Transformation of medicinal plants using Agrobacterium tumefaciens
Katarzyna Bandurska 1 , Agnieszka Berdowska 1 , Małgorzata Król 1Abstract
For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.
References
- 1. Abdin M.Z., Israr M., Rehman R.U., Jain S.K.: Artemisinin, a novelantimalarial drug: biochemical and molecular approaches forenhanced production. Planta Med., 2003; 69: 289-299
Google Scholar - 2. Albach D.C., Meudt H.M., Oxelman B.: Piecing together the „new“Plantaginaceae. Am. J. Bot., 2005; 92: 297-315
Google Scholar - 3. Bandurska K., Król I., Myga-Nowak M.: Interferony: między strukturąa funkcją. Postępy Hig. Med. Dośw., 2014; 68: 428-440
Google Scholar - 4. Bhattacharya A., Ramanathan M., Ghosal S., Bhattacharya S.K.:Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicityin rats. Phytother. Res., 2000; 14: 568-570
Google Scholar - 5. Cal C., Garban H., Jazirehi A., Yeh C., Mizutani Y., Bonavida B.: Resveratroland cancer: chemoprevention, apoptosis, and chemo-immunosensitizingactivities. Curr. Med. Chem. Anti-Canc. Agents., 2003; 3: 77-93
Google Scholar - 6. Chen J.C., Chiu M.H., Nie R.L., Cordell G.A., Qiu S.X.: Cucurbitacinsand cucurbitane glycosides: structures and biological activities. Nat.Prod. Rep., 2005; 22: 386-399
Google Scholar - 7. Chen W.P., Punja Z.K.: Agrobacterium-mediated transformationof American ginseng with a rice chitinase gene. Plant. Cell. Rep.,2002; 20: 1039-1045
Google Scholar - 8. Chhabra G., Chaudhary D., Sainger M., Jaiwal P.K.: Genetic transformationof Indian isolate of Lemna minor mediated by Agrobacteriumtumefaciens and recovery of transgenic plants. Physiol. Mol.Biol. Plants., 2011; 17: 129-136
Google Scholar - 9. Christie P.J., Gordon J.E.: The Agrobacterium Ti plasmids. Microbiol.Spectr., 2014; 2: PLAS-0010-2013
Google Scholar - 10. Cruz E.A., Reuter S., Martin H., Dehzad N., Muzitano M.F., Costa S.S., Rossi-Bergmann B., Buhl R., Stassen M., Taube C.: Kalanchoepinnata inhibits mast cell activation and prevents allergic airwaydisease. Phytomedicine, 2012; 19: 115-121
Google Scholar - 11. Dreger M., Krajewska-Patan A., Górska-Paukszta M., Pieszak M.,Buchwald W., Mikołajczak P.: Production of the secondary metabolitesin Salvia miltiorrhiza in vitro cultures. Herb. Polon., 2010; 56: 78-90
Google Scholar - 12. Elfahmi S.S., Suhandono S., Chahyadi A.: Optimization of genetictransformation of Artemisia annua L. using Agrobacterium for artemisininproduction. Pharmacogn. Mag., 2014; 10: S176-S180
Google Scholar - 13. Facchini P.J., De Luca V.: Opium poppy and Madagascar periwinkle:model non-model systems to investigate alkaloid biosynthesisin plants. Plant. J., 2008; 54: 763-784
Google Scholar - 14. Franzyk H., Olsen C.E., Jensen S.R.: Dopaol 2-keto- and 2,3-diketoglycosidesfrom Chelone obliqua. J. Nat. Prod., 2004; 67: 1052-1054
Google Scholar - 15. Gala B.V., Gujar V.: Product development, biochemical, anti-microbialand organoleptic analysis on (Trigonella foenum-graecum) fenugreekseeds and leaves. Plant Sciences Feed, 2014; 4: 15-18
