Cofilin – a protein controlling dynamics of actin filaments
Zofia Ostrowska 1 , Joanna Moraczewska 1Abstract
Cofilins are evolutionary conserved proteins present in all Eukaryotic cells. Their primary function is dynamic reorganization of actin cytoskeleton. Two cofilin isoforms are known: cofilin 1, present in all studied non-muscle cells and in embryonic muscle cells, and cofilin 2, which dominates in mature skeletal and cardiac muscles. Polypeptide chains of both isoforms fold into a structure homological to a conservative ADF (actin depolymerizing factor) domain, which is characteristic of actin depolymerizing factor. In cofilin molecule two actin-binding sites were found. One site binds monomeric and filamentous actin, the second one interacts only with the filament. Binding of cofilin to actin filament causes a change in the orientation of subunits, which results in filament severing. This increases number of ends which can either elongate or shorten the filament, depending on the conditions. Cofilin interactions with monomeric actin decreases availability of polymerization-competent actin subunits. Cofilin activity is controlled by phosphorylation, binding membrane phospholipids, local pH and oxidative stress. Under conditions of oxidative stress oxidation of cysteine residues leads to formation of dimers, which are able to cross-link actin filaments. Stable actin-cofilin rods save cellular ATP, which is not used during active polymerization process. This facilitates faster cell recovery from the stress. The final cellular reaction on the environmental stimuli is a resultant of cofilin activity and activities of other actin-binding proteins, which function either synergistically or antagonistically. Due to the central role in the regulation of actinfilaments dynamics, cofilin is involved in development of cancer, neurodegenerative diseases, congenital myopathies and cardiomyopathies.
References
- 1. Agrawal P.B., Greenleaf R.S., Tomczak K.K., Lehtokari V.L., Wallgren-PetterssonC., Wallefeld W., Laing N.G., Darras B.T., MaciverS.K., Dormitzer P.R., Beggs A.H.: Nemaline myopathy with minicorescaused by mutation of the CFL2 gene encoding the skeletal muscleactin-binding protein, cofilin-2. Am. J. Hum. Genet., 2007; 80: 162-167
Google Scholar - 2. Andrianantoandro E., Pollard T.D.: Mechanism of actin filamentturnover by severing and nucleation at different concentrations ofADF/cofilin. Mol. Cell, 2006; 24: 13-23
Google Scholar - 3. Arai H., Atomi Y.: Suppression of cofilin phosphorylation in insulin-stimulatedruffling membrane formation in KB cells. Cell Struct.Funct., 2003; 28: 41-48
Google Scholar - 4. Bamburg J.R., Bernstein B.W.: Roles of ADF/cofilin in actin polymerizationand beyond. F1000 Biol. Rep., 2010; 2: 62
Google Scholar - 5. Bamburg J.R., Bernstein B.W., Davis R.C., Flynn K.C., GoldsburyC., Jensen J.R., Maloney M.T., Marsden I.T., Minamide L.S., PakC.W., Shaw A.E., Whiteman I., Wiggan O.: ADF/Cofilin-actin rods inneurodegenerative diseases. Curr. Alzheimer Res., 2010; 7: 241-250
Google Scholar - 6. Bamburg J.R., Bloom G.S.: Cytoskeletal pathologies of Alzheimerdisease. Cell Motil. Cytoskeleton, 2009; 66: 635-649
Google Scholar - 7. Bamburg J.R., Harris H.E., Weeds A.G.: Partial purification andcharacterization of an actin depolymerizing factor from brain. FEBSLett., 1980; 121: 178-182
