The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis
Dorota Bryk 1 , Wioletta Olejarz 1 , Danuta Zapolska-Downar 1Abstract
Reactive oxygen species (ROS) play a key role in the pathogenesis of atherosclerosis. The main mechanisms which are involved are low-density lipoprotein oxidative modification, inactivation of nitric oxide and modulation of redox-sensitive signaling pathways. ROS contribute to several aspects of atherosclerosis including endothelial cell dysfunction, monocyte/macrophage recruitment and activation, stimulation of inflammation, and inducing smooth muscle cell migration and proliferation. NADPH oxidase is the main source of ROS in the vasculature. This enzyme consists of a membrane-bound heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox, p67phox and p40phox, and small GTP-binding proteins rac1 and rac 2. Seven distinct isoforms of this enzyme have been identified, of which four (NOX1, 2, 4 and 5) may have cardiovascular function. In this paper, we review the current state of knowledge concerning the role of oxidative stress and NOX enzymes in pathogenesis of atherosclerosis. Moreover, we analyze the experimental studies that explore the relationship between the NOX family and atherosclerosis.
References
- 1. Ago T., Kuroda J., Kamouchi M., Sadoshima J., Kitazono T.: Pathophysiological roles of NADPH oxidase/NOX family proteins in the vascular system. Review and perspective. Circ. J., 2011; 75: 1791-1800
Google Scholar - 2. Angeli V., Llodra J., Rong J.X., Satoh K., Ishii S., Shimizu T., Fisher E.A., Randolph G.J.: Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity, 2004; 21: 561-574
Google Scholar - 3. Arbiser J.L., Petros J., Klafter R., Govindajaran B., McLaughlin ER., Brown LF., Cohen C., Moses M., Kilroy S., Arnold RS., Lambeth J.D.: Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA, 2002; 99: 715-720
Google Scholar - 4. Aviram M., Rosenblat M., Etzioni A., Levy R.: Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein. Metabolism, 1996; 45: 1069-1079
Google Scholar - 5. Azumi H., Inoue N., Ohashi Y., Terashima M., Mori T., Fujita H., Awano K., Kobayashi K., Maeda K., Hata K., Shinke T., Kobayashi S., Hirata K., Kawashima S., Itabe H., Hayashi Y., Imajoh-Ohmi S., Itoh H., Yokoyama M.: Superoxide generation in directional coronary atherectomy specimens of patients with angina pectoris: important role of NAD(P)H oxidase. Arterioscler. Thromb. Vasc. Biol., 2002; 22: 1838-1844
Google Scholar - 6. Babior BM.: NADPH oxidase; An update. Blood, 1999; 93: 1464-1476
Google Scholar - 7. Babior BM.: NADPH oxidase. Curr. Opin. Immunol., 2004; 16: 42-47
Google Scholar - 8. Barry-Lane P.A., Patterson C., van der Merwe M., Hu Z., Holland S.M., Yeh E.T., Runge M.S.: p47phox is required for atherosclerotic lesion progression in ApoE–/– mice. J. Clin. Invest., 2001; 108: 1513-1522
Google Scholar - 9. Bedard K., Krause K.H.: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007; 87: 245-313
Google Scholar - 10. BelAiba R.S., Djordjevic T., Petry A., Diemer K., Bonello S., Banfi B., Hess J., Pogrebniak A., Bickel C., Gorlach A.: NOX5 variants are functionally active in endothelial cells. Free Radic. Biol. Med., 2007; 42: 446-459
Google Scholar - 11. Brandes R.P., Weissmann N., Schröder K.: NADPH oxidases in cardiovascular disease. Free Radic. Biol. Med., 2010; 49: 687-706
Google Scholar - 12. Cathcart M.K.: Regulation of superoxide anion production by NADPH oxidase in monocytes/macrophages: contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2004; 24: 23-28
Google Scholar - 13. Cave A.C., Brewer A.C., Narayanapanicker A., Ray R., Grieve D.J., Walker S., Shah A.M.: NADPH oxidases in cardiovascular health and disease. Antioxid. Redox. Signal., 2006; 8: 691-728
Google Scholar - 14. Chłopicki S.: Zapalenie śródbłonka w atherotrombosis. Kardiologia po Dyplomie, 2005; 4: 77-88