Google Scholar - 16. Gao Z., Li Y., Chen J., Chen Z., Cui M.L.: A rapid and stable Agrobacterium-mediatedtransformation method of a medicinal plantChelone glabra L. App. Biochem. Biotechnol., 2015; 175: 2390-2398
Google Scholar - 17. Gelvin S. B.: Agrobacterium in the genomics age. Plant. Physiol.,2009; 150: 1665-1676
Google Scholar - 18. Ghimire B.K., Lim J.D., Yu C.Y.: Biological activity of Rehmanniaglutinosa transformed with resveratrol synthase genes. W: Transgenicplants – advances and limitations, red.: Yelda Ozden Çiftçi.InTech, 2012, 161-172
Google Scholar - 19. Gohlke J., Deeken R.: Plant responses to Agrobacterium tumefaciensand crown gall development. Front. Plant. Sci., 2014; 5: 1-11
Google Scholar - 20. Hashem Abadi D., Kaviani B.: In vitro proliferation of an importantmedicinal plant aloe – a method for rapid production. Aust. J.Crop. Sci., 2010; 4: 216-222
Google Scholar - 21. He C., Zhang J., Chen J., Ye X., Du L., Dong Y., Zhao H.: Genetictransformation of Aloe barbadensis Miller by Agrobacterium tumefaciens.J. Genet. Genomics., 2007; 34: 1053-1060
Google Scholar - 22. Hosseini B., Shahriari-Ahmadi F., Hashemi H., Marashi M.H.,Mohseniazar M., Farokhzad A., Sabokbari M.: Transient expressionof cor gene in Papaver somniferum. BioImpacts, 2011; 1: 229-235
Google Scholar - 23. Ignatowicz E., Baer-Dubowska W.: Resveratrol, a natural chemopreventiveagent against degenerative diseases. Pol. J. Pharmacol.,2001; 53: 557-569
Google Scholar - 24. Jayaprakasam B., Nair M.G.: Cyclooxygenase-2 enzyme inhibitorywithanolides from Withania somnifera leaves. Tetrahedron.,2003; 59: 841-849
Google Scholar - 25. Jaziri M., Fauconnier M.L., Guo Y.W., Marlier M., Vanhaelen M.:Genetic transformation of Anthemis nobilis L. (Roman chamomile).Biotechnol. Agricult. Forest., 1999; 45: 47-54
Google Scholar - 26. Jhala A., Hall L.: Flax (Linum usitatissimum L.): current uses andfuture applications. Aust. J. Bas. App. Sci., 2010; 4: 4304-4312
Google Scholar - 27. Jiang R.W., Lau K.M., Hon P.M., Mark T.C., Woo K.S., Fung K.P.:Chemistry and biological activities of caffeic acid derivatives fromSalvia miltiorrhiza. Curr. Med. Chem., 2005; 12: 237-246
Google Scholar - 28. Jiao X.L., Bi W., Li M., Luo Y., Gao W.W.: Dynamic response ofginsenosides in American ginseng to root fungal pathogens. PlantSoil, 2011; 339: 317-327
Google Scholar - 29. Jung Y., Rhee Y., Auh C.K., Shim H., Choi J.J., Kwon S.T., Yang J.S.,Kim D., Kwon M.H., Kim Y.S., Lee S.: Production of recombinant singlechain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnataby in planta transformation. Plant. Cell. Rep., 2009; 28: 1593-1602
Google Scholar - 30. Khawar K.M., Gulbitti-Onarici S., Çöçü S., Erisen S., Sancak C.,Özcan S.: In vitro crown galls induced by Agrobacterium tumefaciensstrain A281 (pTiBo542) in Trigonella foenum-graecum. Biol. Plant.,2004; 48: 441-444
Google Scholar - 31. Kiyokawa S., Kikuchi Y., Kamada H., Harada H.: Genetic transformationof Begonia tuberhybrida by Ri rol genes. Plant Cell. Rep.,1996; 15: 606-609