Google Scholar - 8. Bellenchi G.C., Gurniak C.B., Perlas E., Middei S., Ammassari–Teule M., Witke W.: N-cofilin is associated with neuronal migrationdisorders and cell cycle control in the cerebral cortex. Genes Dev.,2007; 21: 2347-2357
Google Scholar - 9. Bender M., Eckly A., Hartwig J.H., Elvers M., Pleines I., Gupta S.,Krohne G., Jeanclos E., Gohla A., Gurniak C., Gachet C., Witke W.,Nieswandt B.: ADF/n-cofilin-dependent actin turnover determinesplatelet formation and sizing. Blood, 2010; 116: 1767-1775
Google Scholar - 10. Bernstein B.W., Bamburg J.R.: ADF/cofilin: a functional node incell biology. Trends Cell. Biol., 2010; 20: 187-195
Google Scholar - 11. Bernstein B.W., Shaw A.E., Minamide L.S., Pak C.W., Bamburg J.R.:Incorporation of cofilin into rods depends on disulfide intermolecularbonds: implications for actin regulation and neurodegenerativedisease. J. Neurosci., 2012; 32: 6670-6681
Google Scholar - 12. Blanchoin L., Pollard T.D.: Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J. Biol. Chem.,1999; 274: 15538-15546
Google Scholar - 13. Bobkov A.A., Muhlrad A., Pavlov D.A., Kokabi K., Yilmaz A., ReislerE.: Cooperative effects of cofilin (ADF) on actin structure suggestallosteric mechanism of cofilin function. J. Mol. Biol., 2006;356: 325-334
Google Scholar - 14. Bravo-Cordero J.J., Magalhaes M.A., Eddy R.J., Hodgson L., CondeelisJ.: Functions of cofilin in cell locomotion and invasion. Nat.Rev. Mol. Cell Biol., 2013; 14: 405-415
Google Scholar - 15. Bryce N.S., Schevzov G., Ferguson V., Percival J.M., Lin J.J., MatsumuraF., Bamburg J.R., Jeffrey P.L., Hardeman E.C., Gunning P.,Weinberger R.P.: Specification of actin filament function and molecularcomposition by tropomyosin isoforms. Mol. Biol. Cell, 2003;14: 1002-1016
Google Scholar - 16. Carlier M.F., Laurent V., Santolini J., Melki R., Didry D., Xia G.X.,Hong Y., Chua N.H., Pantaloni D.: Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin–based motility. J. Cell Biol., 1997; 136: 1307-1322
Google Scholar - 17. Carlier M.F., Le Clainche C., Wiesner S., Pantaloni D.: Actin-basedmotility: from molecules to movement. Bioessays, 2003; 25: 336-345
Google Scholar - 18. Carlier M.F., Pantaloni D.: Control of actin dynamics in cell motility.J. Mol. Biol., 1997; 269: 459-467
Google Scholar - 19. Carlier M.F., Pantaloni D.: Direct evidence for ADP-Pi-F-actin asthe major intermediate in ATP-actin polymerization. Rate of dissociationof Pi from actin filaments. Biochemistry, 1986; 25: 7789-7792
Google Scholar - 20. Castro M.A., Dal-Pizzol F., Zdanov S., Soares M., Muller C.B., LopesF.M., Zanotto-Filho A., da Cruz Fernandes M., Moreira J.C., Shacter E.,Klamt F.: CFL1 expression levels as a prognostic and drug resistancemarker in nonsmall cell lung cancer. Cancer, 2010; 116: 3645-3655
Google Scholar - 21. Chan C., Beltzner C.C., Pollard T.D.: Cofilin dissociates Arp2/3 complexand branches from actin filaments. Curr. Biol., 2009; 19: 537-545
Google Scholar - 22. Chang C.Y., Leu J.D., Lee Y.J.: The actin depolymerizing factor(ADF)/cofilin signaling pathway and DNA damage responses in cancer.Int. J. Mol. Sci., 2015; 16: 4095-4120
Google Scholar - 23. Chen Q., Pollard T.D.: Actin filament severing by cofilin is moreimportant for assembly than constriction of the cytokinetic contractilering. J. Cell Biol., 2011; 195: 485-498
Google Scholar - 24. Claeys K.G., Fardeau M.: Myofibrillar myopathies. Handb. Clin.Neurol., 2013; 113: 1337-1342
Google Scholar - 25. Dominguez R., Holmes K.C.: Actin structure and function. Annu.Rev. Biophys., 2011; 40: 169-186