Google Scholar - 15. Costanzo A., Moretti F., Burgio V.L., Bravi C., Guido F., Levrero M., Puri P.L.: Endothelial activation by angiotensin II through NF-κB and p38 pathways: Involvement of NF-κB-inducible kinase (NIK), free oxygen radicals, and selective inhibition by aspirin. J. Cell. Physiol., 2003; 195: 402-410
Google Scholar - 16. Dikalov S.I., Dikalova A.E., Bikineyeva A.T., Schmidt H.H., Harrison D.G., Griendling K.K.: Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic. Biol. Med., 2008; 45: 1340-1351
Google Scholar - 17. Douglas G., Bendall J.K., Crabtree M.J., Tatham A.L., Carter E.E., Hale A.B., Channon K.M.: Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice. Cardiovasc. Res., 2012; 94: 20-29
Google Scholar - 18. Drummond G.R., Sobey C.G.: Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol. Metab., 2014; 25: 452-463
Google Scholar - 19. Dworakowski R., Alom-Ruiz S.P., Shah A.M.: NADPH oxidasederived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol. Rep., 2008; 60: 21-28
Google Scholar - 20. Endermann D.H., Schiffrin E.K.: Endothelial dysfunction. J. Am. Soc. Nephrol., 2004; 15: 1983-1992
Google Scholar - 21. Frey R.S, Gao X., Javaid K., Siddiqui S.S., Rahman A., Malik A.B.: Phosphatidylinositol 3-kinase g signaling through protein kinase Cζ induces NADPH oxidase-mediated oxidant generation and NF-κB activation in endothelial cells. J. Biol. Chem., 2006; 281: 16128-16138
Google Scholar - 22. Frey R.S., Ushio-Fukai M., Malik A.B.: NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid. Redox Signal., 2009; 11: 791-810
Google Scholar - 23. Geiszt M., Lekstrom K., Witta J., Leto T.L.: Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem., 2003; 278: 20006-20012
Google Scholar - 24. Goettsch C., Goettsch W., Muller G., Seebach J., Schnittler H.J., Morawietz H.: Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem. Biophys. Res. Commun., 2009; 380: 355-360
Google Scholar - 25. Griendling K.K., Sorescu D., Ushio-Fukai M.: NADPH oxidase: role in cardiovascular biology and disease. Circ. Res., 2000; 86: 494-501
Google Scholar - 26. Groemping Y., Lapouge K., Smerdon S.J., Rittinger K.: Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell, 2003; 113: 343-355
Google Scholar - 27. Guichard C., Pedruzzi E., Dewas C., Fay M., Pouzet C., Bens M., Vandewalle A., Ogier-Denis E., Gougerot-Pocidalo M.A., Elbim C.: Interleukin-8-induced priming of neutrophil oxidative burst requires sequential recruitment of NADPH oxidase components into lipid rafts. J. Biol. Chem., 2005; 280: 37021-37032
Google Scholar - 28. Guzik T.J., Sadowski J., Guzik B., Jopek A., Kapelak B., Przybylowski P., Wierzbicki K., Korbut R., Harrison D.G., Channon K.M.: Coronary artery superoxide production and Nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2006; 26: 333-339
Google Scholar - 29. Guzik T.J., West N.E., Black E., McDonald D., Ratnatunga C., Pillai R., Channon K.M.: Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ. Res., 2000; 86: E85-E90
Google Scholar - 30. Hsich E., Segal B.H., Pagano P.J., Rey F.E., Paigen B., Deleonardis J., Hoyt R.F., Holland S.M., Finkel T.: Vascular effects following homozygous disruption of p47phox: an essential component of NADPH oxidase. Circulation, 2000; 101: 1234-1236
Google Scholar - 31. Huang J., Kleinberg M.E.: Activation of the phagocyte NADPH oxidase protein p47phox. Phosphorylation controls SH3 domain-dependent binding to p22phox. J. Biol. Chem., 1999; 274: 19731-19737
Google Scholar - 32. Hulsmans M., Holvoet P.: The vicious circle between oxidative stress and inflammation in atherosclerosis. J. Cell. Mol. Med., 2010; 14: 70-78
Google Scholar - 33. Hwang J., Saha A., Boo Y.C., Sorescu G.P., McNally J.S., Holland S.M., Dikalov S., Giddens D.P., Griendling K.K., Harrison D.G., Jo H.: Oscillatory shear stress stimulates endothelial production of O2 – from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J. Biol. Chem., 2003; 278: 47291-47298
