Mechanisms of angiogenesis in neoplasia

COMMENTARY ON THE LAW

Mechanisms of angiogenesis in neoplasia

Anna Antonina Sobocińska 1 , Anna M. Czarnecka 1 , Cezary Szczylik 1

1. Klinika Onkologii z Laboratorium Onkologii Molekularnej, Wojskowy Instytut Medyczny, Warszawa

Published: 2016-12-08
DOI: 10.5604/17322693.1225950
GICID: 01.3001.0009.6895
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2016; 70 : 1166-1181

 

Abstract

Mechanism of forming new capillary from basal vessels, named angiogenesis, exist under both physiological and pathological conditions. Initiation of this process requires imbalance between proangiogenic and antiangiogenic factors, which can occur for instance under hypoxic conditions. Angiogenesis is complex process which allow tumor cells to proliferate, thus providing tumor to increase its structure. This dependence is highly connected to enhanced migration of tumor cells through blood, which often ends up being an onset of metastasis. It has been proved that capillaries that form during tumor lifetime are different in case of morphology. However, it seems that antigens spread through these blood vessel are the same as antigens produced during physiological angiogenesis. In recent years angiogenesis has become one of the most important targets in therapies used in oncology. Antiangiogenic therapies have proven itself to be very spectacular and promising in treatment of renal and pancreatic cancers or multiple myeloma. Bewacizumab, Sunitinib, Cetuximab and Talidomid are examples of drugs used in such therapies. Tyrosine kinase inhibitors are group that represents most of the drugs of antiangiogenic properties. It is worth mentioning that during administration of such substances spectrum of side effects is observed. However, antiangiogenic therapy is one of the most promising targets in today’s oncology. Therefore, it is highly explainable to continue further research in this area.