Google Scholar - 26. Galkin V.E., Orlova A., Kudryashov D.S., Solodukhin A., Reisler E.,Schroder G.F., Egelman E.H.: Remodeling of actin filaments by ADF/cofilin proteins. Proc. Natl. Acad. Sci. USA, 2011; 108: 20568-20572
Google Scholar - 27. Hild G., Kalmár L., Kardos R., Nyitrai M., Bugyi B.: The other sideof the coin: functional and structural versatility of ADF/cofilins. Eur.J. Cell Biol., 2014; 93: 238-251
Google Scholar - 28. Holmes K.C., Popp D., Gebhard W., Kabsch W.: Atomic model ofthe actin filament. Nature, 1990; 347: 44-49
Google Scholar - 29. Klejnot M., Gabrielsen M., Cameron J., Mleczak A., TalapatraS.K., Kozielski F., Pannifer A., Olson M.F.: Analysis of the human cofilin 1 structure reveals conformational changes required for actinbinding. Acta Crystallogr. D Biol. Crystallogr., 2013; 69: 1780-1788
Google Scholar - 30. Kuhn T.B., Bamburg J.R.: Tropomyosin and ADF/cofilin as collaboratorsand competitors. Adv. Exp. Med. Biol., 2008; 644: 232-249
Google Scholar - 31. Kuure S., Cebrian C., Machingo Q., Lu B.C., Chi X., Hyink D., D’AgatiV., Gurniak C., Witke W., Costantini F.: Actin depolymerizingfactors cofilin1 and destrin are required for ureteric bud branchingmorphogenesis. PLoS. Genet., 2010; 6: e1001176
Google Scholar - 32. Lappalainen P., Fedorov E.V., Fedorov A.A., Almo S.C., DrubinD.G.: Essential functions and actin-binding surfaces of yeast cofilinrevealed by systematic mutagenesis. EMBO J., 1997; 16: 5520-5530
Google Scholar - 33. McGough A., Pope B., Chiu W., Weeds A.: Cofilin changes thetwist of F-actin: implications for actin filament dynamics and cellularfunction. J. Cell Biol., 1997; 138: 771-781
Google Scholar - 34. Miyauchi-Nomura S., Obinata T., Sato N.: Cofilin is required fororganization of sarcomeric actin filaments in chicken skeletal musclecells. Cytoskeleton, 2012; 69: 290-302
Google Scholar - 35. Mizuno K.: Signaling mechanisms and functional roles of cofilinphosphorylation and dephosphorylation. Cell Signal., 2013; 25: 457-469
Google Scholar - 36. Mohri K., Takano-Ohmuro H., Nakashima H., Hayakawa K., EndoT., Hanaoka K., Obinata T.: Expression of cofilin isoforms duringdevelopment of mouse striated muscles. J. Muscle Res. Cell Motil.,2000; 21: 49-57
Google Scholar - 37. Moriyama K., Iida K., Yahara I.: Phosphorylation of Ser-3 of cofilinregulates its essential function on actin. Genes Cells, 1996; 1: 73-86
Google Scholar - 38. Nakashima K., Sato N., Nakagaki T., Abe H., Ono S., Obinata T.:Two mouse cofilin isoforms, muscle-type (MCF) and non-muscletype (NMCF), interact with F-actin with different efficiencies. J.Biochem., 2005; 138: 519-526
Google Scholar - 39. Nishida E., Kuwaki T., Maekawa S., Sakai H.: A new regulatoryprotein that affects the state of actin polymerization. J. Biochem.,1981; 89: 1655-1658
Google Scholar - 40. Nishida E., Maekawa S., Sakai H.: Cofilin, a protein in porcinebrain that binds to actin filaments and inhibits their interactionswith myosin and tropomyosin. Biochemistry, 1984; 23: 5307-5313
Google Scholar - 41. Ockeloen C.W., Gilhuis H.J., Pfundt R., Kamsteeg E.J., Agrawal P.B.,Beggs A.H., Dara Hama-Amin A., Diekstra A., Knoers N.V., LammensM., van Alfen N.: Congenital myopathy caused by a novel missensemutation in the CFL2 gene. Neuromuscul. Disord., 2012; 22: 632-639
Google Scholar - 42. Okada K., Takano-Ohmuro H., Obinata T., Abe H.: Dephosphorylationof cofilin in polymorphonuclear leukocytes derived from peripheralblood. Exp. Cell Res., 1996; 227: 116-122.