Google Scholar - 34. Jones S.A., O’Donnell V.B., Wood J.D., Broughton J.P., Hughes E.J., Jones O.T.: Expression of phagocyte NADPH oxidase components in human endothelial cells. Am. J. Physiol., 1996; 271: H1626-H1634
Google Scholar - 35. Judkins C.P., Diep H., Broughton B.R., Mast A.E., Hooker E.U., Miller A.A., Selemidis S., Dusting G.J., Sobey C.G., Drummond G.R.: Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE−/− mice. Am. J. Physiol. Heart Circ. Physiol., 2010; 298: H24-H32
Google Scholar - 36. Jung O., Schreiber J.G., Geiger H., Pedrazzini T., Busse R., Brandes R.P.: gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation, 2004; 109: 1795-1801
Google Scholar - 37. Kim S.Y., Lee J.G., Cho W.S., Cho K.H., Sakong J., Kim J.R., Chin B.R., Baek S.H.: Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol. Cell Biol., 2010; 88: 197-204
Google Scholar - 38. Kinkade H., Streeter J., Miller F.J.: Inhibition of NADPH oxidase by apocynin attenuates progression of atherosclerosis. Int. J. Mol. Sci., 2013; 14: 17017-17028
Google Scholar - 39. Kirk E.A., Dinauer M.C., Rosen H., Chait A., Heinecke J.W., LeBoeuf R.C.: Impaired superoxide production due to a deficiency in phagocyte NADPH oxidase fails to inhibit atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2000; 20: 1529-1535
Google Scholar - 40. Koga H., Terasawa H., Nunoi H., Takeshige K., Inagaki F., Sumimoto H.: Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J. Biol. Chem., 1999; 274: 25051-25060
Google Scholar - 41. Lapouge K., Smith S.J., Groemping Y., Rittinger K.: Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J. Biol. Chem., 2002; 277: 10121-10128
Google Scholar - 42. Lassegue B., Sorescu D., Szocs K., Yin Q., Akers M., Zhang Y., Grant S.L., Lambeth J.D., Griendling K.K.: Novel gp91phox homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res., 2001; 88: 888-894
Google Scholar - 43. Lee J.G., Lim E.J., Park D.W., Lee S.H., Kim J.R., Baek S.K.: Acombination of LOX-1 and NOX1 regulates TLR9-mediated foam cell formation. Cell. Signal., 2008; 20: 2266-2275
Google Scholar - 44. Lee M.Y., San Martin A., Mehta P.K., Dikalova A.E., Garrido A.M., Datla S.R., Lyons E., Krause K.H., Banfi B., Lambeth J.D., Lassegue B., Griendling K.K.: Mechanisms of vascular smooth muscle NADPH oxidase 1 (nox1) contribution to injury-induced neointimal formation. Arterioscler. Thromb. Vasc. Biol., 2009; 29: 480-487
Google Scholar - 45. Levitan I., Volkov S., Subbaiah P.V.: Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal., 2010; 13: 39-75
Google Scholar - 46. Li H., Horke S., Förstermann U.: Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol. Sci., 2013; 34: 313-319
Google Scholar - 47. Li J.M., Fan L.M., Christie M.R., Shah A.M.: Acute tumor necrosis factor α signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol. Cell. Biol., 2005; 25: 2320-2330
Google Scholar - 48. Liang C.J., Wang S.H., Chen Y.H., Chang S.S., Hwang T.L., Leu Y.L., Tseng Y.C., Li C.Y., Chen Y.L.: Viscolin reduces VCAM-1 expression in TNF-α-treated endothelial cells via the JNK/NF-κB and ROS pathway. Free Radic. Biol. Med., 2011; 51: 1337-1346
Google Scholar - 49. Libby P.: Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr., 2006; 83: 456S-460S
Google Scholar - 50. Libby P., Aikawa M., Schonbeck U.: Cholesterol and atherosclerosis. Biochim. Biophys. Acta, 2000; 1529: 299-309
Google Scholar - 51. Libby P., Ridker P., Hansson G.K.: Progress and challenges in translating the biology of atherosclerosis. Nature, 2011; 473: 317-325
Google Scholar - 52. Liu J.Q., Zelko I.N., Folz R.J.: Reoxygenation-induced constriction in murine coronary arteries: the role of endothelial NADPH oxidase (gp91phox) and intracellular superoxide. J. Biol. Chem., 2004; 279: 24493-24497
Google Scholar - 53. Llodra J., Angeli V., Liu J., Trogan E., Fisher E.A., Randolph G.J.: Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl. Acad. Sci. USA, 2004; 101: 11779-11784