References

  • 1. Ahluwalia A., Tarnawski A.S.: Critical role of hypoxia sensor – HIF-1α in VEGF gene activation. Implications for angiogenesis and tissueinjury healing. Curr. Med. Chem., 2012; 19: 90-97
    Google Scholar
  • 2. Akslen L.A., Straume O., Geisler S., Sorlie T., Chi J.T., Aas T., Borresen-DaleA.L., Lonning P.E.: Glomeruloid microvascular proliferationis associated with lack of response to chemotherapy in breastcancer. Br. J. Cancer., 2011; 105: 9-12
    Google Scholar
  • 3. Alfaidy N., Hoffmann P., Boufettal H., Samouh N., AboussaouiraT., Benharouga M., Feige J.J., Brouillet S.: The multiple roles of EGVEGF/PROK1in normal and pathological placental angiogenesis.Biomed. Res. Int., 2014; 2014: 451906
    Google Scholar
  • 4. Antoniak K., Nowak J.Z.: Bewacizumab – postęp w leczeniu nowotworówz przerzutami i nadzieja pacjentów z retinopatią proliferacyjną.Postępy Hig. Med. Dośw., 2007; 61: 320-330
    Google Scholar
  • 5. Ausprunk D.H., Folkman J.: Migration and proliferation of endothelialcells in preformed and newly formed blood vessels duringtumor angiogenesis. Microvasc. Res., 1977; 14: 53-65
    Google Scholar
  • 6. Baeten C.I., Hillen F., Pauwels P., de Bruine A.P., Baeten C.G.: Prognosticrole of vasculogenic mimicry in colorectal cancer. Dis. Colon.Rectum, 2009; 52: 2028-2035
    Google Scholar
  • 7. Bagheri A., Chianeh Y., Rao P.: Role of angiogenic factors in recurrentpregnancy loss. Int. J. Reproduction, Contraception, ObstetricsGynecology, 2013; 2: 497
    Google Scholar
  • 8. Barańska P., Jerczyńska H., Pawłowska Z.: Czynnik wzrostu śródbłonkanaczyń – budowa i funkcje. Postępy Biochem., 2005; 51: 12-21
    Google Scholar
  • 9. Bianco R., Garofalo S., Rosa R., Damiano V., Gelardi T., Daniele G.,Marciano R., Ciardiello F., Tortora G.: Inhibition of mTOR pathwayby everolimus cooperates with EGFR inhibitors in human tumourssensitive and resistant to anti-EGFR drugs. Br. J. Cancer., 2008; 98:923-930
    Google Scholar
  • 10. Biedka M., Makarewicz R., Kopczyńska E., Marszałek A., GoralewskaA., Kardymowicz H.: Angiogenesis and lymphangiogenesisas prognostic factors after therapy in patients with cervical cancer.Contemp. Oncol., 2012; 16: 6-11
    Google Scholar
  • 11. Bielecka Z.F., Czarnecka A.M., Solarek W., Kornakiewicz A., SzczylikC.: Mechanisms of acquired resistance to tyrosine kinase inhibitorsin clear – cell renal cell carcinoma (ccRCC). Curr. SignalTransduct. Ther., 2014; 8: 218-228
    Google Scholar
  • 12. Cai Y., Xia Q., Su Q., Luo R., Sun Y., Shi Y., Jiang W.: mTOR inhibitorRAD001 (everolimus) induces apoptotic, not autophagic celldeath, in human nasopharyngeal carcinoma cells. Int. J. Mol. Med.,2013; 31: 904-912
    Google Scholar
  • 13. Cao Y.: Angiogenesis as a therapeutic target for obesity andmetabolic diseases. Chem. Immunol. Allergy, 2014; 99: 170-179
    Google Scholar
  • 14. Cargnello M., Tcherkezian J., Roux P.P.: The expanding role ofmTOR in cancer cell growth and proliferation. Mutagenesis, 2015;30: 169-176
    Google Scholar
  • 15. Chouaib S., Messai Y., Couve S., Escudier B., Hasmim M., NomanM.Z.: Hypoxia promotes tumor growth in linking angiogenesis toimmune escape. Front. Immunol., 2012; 3: 21
    Google Scholar
  • 16. Chua R.A., Arbiser J.L.: The role of angiogenesis in the pathogenesisof psoriasis. Autoimmunity, 2009; 42: 574-579
    Google Scholar
  • 17. Chung H.J., Mahalingam M.: Angiogenesis, vasculogenic mimicryand vascular invasion in cutaneous malignant melanoma – implicationsfor therapeutic strategies and targeted therapies. Expert. Rev.Anticancer Ther., 2014; 14: 621-639
    Google Scholar
  • 18. Cibeira M.T., Rozman M., Segarra M., Lozano E., Rosinol L., CidM.C., Filella X., Bladé J.: Bone marrow angiogenesis and angiogenicfactors in multiple myeloma treated with novel agents. Cytokine,2008; 41: 244-253
    Google Scholar