Google Scholar - 32. Krasnyanski S., May R.A., Loskutov A., Ball T.M., Sink K.C.: Transformationof the limonene synthase gene into peppermint (Menthapiperita L.) and preliminary studies on the essential oil profiles ofsingle transgenic plants. Theor. Appl. Genet., 1999; 99: 676-682
Google Scholar - 33. Kumar M., Singh S., Singh S.: In vitro morphogenesis of a medicinalplant Aloe vera L. Asian J. Plant. Sci. Res., 2011; 1: 31-40
Google Scholar - 34. Lee G., Yu J., Cho S., Byun S.J., Kim D.H., Lee T.K., Kwon M.H.,Lee S.: A nucleic-acid hydrolyzing single chain antibody confersresistance to DNA virus infection in HeLa cells and C57BL/6 Mice.PLOS Pathog., 2014; 10: e1004208
Google Scholar - 35. Li M., Jiang F., Yu X., Miao Z.: Engineering isoprenoid biosynthesisin Artemisia annua L. for the production of taxadiene: a kayintermediate of taxol. Biomed. Res. Int., 2015; 2015: 504932
Google Scholar - 36. Li Y., Gao Z., Piao C., Lu K., Wang Z., Cui M.L.: A stable and efficientAgrobacterium tumefaciens-mediated genetic transformation ofthe medicinal plant Digitalis purpurea L. Appl. Biochem. Biotechnol.,2014; 172: 1807-1817
Google Scholar - 37. Lim D.W., Kim Y.T.: Dried root of Rehmannia glutinosa preventsbone loss in ovariectomized rats. Molecules, 2013; 18: 5804-5813
Google Scholar - 38. Lim T.K.: Begonia x tuberhybrida. W: Edible medicinal and non–medicinal plants. Vol. 7 Flowers. Springer Netherlands 2014, 556-558
Google Scholar - 39. Lowther W., Lorick K., Lawrence S.D., Yeow WS.: Expression ofbiologically active human interferon alpha 2 in Aloe vera. Transgenic.Res., 2012; 21: 1349-1357
Google Scholar - 40. Magnotta M., Murata J., Chen J., De Luca V.: Expression of deacetylvindoline-4-O-acetyltransferasein Catharanthus roseus hairyroots. Phytochemistry, 2007; 68: 1922-1931
Google Scholar - 41. Manvitha K., Bidya B.: Aloe vera: a wonder plant its history, cultivationand medicinal uses. J. Pharmacognosy Phytochem., 2014;2: 85-88
Google Scholar - 42. Menger L., Vacchelli E., Kepp O., Eggermont A., Tartour E., ZitvogelL., Kroemer G., Galluzzi L.: Trial watch: Cardiac glycosides andcancer therapy. Oncoimmunology, 2013; 2: e23082
Google Scholar - 43. Mierziak J., Wojtasik W., Kostyn K., Czuj T., Szopa J., Kulma A.:Crossbreeding of transgenic flax plants overproducing flavonoidsand glucosyltransferase results in progeny with improved antifungaland antioxidative properties. Mol. Breed., 2014; 34: 1917-1932
Google Scholar - 44. Mirjalili M.H., Fakhr-Tabatabaei S.M., Bonfill M., Alizadeh H.,Cusido R.M., Ghassempour A., Palazon J.: Morphology and withanolideproduction of Withania coagulans hairy root cultures. Eng.Life. Sci., 2009; 9: 197-204
Google Scholar - 45. Pandey V., Misra P., Chaturvedi P., Mishra M.K., Trivedi P.K., TuliR.: Agrobacterium tumefaciens-mediated transformation of Withaniasomnifera (L.) Dunal: an important medical plant. Plant Cell. Rep.,2010; 29: 133-141
Google Scholar - 46. Park K.S., Chang I.M.: Anti-inflammatory activity of aucubin byinhibition of tumor necrosis factor-α production in RAW 264.7 cells.Planta Med., 2004; 70: 778-779