Google Scholar - 54. Lubos E., Handy D.E., Loscalzo J.: Role of oxidative stress and nitric oxide in atherothrombosis. Front. Biosci., 2008; 13: 5323-5344
Google Scholar - 55. Madamanchi N.R., Runge M.S.: Redox signaling in cardiovascular health and disease. Free Radic. Biol. Med., 2013; 61: 473-501
Google Scholar - 56. Manea A.: NADPH oxidase derived reactive oxygen species: involvement in vascular physiology and pathology. Cell Tissue Res., 2010; 342: 325-339
Google Scholar - 57. Marumo T., Schini-Kerth V.B., Fisslthaler B., Busse R.: Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-κB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation, 1997; 96: 2361-2367
Google Scholar - 58. Matsuno K., Yamada H., Iwata K., Jin D., Katsuyama M., Matsuki M., Takai S., Yamanishi K., Miyazaki M., Matsubara H., Yabe-Nishimura C.: Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation, 2005; 112: 2677-2685
Google Scholar - 59. Maturana A., Arnaudeau S., Ryser S., Banfi B., Hossle J.P., Schlegel W., Krause K.H., Demaurex N.: Heme histidine ligands within gp91phox modulate proton conduction by the phagocyte NADPH oxidase. J. Biol. Chem., 2001; 276: 30277-30284
Google Scholar - 60. McLaren J.E., Michael D.R., Ashlin T.G., Ramji D.P.: Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res., 2011; 50: 331-347
Google Scholar - 61. Niu X.L., Madamanchi N.R., Vendrov A.E., Tchivilev I., Rojas M., Madamanchi C., Brandes R.P., Krause K.H., Humphries J., Smith A., Burnand K.G., Runge M.S.: Nox activator 1: A potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation, 2010; 121: 549-559
Google Scholar - 62. Owens G.K., Kumar M.S., Wamhoff B.R.: Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev., 2004; 84: 767-801
Google Scholar - 63. Packard R.R., Lichtman A.H., Libby P.: Innate and adaptive immunity in atherosclerosis. Semin. Immunopathol., 2009; 31: 5-22
Google Scholar - 64. Pagano P.J., Chanock S.J., Siwik D.A., Colucci W.S., Clark J.K.: Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension, 1998; 32: 331-337
Google Scholar - 65. Paravicini T.M., Touyz R.M.: NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care, 2008; 31: S170-S180
Google Scholar - 66. Park Y.M., Febbraio M., Silverstein R.L.: CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest., 2009; 119: 136-145
Google Scholar - 67. Raman M., Chen W., Cobb M.H.: Differential regulation and properties of MAPKs. Oncogene, 2007; 26: 3100-3112
Google Scholar - 68. Ray P.D., Huang B.W., Tsuji Y.: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012; 24: 981-990
Google Scholar - 69. Schroder K., Helmcke I., Palfi K., Krause K.H., Busse R., Brandes R.P.: Nox1 mediates basic fibroblast growth factor-induced migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2007; 27: 1736-1743
Google Scholar - 70. Schroder K., Zhang M., Benkhoff S., Mieth A., Pliquett R., Kosowski J., Kruse C., Luedike P., Michaelis U.R., Weissmann N., Dimmeler S., Shah A.M., Brandes R.P.: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res., 2012; 110: 1217-1225
Google Scholar - 71. Seshiah P.N., Weber D.S., Rocic P., Valppu L., Taniyama Y., Griendling K.K.: Angiotensin 11 stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res., 2002; 91: 406-413
Google Scholar - 72. Shinohara M., Adachi Y., Mitsushita J., Kuwabara M., Nagasawa A., Harada S., Furuta S., Zhang Y., Seheli K., Miyazaki H., Kamata T.: Reactive oxygen generated by NADPH oxidase 1 (nox1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J. Biol. Chem., 2010; 285: 4481-4488
Google Scholar - 73. Singh U., Jialal I.: Oxidative stress and atherosclerosis. Pathophysiology, 2006; 13: 129-142
Google Scholar - 74. Sirker A., Zhang M., Shah A.M.: NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res. Cardiol., 2011; 106: 735-747
Google Scholar - 75. Sorescu D., Weiss D., Lassegue B., Clempus R.E., Szocs K., Sorescu G.P., Valppu L., Quinn M.T., Lambeth J.D., Vega J.D., Taylor W.R., Griendling K.K.: Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation, 2002; 105: 1429-1435
