen generation. J. Biol.Chem., 2005; 280: 31859-31869
    Google Scholar
  • 72. Klebanoff S.J.: Myeloperoxidase: friend and foe. J. Leukoc. Biol.,2005; 77: 598-625
    Google Scholar
  • 73. Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., NauseefW.M.: Myeloperoxidase: a front-line defender against phagocytosedmicroorganisms. J. Leukoc. Biol., 2013; 93:185-198
    Google Scholar
  • 74. Kleniewska P., Piechota A., Skibska B., Gorąca A.: The NADPHoxidase family and its inhibitors. Arch. Immunol. Ther. Exp., 2012;60: 277-294
    Google Scholar
  • 75. Koshkin V., Lotan O., Pick E.: The cytosolic component p47phox isnot a sine qua non participant in the activation of NADPH oxidasebut is required for optimal superoxide production. J. Biol. Chem.,1996; 271: 30326-30329
    Google Scholar
  • 76. Lam G.Y., Huang J., Brumell J.H.: The many roles of NOX2 NADPHoxidase-derived ROS in immunity. Semin. Immunopathol., 2010;32: 415-430
    Google Scholar
  • 77. Lambeth J.D.: Nox enzymes, ROS, and chronic disease: an exampleof antagonistic pleiotropy. Free Radic. Biol. Med., 2007; 43: 332-347
    Google Scholar
  • 78. Lanza I.R., Nair K.S.: Mitochondrial function as a determinantof life span. Pflugers Arch., 2010; 459: 277-289
    Google Scholar
  • 79. Lapouge K., Smith S.J., Groemping Y. Rittinger K.: Architectureof the p40-p47-p67phox complex in the resting state of the NADPHoxidase. J. Biol. Chem., 2002; 277: 10121-10128
    Google Scholar
  • 80. Lefer D.J., Granger D.N.: Oxidative stress and cardiac disease.Am. J. Med., 2000; 109: 315-323
    Google Scholar
  • 81. Lopes L.R., Dagher M.C., Gutierrez A., Young B., Bouin A.P., Fuchs A., Babior B.M.: Phosphorylated p40PHOX as a negative regulator ofNADPH oxidase. Biochemistry, 2004; 43: 3723-3730
    Google Scholar
  • 82. Madani S., Hichami A., Legrand A., Belleville J., Khan N.A.: Implicationof acyl chain of diacylglycerols in activation of differentisoforms of protein kinase C. FASEB J., 2001; 15: 2595-2601
    Google Scholar
  • 83. Malhotra J.D., Kaufman R.J.: Endoplasmic reticulum stress andoxidative stress:a vicious cycle or a double-edged sword? Antioxid.Redox Signal., 2007; 9: 2277-2293
    Google Scholar
  • 84. Manivannan S., Scheckhuber C.Q., Veenhuis M., van der KleiI.J.: The impact of peroxisomes on cellular aging and death. FrontOncol., 2012; 2: 50
    Google Scholar
  • 85. Marcoux J., Man P., Petit-Haertlein I., Vivès C., Forest E., FieschiF.: p47phox molecular activation for assembly of the neutrophil NADPHoxidase complex. J. Biol. Chem., 2010; 285: 28980-28990
    Google Scholar
  • 86. Matsuno K., Yamada H., Iwata K., Jin, D., Katsuyama M., MatsukiM., Takai S., Yamanishi K., Miyazaki M., Matsubara H., Yabe-NishimuraC.: Nox1 is involved in angiotensin II-mediated hypertension:a study in Nox1-deficient mice. Circulation, 2005; 112: 2677-2685
    Google Scholar
  • 87. Matute J.D., Arias A.A., Dinauer M.C., Patiño P.J.: p40phox: thelast NADPH oxidase subunit. Blood Cells Mol. Dis., 2005; 35: 291-302
    Google Scholar