Google Scholar - 47. Patil S., Jain G.: Holistic approach of Trigonella foenum-graecumin phytochemistry and pharmacology – a review. Curr. Trends Technol.Sci. 2014; 3: 34-48
Google Scholar - 48. Pérez-Bermúdez P., García A.A., Tuñón I., Gavidia I.: Digitalispurpurea P5βR2, encoding steroid 5β-reductase, is a novel defense–related gene involved in cardenolide biosynthesis. New Phytol.,2010; 185: 687-700
Google Scholar - 49. Pramila D.M., Xavier R., Marimuthu K., Kathiresan S., Khoo M.L., Senthilkumar M., Sathya K., Sreeramanan S.: Phytochemical analysisand antimicrobial potential of methanolic leaf extract of peppermint(Mentha piperita: Lamiaceae). J. Med. Plant. Res., 2012; 6: 331-335
Google Scholar - 50. Punja Z.K.: Genetic engineering of plants to enhance resistanceto fungal pathogens – a review of progress and future prospects.Can. J. Plant. Pathol., 2001; 23: 216-235
Google Scholar - 51. Qi L.W., Wang C.Z., Yuan C.S.: Ginsenosides from American ginseng:chemical and pharmacological diversity. Phytochemistry, 2011;72: 689-699
Google Scholar - 52. Rajput H.: Effects of Atropa belladonna as an anti-cholinergic.Nat. Prod. Chem. Res., 2013; 1: 104
Google Scholar - 53. Reynolds T.: Aloes: the genus Aloe. CRC Press, Boca Raton 2004
Google Scholar - 54. Rita P., Animesh D.K.: An updated overview on Atropa belladonnaL. Int. Res. J. Pharm., 2011; 2: 11-17
Google Scholar - 55. Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L.,Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., Chang M.C.,Withers S.T., Shiba Y., Sarpong R., Keasling J.D.: Production of theantimalarial drug precursor artemisinic acid in engineered yeast.Nature, 2006; 440: 940-943
Google Scholar - 56. Robb E.L., Page M.M., Wiens B.E., Stuart J.A.: Molecular mechanismsof oxidative stress resistance induced by resveratrol: specificand progressive induction of MnSOD. Biochem. Biophys. Res. Commun.,2008; 367: 406-412
Google Scholar - 57. Sharma A., Purkait B.: Identification of medicinally active ingredientin ultradiluted Digitalis purpurea: fluorescence spectroscopicand cyclic-voltammetric study. J. Anal. Methods Chem., 2012;2012: 109058
Google Scholar - 58. Shen Q., Chen Y.F., Wang T., Wu S.Y., Lu X., Zhang L., Zhang F.Y,Jiang W.M., Wang G.F., Tang K.X.: Overexpression of the cytochromeP450 monooxygenase (cyp71av1) and cytochrome P450 reductase(cpr) genes increased artemisinin content in Artemisia annua (Asteraceae).Genet. Mol. Res., 2012; 11: 3298-3309
Google Scholar - 59. Shim Y.Y., Reaney M.J.: Kinetic interactions between cyclolinopeptidesand immobilized human serum albumin by surface plasmonresonance. J. Agric. Food Chem., 2015; 63: 1099-1106
Google Scholar - 60. Sivanandhan G., Arun M., Mayavan S., Rajesh M., Mariashibu T.S.,Manickavasagam M., Selvaraj N., Ganapathi A.: Chitosan enhanceswithanolides production in adventitious root cultures of Withaniasomnifera (L.) Dunal. Ind. Crop. Prod., 2012; 37: 124-129
Google Scholar - 61. Sivanandhan G., Kapil Dev G., Theboral J., Selvaraj N., GanapathiA., Manickavasagam M.: Sonication, vacuum infiltration andthiol compounds enhance the Agrobacterium-mediated transformationfrequency of Withania somnifera (L.) Dunal. PLoS One, 2015;10: e0124693