Google Scholar - 76. Spiekermann S., Landmesser U., Dikalov S., Bredt M., Gamez G., Tatge H., Reepschläger N., Hornig B., Drexler H., Harrison D.G.: Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease. Relation to endothelium-dependent vasodilation. Circulation, 2003; 107: 1383-1389
Google Scholar - 77. Stokes K.Y., Clanton E.C., Russell J.M., Ross C.R., Granger D.N.: NAD(P)H oxidase-derived superoxide mediates hypercholesterolemia-induced leukocyte-endothelial cell adhesion. Circ. Res., 2001; 88: 499-505
Google Scholar - 78. Sumimoto H., Miyano K., Takeya R.: Molecular composition and regulation of the Nox family NADPH oxidases. Biochem. Biophys. Res. Commun., 2005; 338: 677-686
Google Scholar - 79. Takenouchi Y., Kobayashi T., Matsumoto T., Kamata K.: Gender differences in age-related endothelial function in the murine aorta. Atherosclerosis, 2009; 206: 397-404
Google Scholar - 80. Touyz R.M., Yao G., Schiffrin E.L.: c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2003; 23: 981-987
Google Scholar - 81. Ushio-Fukai M.: Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal., 2009; 11: 1289-1299
Google Scholar - 82. Ushio-Fukai M., Alexander R.W., Akers M., Griendling K.K.: P38map kinase is a critical component of the redox-sensitive signaling pathways by angiotensin ii: Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem., 1998; 273: 15022-15029
Google Scholar - 83. Ushio-Fukai M., Alexander R.W., Akers M., Yin Q., Fujio Y., Walsh K., Griendling K.K.: Reactive oxygen species mediate the activation of akt/protein kinase b by angiotensin ii in vascular smooth muscle cells. J. Biol. Chem., 1999; 274: 22699-22704
Google Scholar - 84. Vendrov A.E., Hakim Z.S., Madamanchi N.R., Rojas M., Madamanchi C., Runge M.S.: Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler. Thromb. Vasc. Biol., 2007; 27: 2714-2721
Google Scholar - 85. Violi F., Sanguigni V., Carnevale R., Plebani A., Rossi P., Finocchi A., Pignata C., De Mattia D., Martire B., Pietrogrande M.C., Martino S., Gambineri E., Soresina A.R., Pignatelli P., Martino F., Basili S., Loffredo L.: Hereditary deficiency of gp91phox is associated with enhanced arterial dilatation: results of a multicenter study. Circulation, 2009; 120: 1616-1622
Google Scholar - 86. Virella G., Lopes-Virella M.F.: Atherogenesis and the humoral immune response to modified lipoproteins. Atherosclerosis, 2008; 200: 239-246
Google Scholar - 87. Wallach T.M., Segal A.W.: Analysis of glycosylation sites on gp91phox, the flavocytochrome of the NADPH oxidase, by site-directed mutagenesis and translation in vitro. Biochem. J., 1997; 321: 583-585
Google Scholar - 88. Warnholtz A., Nickenig G., Schulz E., Macharzina R., Bräsen J.H., Skatchkov M., Heitzer T., Stasch J.P., Griendling K.K., Harrison D.G., Böhm M., Meinertz T., Münzel T.: Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin–angiotensin system. Circulation, 1999; 99: 2027-2033
Google Scholar - 89. Yamamori T., Inanami O., Nagahata H., Kuwabara M.: Phosphoinositide 3-kinase regulates the phosphorylation of NADPH oxidase componentp47phox by controlling cPKC/PKC δ but not Akt. Biochem. Biophys. Res. Commun., 2004; 316: 720-730
Google Scholar - 90. Yin C.C., Huang K.T.: H2O2 but not O2 – elevated by oxidized LDL enhances human aortic smooth muscle cell proliferation. J. Biomed. Sci., 2007; 14: 245-254
Google Scholar - 91. Yoshida H., Kisugi R.: Mechanisms of LDL oxidation. Clin. Chim. Acta, 2010; 411: 1875-1882
Google Scholar - 92. Zemse S.M., Hilgers R.H., Webb R.C.: Interleukin-10 counteracts impaired endothelium-dependent relaxation induced by ANG II in murine aortic rings. Am. J. Physiol. Heart Circ. Physiol., 2007; 292: H3103-H3108
Google Scholar - 93. Zimmerman M.C., Takapoo M., Jagadeesha D.K., Stanic B., Banfi B., Bhalla R.C., Miller F.J.Jr.: Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells. Hypertension, 2011; 58: 446-453
Google Scholar