  • 88. Matute J.D., Arias A.A., Wright N.A., Wrobel I., Waterhouse C.C.,Li X.J., Marchal C.C., Stull N.D., Lewis D.B., Steele M., Kellner J.D., YuW., Meroueh S.O., Nauseef W.M., Dinauer M.C.: A new genetic subgroupof chronic granulomatous disease with autosomal recessivemutations in p40phox and selective defectsin neutrophil NADPH oxidaseactivity. Blood, 2009; 114: 3309-3315
    Google Scholar
  • 89. Miyano K., Ueno N., Takeya R., Sumimoto H.: Direct involvementof the small GTPase Rac in activation of the superoxide-producingNADPH oxidase Nox1. J. Biol. Chem., 2006; 281: 21857-21868
    Google Scholar
  • 90. Murphy M.P.: How mitochondria produce reactive oxygen species.Biochem. J., 2009; 417: 1-13
    Google Scholar
  • 91. Musatov A., Robinson N.C.: Cholate-induced dimerization of detergent-orphospholipid-solubilized bovine cytochrome C oxidase.Biochemistry, 2002; 41: 4371-4376
    Google Scholar
  • 92. Nauseef W.M.: Assembly of the phagocyte NADPH oxidase. HistochemCell Biol., 2004; 122: 277-291
    Google Scholar
  • 93. Nemoto S., Takeda K., Yu Z.X., Ferrans V.J., Finkel T.: Role formitochondrial oxidants as regulators of cellular metabolism. Mol.Cell. Biol., 2000; 20: 7311-7318
    Google Scholar
  • 94. Pohl T., Bauer T., Dörner K., Stolpe S., Sell P., Zocher G., FriedrichT.: Iron-sulfur cluster N7 of the NADH:ubiquinone oxidoreductase(complex I) is essential for stability but not involved in electrontransfer. Biochemistry, 2007; 46: 6588-6596
    Google Scholar
  • 95. Rada B. Hably C., Meczner A., Timár C., Lakatos G., Enyedi P.,Ligeti E.: Role of Nox2 in elimination of microorganisms. Semin.Immunopathol., 2008; 30: 237-253
    Google Scholar
  • 96. Rees M.D., Pattison D.I., Davies M.J.: Oxidation of heparan sulphateby hypochlorite: role of N-chloro derivatives and dichloramine-dependentfragmentation. Biochem. J., 2005; 391: 125-134
    Google Scholar
  • 97. Rossi F., Zatti M.: Biochemical aspects of phagocytosis in polymorphonuclearleucocytes. NADH and NADPH oxidation by the granulesof resting and phagocytizing cells. Experientia, 1964; 20: 21-23
    Google Scholar
  • 98. Sarfstein R., Gorzalczany Y., Mizrahi A., Berdichevsky Y., Molshanski-MorS., Weinbaum C., Hirshberg M., Dagher M.C., Pick E.:Dual role of Rac in the assembly of NADPH oxidase, tethering to themembrane and activation of p67phox: a study based on mutagenesisof p67phox-Rac1 chimeras. J. Biol. Chem., 2004; 279: 16007-16016
    Google Scholar
  • 99. Segal A.W.: How neutrophils kill microbes. Annu. Rev. Immunol.,2005; 23: 197-223
    Google Scholar
  • 100. Seguchi H., Kobayashi T.: Study of NADPH oxidase-activatedsites in human neutrophils. J. Electron Microsc., 2002; 51: 87-91
    Google Scholar
  • 101. Shen Z., Wu W., Hazen S.L.: Activated leukocytes oxidativelydamage DNA, RNA, and the nucleotide pool through halide-dependentformation of hydroxyl radical. Biochemistry, 2000; 39: 5474-5482
    Google Scholar
  • 102. Sheppard F.R., Kelher M.R., Moore E.E., McLaughlin N.J., BanerjeeA., Silliman C.C.: Structural organization of the neutrophilNADPH oxidase: phosphorylation and translocation during primingand activation. J. Leukoc. Biol., 2005; 78: 1025-1042
    Google Scholar
  • 103. Shukla V., Mishra S.K., Pant H.C.: Oxidative stress in neurodegeneration.Adv. Pharmacol. Sci., 2011; 2011: 572634