  • 19. Cybulski C., Krzystolik K., Murgia A., Górski B., Debniak T.,Jakubowska A., Martella M., Kurzawski G., Prost M., Kojder I., LimonJ., Nowacki P., Sagan L., Białas B., Kaluza J. i wsp.: Germline mutationsin the von Hippel-Lindau (VHL) gene in patients from Poland:disease presentation in patients with deletions of the entire VHLgene. J. Med. Genet., 2002; 39: E38
    Google Scholar
  • 20. Czarnecka A.M., Kornakiewicz A., Lian F., Szczylik C.: Futureperspectives for mTOR inhibitors in renal cell cancer treatment.Future Oncol., 2015; 11: 801-817
    Google Scholar
  • 21. Czarnecka A.M., Szczylik C., Rini B.: The use of sunitinib in renalcell carcinoma: where are we now? Expert. Rev. Anticancer Ther.,2014; 14: 983-999
    Google Scholar
  • 22. Davis S., Aldrich T.H., Jones P.F., Acheson A., Compton D.L., JainV., Ryan T.E., Bruno J., Radziejewski C., Maisonpierre P.C., YancopoulosG.D.: Isolation of angiopoietin-1, a ligand for the TIE2 receptor,by secretion-trap expression cloning. Cell, 1996; 87: 1161-1169
    Google Scholar
  • 23. Dmoszyńska A.: Diagnosis and the current trends in multiplemyeloma therapy. Pol. Arch. Med. Wewn., 2008; 118: 563-566
    Google Scholar
  • 24. Döme B., Hendrix M.J., Paku S., Tóvári J., Timár J.: Alternativevascularization mechanisms in cancer: pathology and therapeuticimplications. Am. J. Pathol., 2007; 170: 1-15
    Google Scholar
  • 25. Downs L.S. Jr., Rogers L.M., Yokoyama Y., Ramakrishnan S.: Thalidomideand angiostatin inhibit tumor growth in a murine xenograftmodel of human cervical cancer. Gynecol. Oncol., 2005; 98:203-210
    Google Scholar
  • 26. Dudek A.Z., Zolnierek J., Dham A., Lindgren B.R., Szczylik C.:Sequential therapy with sorafenib and sunitinib in renal cell carcinoma.Cancer, 2009; 115: 61-67
    Google Scholar
  • 27. Dusseau J.W., Hutchins P.M.: Hypoxia-induced angiogenesisin chick chorioallantoic membranes: a role for adenosine. Respir.Physiol., 1988; 71: 33-44
    Google Scholar
  • 28. Facciabene A., Peng X., Hagemann I.S., Balint K., Barchetti A.,Wang L.P., Gimotty P.A., Gilks C.B., Lal P., Zhang L., Coukos G.: Tumourhypoxia promotes tolerance and angiogenesis via CCL28 and T(reg)cells. Nature, 2011; 475: 226-230
    Google Scholar
  • 29. Fajardo L.F., Kwan H.H., Kowalski J., Prionas S.D., Allison A.C.:Dual role of tumor necrosis factor-alpha in angiogenesis. Am. J.Pathol., 1992; 140: 539-544
    Google Scholar
  • 30. Ferrara N.: Vascular endothelial growth factor and age-relatedmacular degeneration: from basic science to therapy. Nat. Med.,2010; 16: 1107-1111
    Google Scholar
  • 31. Fiedler U., Krissl T., Koidl S., Weiss C., Koblizek T., Deutsch U.,Martiny-Baron G., Marmé D., Augustin H.G.: Angiopoietin-1 and angiopoietin-2share the same binding domains in the Tie-2 receptorinvolving the first Ig-like loop and the epidermal growth factor-likerepeats. J. Biol. Chem., 2003; 278: 1721-1727
    Google Scholar
  • 32. Folberg R., Hendrix M.J., Maniotis A.J.: Vasculogenic mimicryand tumor angiogenesis. Am. J. Pathol., 2000; 156: 361-381
    Google Scholar
  • 33. Forsythe J.A., Jiang B.H., Iyer N.V., Agani F., Leung S.W., KoosR.D., Semenza G.L.: Activation of vascular endothelial growth factorgene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol.,1996; 16: 4604-4613
    Google Scholar
  • 34. Gerhardt H.: VEGF and endothelial guidance in angiogenic sprouting.Organogenesis, 2008; 4: 241-246
    Google Scholar
  • 35. Gerhardt H., Golding M., Fruttiger M., Ruhrberg C., Lundkvist A.,Abramsson A., Jeltsch M., Mitchell C., Alitalo K., Shima D., BetsholtzC.: VEGF guides angiogenic sprouting utilizing endothelial tip cellfilopodia. J. Cell. Biol., 2003; 161: 1163-1177
    Google Scholar
  • 36. Ghaneh P., Costello E., Neoptolemos J.P.: Biology and managementof pancreatic cancer. Gut, 2007; 56: 1134-1152
    Google Scholar
  • 37. Goudar R.K., Vlahovic G.: Hypoxia, angiogenesis, and lung cancer.Curr. Oncol. Rep., 2008; 10: 277-282
    Google Scholar