Google Scholar - 43. Ono S., Minami N., Abe H., Obinata T.: Characterization of a novelcofilin isoform that is predominantly expressed in mammalian skeletalmuscle. J. Biol. Chem., 1994; 269: 15280-15286
Google Scholar - 44. Oser M., Condeelis J.: The cofilin activity cycle in lamellipodiaand invadopodia. J. Cell. Biochem., 2009; 108: 1252-1262
Google Scholar - 45. Ostrowska Z., Robaszkiewicz K., Moraczewska J.: Regulation ofactin filament turnover by cofilin-1 and cytoplasmic tropomyosinisoforms. Biochim. Biophys. Acta, 2016; 1865: 88-98
Google Scholar - 46. Paavilainen V.O., Bertling E., Falck S., Lappalainen P.: Regulationof cytoskeletal dynamics by actin-monomer-binding proteins.Trends Cell Biol., 2004; 14: 386-394
Google Scholar - 47. Paavilainen V.O., Oksanen E., Goldman A., Lappalainen P.: Structureof the actin-depolymerizing factor homology domain in complexwith actin. J. Cell Biol., 2008; 182: 51-59
Google Scholar - 48. Pavlov D., Muhlrad A., Cooper J., Wear M., Reisler E.: Actin filamentsevering by cofilin. J. Mol. Biol., 2007; 365: 1350-1358
Google Scholar - 49. Peng X.C., Gong F.M., Zhao Y.W., Zhou L.X., Xie Y.W., Liao H.L.,Lin H.J., Li Z.Y., Tang M.H., Tong A.P.: Comparative proteomic approachidentifies PKM2 and cofilin-1 as potential diagnostic, prognosticand therapeutic targets for pulmonary adenocarcinoma. PLoSOne, 2011; 6: e27309
Google Scholar - 50. Pollard T.D., Borisy G.G.: Cellular motility driven by assemblyand disassembly of actin filaments. Cell, 2003; 112: 453-465
Google Scholar - 51. Pollard T.D., Cooper J.A.: Actin, a central player in cell shapeand movement. Science, 2009; 326: 1208-1212
Google Scholar - 52. Pope B.J., Zierler-Gould K.M., Kühne R., Weeds A.G., Ball L.J.:Solution structure of human cofilin: actin binding, pH sensitivity,and relationship to actin-depolymerizing factor. J. Biol. Chem., 2004;279: 4840-4848
Google Scholar - 53. Poukkula M., Kremneva E., Serlachius M., Lappalainen P.: Actindepolymerizingfactor homology domain: a conserved fold performingdiverse roles in cytoskeletal dynamics. Cytoskeleton, 2011; 68:471-490
Google Scholar - 54. Robaszkiewicz K., Moraczewska J.: Congenital myopathies – skeletalmuscle diseases related to disorder of actin filament structureand functions. Postępy Hig. Med. Dośw., 2011; 65: 347-356
Google Scholar - 55. Robaszkiewicz K., Ostrowska Z., Marchlewicz K., MoraczewskaJ.: Tropomyosin isoforms differentially modulate the regulation ofactin filament polymerization and depolymerization by cofilins.FEBS J., 2016; 283: 723-737
Google Scholar - 56. Samstag Y., John I., Wabnitz G.H.: Cofilin: a redox sensitive mediatorof actin dynamics during T-cell activation and migration.Immunol. Rev., 2013; 256: 30-47