    Google Scholar
  • 104. Sigal N., Gorzalczany Y., Pick E.: Two pathways of activationof the superoxide-generating NADPH oxidase of phagocytes in vitro- distinctive effects of inhibitors. Inflammation, 2003; 27: 147-159
    Google Scholar
  • 105. Smith R.M., Connor J.A., Chen L.M., Babior B.M.: The cytosolicsubunit p67phox contains an NADPH-binding site that participatesin catalysis by the leukocyte NADPH oxidase. J. Clin. Invest., 1996;98: 977-983
    Google Scholar
  • 106. Steinbeck M.J., Khan A.U., Karnovsky M.J: Intracellular singletoxygen generation by phagocytosing neutrophils in responseto particles coated with a chemical trap. J. Biol. Chem., 1992; 267:13425-13433
    Google Scholar
  • 107. Stiburek L., Hansikova H., Tesarova M., Cerna L., Zeman J.:Biogenesis of eukaryotic cytochrome c oxidase. Physiol. Res., 2006;55, Suppl. 2: S27-S41
    Google Scholar
  • 108. Suh Y.A., Arnold R.S., Lassegue B., Shi J., Xu X., Sorescu D.,Chun A.B., Griendling K.K., Lambeth J.D.: Cell transformation bythe superoxide-generating oxidase Mox1. Nature, 1999; 401: 79-82
    Google Scholar
  • 109. Takeya R., Ueno N., Kami K., Taura M., Kohjima M., Izaki T.,Nunoi H., Sumimoto H.: Novel human homologues of p47phox andp67phox participate in activation of superoxide-producing NADPHoxidases J. Biol. Chem., 2003; 278: 25234-25246
    Google Scholar
  • 110. Terlecky S.R., Terlecky L.J., Giordano C.R.: Peroxisomes, oxidativestress, and inflammation. World J. Biol. Chem., 2012; 3: 93-97
    Google Scholar
  • 111. Thannickal V.J., Fanburg B.L.: Reactive oxygen species in cell signaling.Am. J. Physiol. Lung Cell Mol. Physiol., 2000: 279: L1005-L1028
    Google Scholar
  • 112. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., TelserJ.: Free radicals and antioxidants in normal physiological functionsand human disease. Int. J. Biochem. Cell Biol., 2007; 39: 44-84
    Google Scholar
  • 113. van Bruggen R., Anthony E., Fernandez-Borja M., Roos D.: Continuoustranslocation of Rac2 and the NADPH oxidase componentp67phox during phagocytosis. J. Biol. Chem., 2004; 279: 9097-9102
    Google Scholar
  • 114. Vergnaud S., Paclet M.H., El Benna J., Pocidalo M.A., Morel F.:Complementation of NADPH oxidase in p67-phox-deficient CGDpatients p67-phox/p40-phox interaction Eur. J. Biochem., 2000; 267:1059-1067
    Google Scholar
  • 115. Vignais P.V. The superoxide-generating NADPH oxidase: structuralaspects and activation mechanism. Cell. Mol. Life Sci., 2002;59: 1428-1459
    Google Scholar
  • 116. Wentworth P. Jr, McDunn J.E., Wentworth A.D., Takeuchi C.,Nieva J., Jones T., Bautista C., Ruedi J.M., Gutierrez A., Janda K.D.,Babior B.M., Eschenmoser A., Lerner R.A.: Evidence for antibody–catalyzed ozone formation in bacterial killing and inflammation.Science, 2002; 298: 2195-2199
    Google Scholar
  • 117. Wikström M.: Proton translocation by cytochrome c oxidase:a rejoinder to recent criticism. Biochemistry, 2000; 39: 3515-3519
    Google Scholar
  • 118. Winterbourn C.C.: Biological reactivity and biomarkers of theneutrophil oxidant, hypochlorous acid. Toxicology, 2002; 181-182:223-227
    Google Scholar

Full text

Skip to content