  • 38. Gryczynski M., Kobos J., Murlewska A., Pietruszewska W.: Prze-żywalność chorych na raka krtani a wybrane czynniki rokownicze.Otolaryngol. Pol., 2003; 57: 329-340
    Google Scholar
  • 39. Gryczynski M., Kobos J., Niewiadomska H., Pietruszewska W.:Assessment of cell proliferation antigen Ki-67, protein p53 relatedto apoptosis and angiogenesis in laryngeal cancer. Otolaryngol. Pol.,2000; 54, Suppl. 31: 191-195
    Google Scholar
  • 40. Gryczynski M., Papierz W., Niewiadomska H., Kobos J., PietruszewskaW.: Ocena ekspresji czasteczki adhezyjnej CD44, produktugenu nm23 i intensywności angiogenezy u chorych z rakiem krtani.Otolaryngol. Pol., 2000; 54: 669-674
    Google Scholar
  • 41. Guglielmelli P., Barosi G., Rambaldi A., Marchioli R., MasciulliA., Tozzi L., Biamonte F., Bartalucci N., Gattoni E., Lupo M.L., FinazziG., Pancrazzi A., Antonioli E., Susini M.C., Pieri L. i wsp.: Safety andefficacy of everolimus, a mTOR inhibitor, as single agent in a phase1/2 study in patients with myelofibrosis. Blood, 2011; 118: 2069-2076
    Google Scholar
  • 42. Hefler L.A., Zeillinger R., Grimm C., Sood A.K., Cheng W.F., GadducciA., Tempfer C.B., Reinthaller A.: Preoperative serum vascularendothelial growth factor as a prognostic parameter in ovarian cancer.Gynecol. Oncol., 2006; 103: 512-517
    Google Scholar
  • 43. Hirota K., Semenza G.L.: Regulation of angiogenesis by hypoxiainduciblefactor 1. Crit. Rev. Oncol. Hematol., 2006; 59: 15-26
    Google Scholar
  • 44. Hlatky L., Tsionou C., Hahnfeldt P., Coleman C.N.: Mammaryfibroblasts may influence breast tumor angiogenesis via hypoxiainducedvascular endothelial growth factor up-regulation and proteinexpression. Cancer Res., 1994; 54: 6083-6086
    Google Scholar
  • 45. Hrab M., Olek-Hrab K., Antczak A., Kwias Z., Milecki T.: Interleukin-6(IL-6) and C-reactive protein (CRP) concentration prior to totalnephrectomy are prognostic factors in localized renal cell carcinoma(RCC). Rep. Pract. Oncol. Radiother., 2013; 18: 304-309
    Google Scholar
  • 46. Hua H., Li M., Luo T., Yin Y., Jiang Y.: Matrix metalloproteinasesin tumorigenesis: an evolving paradigm. Cell. Mol. Life. Sci., 2011;68: 3853-3868
    Google Scholar
  • 47. Ioachim E., Damala K., Tsanou E., Briasoulis E., Papadiotis E., MitselouA., Charhanti A., Doukas M., Lampri L., Arvanitis D.L.: Thrombospondin-1expression in breast cancer: prognostic significance andassociation with p53 alterations, tumour angiogenesis and extracellularmatrix components. Histol. Histopathol., 2012; 27: 209-216
    Google Scholar
  • 48. Iruela-Arispe M.L., Lombardo M., Krutzsch H.C., Lawler J., RobertsD.D.: Inhibition of angiogenesis by thrombospondin-1 is mediatedby 2 independent regions within the type 1 repeats. Circulation,1999; 100: 1423-1431
    Google Scholar
  • 49. Jimenez Cuenca B.: Mechanism of inhibition of tumoral angiogenesisby thrombospondin-1. Nefrologia, 2003; 23, Suppl. 3: 49-53
    Google Scholar
  • 50. Kandemir N.O., Narli Z.I., Kalayci M., Ozdamar S.O.: A rare patternof angiogenesis in meningiomas: glomeruloid microvascularproliferation. Turk. Neurosurg., 2014; 24: 765-769
    Google Scholar
  • 51. Komorowski J., Jerczyńska H., Siejka A., Barańska P., ŁawnickaH., Pawłowska Z., Stepień H.: Effect of thalidomide affecting VEGFsecretion, cell migration, adhesion and capillary tube formationof human endothelial EA.hy 926 cells. Life Sci., 2006; 78: 2558-2563
    Google Scholar
  • 52. Kornakiewicz A., Solarek W., Bielecka Z.F., Lian F., Szczylik C.,Czarnecka A.M.: Mammalian target of rapamycin inhibitors resistancemechanisms in clear cell renal cell carcinoma. Curr. SignalTransduct. Ther., 2014; 8: 210-218
    Google Scholar
  • 53. Kurz H., Burri P.H., Djonov V.G.: Angiogenesis and vascular remodelingby intussusception: from form to function. News Physiol.Sci., 2003; 18: 65-70
    Google Scholar