Google Scholar - 57. San Martin A., Lee M.Y., Williams H.C., Mizuno K., Lassegue B.,Griendling K.K.: Dual regulation of cofilin activity by LIM kinase andSlingshot-1L phosphatase controls platelet-derived growth factorinducedmigration of human aortic smooth muscle cells. Circ. Res.,2008; 102: 432-438
Google Scholar - 58. Schönhofen P., de Medeiros L.M., Chatain C.P., Bristot I.J., KlamtF.: Cofilin/actin rod formation by dysregulation of cofilin-1 activityas a central initial step in neurodegeneration. Mini Rev. Med.Chem., 2014; 14: 393-400
Google Scholar - 59. Skwarek-Maruszewska A., Hotulainen P., Mattila P.K., LappalainenP.: Contractility-dependent actin dynamics in cardiomyocytesarcomeres. J. Cell Sci., 2009; 122: 2119-2126
Google Scholar - 60. Suarez C., Roland J., Boujemaa-Paterski R., Kang H., McCulloughB.R., Reymann A.C., Guérin C., Martiel J.L., De la Cruz E.M., BlanchoinL.: Cofilin tunes the nucleotide state of actin filaments and severs atbare and decorated segment boundaries. Curr. Biol., 2011; 21: 862-868
Google Scholar - 61. Subramanian K., Gianni D., Balla C., Assenza G.E., Joshi M., SemigranM.J., Macgillivray T.E., Van Eyk J.E., Agnetti G., Paolocci N.,Bamburg J.R., Agrawal P.B., Del Monte F.: Cofilin-2 phosphorylationand sequestration in myocardial aggregates: novel pathogeneticmechanisms for idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol.,2015; 65: 1199-1214
Google Scholar - 62. Van Troys M., Huyck L., Leyman S., Dhaese S., Vandekerkhove J., Ampe C.: Ins and outs of ADF/cofilin activity and regulation. Eur.J. Cell Biol., 2008; 87: 649-667
Google Scholar - 63. Vartiainen M.K., Mustonen T., Mattila P.K., Ojala P.J., Thesleff I.,Partanen J., Lappalainen P.: The three mouse actin-depolymerizingfactor/cofilins evolved to fulfill cell-type-specific requirements foractin dynamics. Mol. Biol. Cell, 2002; 13: 183-194
Google Scholar - 64. von der Ecken J., Müller M., Lehman W., Manstein D.J., PenczekP.A., Raunser S.: Structure of the F-actin-tropomyosin complex. Nature,2015; 519, 114-117
Google Scholar - 65. Wegner A.: Head to tail polymerization of actin. J. Mol. Biol.,1976; 108: 139-150
Google Scholar - 66. Won K.J., Park S.H., Park T., Lee C.K., Lee H.M., Choi W.S., Kim S.J., Park P.J., Jang H.K., Kim S.H., Kim B.: Cofilin phosphorylation mediatesproliferation in response to platelet-derived growth factor-BB inrat aortic smooth muscle cells. J. Pharmacol. Sci., 2008; 108: 372-379
Google Scholar - 67. Zhao R., Du L., Huang Y., Wu Y., Gunst S.J.: Actin depolymerizationfactor/cofilin activation regulates actin polymerization and tensiondevelopment in canine tracheal smooth muscle. J. Biol. Chem.,2008; 283: 36522-36531
Google Scholar - 68. Zhou J., Wang Y., Fei J., Zhang W.: Expression of cofilin 1 is positivelycorrelated with the differentiation of human epithelial ovariancancer. Oncol. Lett., 2012; 4: 1187-1190
Google Scholar