Google Scholar - 62. Song G., Walworth A.: Agrobacterium tumefaciens-mediated transformationof Atropa belladonna. Plant Cell. Tiss. Organ. Cult., 2013;115: 107-113
Google Scholar - 63. Srivastava J.K., Shankar E., Gupta S.: Chamomile: a herbal medicineof the past with bright future. Mol. Med. Rep., 2010; 3: 895-901
Google Scholar - 64. Srivastava T., Das S., Sopory S.K., Srivastava P.S.: A reliable protocolfor transformation of Catharanthus roseus through Agrobacteriumtumefaciens. Physiol. Mol. Biol. Plants, 2009; 15: 93-98
Google Scholar - 65. Szopa J., Wróbel-Kwiatkowska M., Kulma A., Zuk M., Skórkowska-TelichowskaK., Dymińska L., Mączka M., Hanuza J., Zebrowski J.,Preisner M.: Chemical composition and molecular structure of fibersfrom transgenic flax producing polyhydroxybutyrate, and mechanicalproperties and platelet aggregation of composite materialscontaining these fibers. Compos. Sci. Technol., 2009; 69: 2438-2446
Google Scholar - 66. van Der Heijden R., Jacobs D.I., Snoeijer W., Hallard D., VerpoorteR.: The Catharanthus alkaloids: pharmacognosy and biotechnology.Curr. Med. Chem., 2004; 11: 607-628
Google Scholar - 67. Vincenzi S., Tomasi D., Gaiotti F, Lovat L., Giacosa S., Torchio F.,Rio Segade S., Rolle L.: Comparative study of the resveratrol contentof twenty-one italian red grape varieties. S. Afr. J. Enol. Vitic.,2013; 34: 30-35
Google Scholar - 68. Vladimirova I.N., Georgiyants V.A.: Biologically active compoundsfrom Lemna minor S. G. Gray. Pharm. Chem. J., 2014; 47: 599-601
Google Scholar - 69. Wang Q., Xing S., Pan Q., Yuan F., Zhao J., Tian Y., Chen Y., WangG., Tang K.: Development of efficient Catharanthus roseus regenerationand transformation system using Agrobacterium tumefaciens andhypocotyls as explants. BMC Biotechnol., 2012; 12: 34
Google Scholar - 70. WHO Malaria Policy Advisory Committee and Secretariat.: Malariapolicy advisory committee to the WHO: conclusions and recommendationsof eighth biannual meeting (September 2015). Malar.J., 2016; 15: 117
Google Scholar - 71. Wu B., Li Y., Yan H., Ma Y., Luo H., Yuan L., Chen S. Lu S.: Comprehensivetranscriptome analysis reveals novel genes involved incardiac glycoside biosynthesis and mlncRNAs associated with secondarymetabolism and stress response in Digitalis purpurea. BMCGenomics, 2012; 13: 15
Google Scholar - 72. Yan Y., Wang Z.: Genetic transformation of the medicinal plantSalvia miltiorrhiza by Agrobacterium tumefaciens-mediated method.Plant Cell. Tiss. Organ. Cult., 2007; 88: 175-184
Google Scholar - 73. Yang L., Stöckigt J.: Trends for diverse production strategies ofplant medicinal alkaloids. Nat. Prod. Rep., 2010; 27:1469-1479
Google Scholar - 74. Zhou L., Zuo Z., Chow M.S.: Danshen: an overview of its chemistry,pharmacology, pharmacokinetics, and clinical use. J. Clin.Pharmacol., 2005; 45: 1345-1359
Google Scholar - 75. Zhuang H., Kim Y.S., Koehler R.C., Dore S.: Potential mechanismby which resveratrol, a red wine constituent, protects neurons. Ann.N. Y. Acad. Sci., 2003; 993: 276-286
Google Scholar