  • 54. Laplante M., Sabatini D.M.: mTOR signaling in growth controland disease. Cell, 2012; 149: 274-293
    Google Scholar
  • 55. Leenders W.P., Küsters B., de Waal R.M.: Vessel co-option: howtumors obtain blood supply in the absence of sprouting angiogenesis.Endothelium, 2002; 9: 83-87
    Google Scholar
  • 56. Leenders W.P., Küsters B., Verrijp K., Maass C., Wesseling P.,Heerschap A., Ruiter D., Ryan A., de Waal R.: Antiangiogenic therapyof cerebral melanoma metastases results in sustained tumor progressionvia vessel co-option. Clin. Cancer. Res., 2004; 10: 6222-6230
    Google Scholar
  • 57. Lionello M., Lovato A., Staffieri A., Blandamura S., Turato C.,Giacomelli L., Staffieri C., Marioni G.: The EGFR-mTOR pathway andlaryngeal cancer angiogenesis. Eur. Arch. Otorhinolaryngol., 2014;271: 757-764
    Google Scholar
  • 58. Liotta L.A., Steeg P.S., Stetler-Stevenson W.G.: Cancer metastasisand angiogenesis: an imbalance of positive and negative regulation.Cell, 1991; 64: 327-336
    Google Scholar
  • 59. Lockhart A.C., Rothenberg M.L., Berlin J.D.: Treatment for pancreaticcancer: current therapy and continued progress. Gastroenterology,2005; 128: 1642-1654
    Google Scholar
  • 60. Mariscalco G., Lorusso R., Sessa F., Bruno V.D., Piffaretti G., BanachM., Cattaneo P., Cozzi G.P., Sala A.: Imbalance between pro-angiogenicand anti-angiogenic factors in rheumatic and mixomatousmitral valves. Int. J. Cardiol., 2011; 152: 337-344
    Google Scholar
  • 61. Morisada T., Kubota Y., Urano T., Suda T., Oike Y.: Angiopoietinsand angiopoietin-like proteins in angiogenesis. Endothelium,2006; 13: 71-79
    Google Scholar
  • 62. Mysliwiec P., Dadan J.: Znaczenie angiogenezy w raku trzustki.Przegl. Lek., 2009; 66: 155-158
    Google Scholar
  • 63. Naumnik W., Chyczewska E., Ossolinska M.: Serum levels ofangiopoietin-1, angiopoietin-2, and their receptor tie-2 in patientswith nonsmall cell lung cancer during chemotherapy. Cancer Invest.,2009; 27: 741-746
    Google Scholar
  • 64. Niedźwiecki S., Stepień T., Kopeć K., Kuzdak K., Komorowski J.,Krupiński R., Stepień H.: Angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2) and Tie-2 (a receptor tyrosine kinase) concentrations in peripheralblood of patients with thyroid cancers. Cytokine, 2006; 36: 291-295
    Google Scholar
  • 65. Otrock Z.K., Mahfouz R.A., Makarem J.A., Shamseddine A.I.: Understandingthe biology of angiogenesis: review of the most importantmolecular mechanisms. Blood Cells Mol. Dis., 2007; 39: 212-220
    Google Scholar
  • 66. Paku S., Paweletz N.: First steps of tumor-related angiogenesis.Lab. Invest., 1991; 65: 334-346
    Google Scholar
  • 67. Park Y.W., Kang Y.M., Butterfield J., Detmar M., Goronzy J.J., WeyandC.M.: Thrombospondin 2 functions as an endogenous regulatorof angiogenesis and inflammation in rheumatoid arthritis. Am. J.Pathol., 2004; 165: 2087-2098
    Google Scholar
  • 68. Pietruszewska W., Niewiadomska H., Kobos J., JózefowiczKorczyńskaM., Gryczyński M.: Significance of angiogenesis in laryngealcancer. Otolaryngol. Pol., 2000; 54, Suppl. 31: 167-170
    Google Scholar
  • 69. Plank M.J., Sleeman B.D., Jones P.F.: The role of the angiopoietinsin tumour angiogenesis. Growth Factors, 2004; 22: 1-11
    Google Scholar
  • 70. Ramanujan S., Koenig G.C., Padera T.P., Stoll B.R., Jain R.K.: Localimbalance of proangiogenic and antiangiogenic factors: a potentialmechanism of focal necrosis and dormancy in tumors. Cancer Res.,2000; 60: 1442-1448
    Google Scholar
  • 71. Ravaud A, Gross-Goupil M.: Overcoming resistance to tyrosinekinase inhibitors in renal cell carcinoma. Cancer Treat. Rev., 2012;38: 996-1003
    Google Scholar
  • 72. Reginato S., Gianni-Barrera R., Banfi A.: Taming of the wild vessel:promoting vessel stabilization for safe therapeutic angiogenesis.Biochem. Soc. Trans., 2011; 39: 1654-1658
    Google Scholar
  • 73. Reisinger K., Baal N., McKinnon T., Münstedt K., Zygmunt M.:The gonadotropins: tissue-specific angiogenic factors? Mol. Cell.Endocrinol., 2007; 269: 65-80
    Google Scholar
  • 74. Reiss Y., Machein M.R., Plate K.H.: The role of angiopoietins during angiogenesis in gliomas. Brain Pathol., 2005; 15: 311-317
    Google Scholar
  • 75. Sacewicz I., Wiktorska M., Wysocki T., Niewiarowska J.: Mechanizmyangiogenezy nowotworowej. Postępy Hig. Med. Dośw.,2009; 63: 159-168
    Google Scholar
  • 76. Sadłecki P., Walentowicz-Sadłecka M., Szymański W., Grabiec M.:Porównanie stężeń VEGF, IL-8 oraz β-FGF w surowicy krwi i płynieotrzewnowym u pacjentek leczonych z powodu raka jajnika. Ginekol.Pol., 2011; 82: 498-502
    Google Scholar
  • 77. Semenza G.L.: Targeting HIF-1 for cancer therapy. Nat. Rev.Cancer, 2003; 3: 721-732
    Google Scholar
  • 78. Shalaby F., Rossant J., Yamaguchi T.P., Gertsenstein M., Wu X.F.,Breitman M.L., Schuh A.C.: Failure of blood-island formation andvasculogenesis in Flk-1-deficient mice. Nature, 1995; 376: 62-66
    Google Scholar
  • 79. Skotnicki A.B., Wolska-Smoleń T., Jurczyszyn A.: Multiple myeloma- new therapeutic perspectives. Przegl. Lek., 1999; 56, Suppl.1: 67-72
    Google Scholar
  • 80. Soker S.: Neuropilin in the midst of cell migration and retraction.Int. J. Biochem. Cell Biol., 2001; 33: 433-437
    Google Scholar
  • 81. Sundberg C., Nagy J.A., Brown L.F., Feng D., Eckelhoefer I.A.,Manseau E.J., Dvorak A.M., Dvorak H.F.: Glomeruloid microvascularproliferation follows adenoviral vascular permeability factor/vascularendothelial growth factor-164 gene delivery. Am. J. Pathol.,2001; 158: 1145-1160
    Google Scholar
  • 82. Swidzińska E., Naumnik W., Chyczewska E.: Angiogeneza i neoangiogeneza– znaczenie w raku płuca i innych nowotworach. Pneumonol.Alergol. Pol., 2006; 74: 414-420
    Google Scholar
  • 83. Tahergorabi Z., Khazaei M.: The relationship between inflammatorymarkers, angiogenesis, and obesity. ARYA Atheroscler., 2013;9: 247-253
    Google Scholar
  • 84. Tanaka F., Oyanagi H., Takenaka K., Ishikawa S., Yanagihara K.,Miyahara R., Kawano Y., Li M., Otake Y., Wada H.: Glomeruloid microvascular proliferation is superior to intratumoral microvesseldensity as a prognostic marker in non-small cell lung cancer. CancerRes., 2003; 63: 6791-6794
    Google Scholar
  • 85. Voros G., Maquoi E., Demeulemeester D., Clerx N., Collen D.,Lijnen H.R.: Modulation of angiogenesis during adipose tissue developmentin murine models of obesity. Endocrinology, 2005; 146:4545-4554
    Google Scholar
  • 86. Walski M., Frontczak-Baniewicz M.: Cechy ultrastrukturalneprawidłowego i dysfunkcyjnego śródbłonka naczyń krwionośnych.Pol. Arch. Med. Wewn., 2007; 117, Suppl.: 46-49
    Google Scholar
  • 87. Wysocki P.J., Zolnierek J., Szczylik C., Mackiewicz A.: Targetedtherapy of renal cell cancer. Curr. Opin. Investig. Drugs, 2008; 9:570-575
    Google Scholar
  • 88. Xiong H.Q., Rosenberg A., LoBuglio A., Schmidt W., Wolff R.A.,Deutsch J., Needle M., Abbruzzese J.L.: Cetuximab, a monoclonal antibodytargeting the epidermal growth factor receptor, in combinationwith gemcitabine for advanced pancreatic cancer: a multicenterphase II trial. J. Clin. Oncol., 2004; 22: 2610-2616
    Google Scholar
  • 89. Yamanaka H.: Rheumatoid arthritis and angiogenesis. Intern.Med., 2003; 42: 297-299
    Google Scholar
  • 90. Yancopoulos G.D., Davis S., Gale N.W., Rudge J.S., Wiegand S.J.,Holash J.: Vascular-specific growth factors and blood vessel formation.Nature, 2000; 407: 242-248
    Google Scholar
  • 91. Yu Q.: The dynamic roles of angiopoietins in tumor angiogenesis.Future Oncol., 2005; 1: 475-484
    Google Scholar
  • 92. Żołnierek J., Nurzyński P., Langiewicz P., Oborska S., WaśkoGrabowskaA., Kuszatal E., Obrocka B., Szczylik C.: Efficacy of targetedtherapy in patients with renal cell carcinoma with pre-existing ornew bone metastases. J. Cancer Res. Clin. Oncol., 2010; 136: 371-378
    Google Scholar

Full text

Skip to content