Stress and its molecular consequences in cancer progression

COMMENTARY ON THE LAW

Stress and its molecular consequences in cancer progression

Magdalena Surman 1 , Marcelina E. Janik 1

1. Zakład Biochemii Glikokoniugatów, Instytut Zoologii i Badań Biomedycznych, Uniwersytet Jagielloński w Krakowie

Published: 2017-06-12
DOI: 10.5604/01.3001.0010.3830
GICID: 01.3001.0010.3830
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 485-499

 

Abstract

Stress, caused by psychological, physiological and physical factors has an adverse impact on human body homeostasis. There are two kind of stress: short-term and chronic. Cancer patients usually live under chronic stress, caused by diagnosis-related strong emotional experience and depression, resulting from various difficulties associated with disease progression and treatment. At the molecular level, stress factors induce production and secretion of stress-related hormones, such as catecholamines, glucocorticoids and dopamine (as a part of adaptational body response), which influence both normal and transformed cells through their specific receptors. The particular effects exerted by these molecules on cancer cells have been also observed in in vitro cultures and include changes in proliferation, apoptosis susceptibility and migration/invasion potential. As a result, it has been suggested that stress hormones may be responsible for progression of malignancy and thus accelerate the metastasis formation in cancer patients. However, the clinical data on correlation between stress and the patients survival, as well as the molecular analysis of stress hormone receptors expression and action in cancer cell, have not yet provided an unequivocal answer. For this reason, extensive studies, on molecular and clinical level are needed to fully determine stress impact on cancerprogression and on the effectiveness of anti-cancer treatment. Nowadays, it seems reasonable that the personalization of anti-cancer therapy should also focus on mental state of cancer patients, and provide them with psychological tools or techniques for stress management.

References

  • 1. Almahariq M., Tsalkova T., Mei F.C., Chen H., Zhou J., Sastry S.K.,Schwede F., Cheng X.: A novel EPAC-specific inhibitor suppresses pancreaticcancer cell migration and invasion. Mol. Pharmacol., 2013; 83:122-128
    Google Scholar
  • 2. Al-Wadei H.A., Ullah M.F., Al-Wadei M.H.: Intercepting neoplasticprogression in lung malignancies via the beta adrenergic (β-AR) pathway:implications for anti-cancer drug targets. Pharmacol. Res.,2012; 66: 33-40
    Google Scholar
  • 3. Armaiz-Pena G.N., Cole S.W., Lutgendorf S.K., Sood A.K.: Neuroendocrineinfluences on cancer progression. Brain Behav. Immun.,2013; 30: S19-S25
    Google Scholar
  • 4. Basu S., Dasgupta P.S., Chowdhury J.R.: Enhanced tumor growth inbrain dopamine-depleted mice following 1-methyl-4-phenyl-1,2,3,6–tetrahydropyridine (MPTP) treatment. J. Neuroimmunol., 1995; 60: 1-8
    Google Scholar
  • 5. Basu S., Nagy J.A., Pal S., Vasile E., Eckelhoefer I.A., Bliss V.S., ManseauE.J, Dasgupta P.S., Dvorak H.F., Mukhopadhyay D.: The neurotransmitterdopamine inhibits angiogenesis induced by vascular permeabilityfactor/vascular endothelial growth factor. Nat. Med., 2001; 7: 569-574
    Google Scholar
  • 6. Bernabé D.G., Tamae A.C., Biasoli É.R., Oliveira S.H.: Stress hormonesincrease cell proliferation and regulates interleukin-6 secretionin human oral squamous cell carcinoma cells. Brain Behav. Immun.,2011; 25: 574-583
    Google Scholar
  • 7. Blume J., Douglas S.D., Evans D.L.: Immune suppression and immuneactivation in depression. Brain Behav. Immun., 2011; 25: 221-229
    Google Scholar
  • 8. Caruntu C., Boda D., Constantin C., Caruntu A., Neagu M.: Catecholaminesincrease in vitro proliferation of murine B16F10 melanomacells. Acta Endo., 2014; 10: 545-558
    Google Scholar
  • 9. Cole S.W., Sood A.K.: Molecular pathways: beta-adrenergic signalingin cancer. Clin. Cancer Res., 2012; 18: 1201-1206
    Google Scholar
  • 10. Costanzo E.S., Sood A.K., Lutgendorf S.K.: Biobehavioral influenceson cancer progression. Immunol. Allergy Clin. North Am., 2011;31: 109-132
    Google Scholar
  • 11. Coufal M., Invernizzi P., Gaudio E., Bernuzzi F., Frampton G.A.,Onori P., Franchitto A., Carpino G., Ramirez J.C., Alvaro D., MarzioniM., Battisti G., Benedetti A., DeMorrow S.: Increased local dopaminesecretion has growth-promoting effects in cholangiocarcinoma. Int.J. Cancer, 2010; 126: 2112-2122
    Google Scholar
  • 12. Deng G.H., Liu J., Zhang J., Wang Y., Peng X.C., Wei Y.Q., Jiang Y.:Exogenous norepinephrine attenuates the efficacy of sunitinib in amouse cancer model. J. Exp. Clin. Cancer Res., 2014; 33: 21
    Google Scholar
  • 13. Deryugina E.I., Quigley J.P.: Pleiotropic roles of matrix metalloproteinasesin tumor angiogenesis: contrasting, overlapping and compensatoryfunctions. Biochim. Biophys. Acta, 2010; 1803: 103-120
    Google Scholar
  • 14. Dobos J., Kenessey I., Tímár J., Ladányi A.: Glucocorticoid receptorexpression and antiproliferative effect of dexamethasone on humanmelanoma cells. Pathol. Oncol. Res., 2011; 17: 729-734
    Google Scholar
  • 15. Elenkov I.J.: Glucocorticoids and the Th1/Th2 balance. Ann. N. Y.Acad. Sci., 2004; 1024: 138-146
    Google Scholar
  • 16. Elenkov I.J., Papanicolaou D.A., Wilder R.L., Chrousos G.P.: Modulatoryeffects of glucocorticoids and catecholamines on human interleukin-12and interleukin-10 production: clinical implications. Proc.Assoc. Am. Physicians, 1996; 108: 374-381
    Google Scholar
  • 17. Eng J.W., Kokolus K.M., Reed C.B., Hylander B.L., Ma W.W., RepaskyE.A.: A nervous tumor microenvironment: the impact of adrenergicstress on cancer cells, immunosuppression, and immunotherapeuticresponse. Cancer Immunol. Immunother., 2014; 63: 1115-1128
    Google Scholar
  • 18. Enserink J.M., Price L.S., Methi T., Mahic M., Sonnenberg A., BosJ.L., Taskén K.: The cAMP-Epac-Rap1 pathway regulates cell spreadingand cell adhesion to laminin-5 through the α3β1 integrin but not the α6 β4 integrin. J. Biol. Chem., 2004; 279: 44889-44896
    Google Scholar
  • 19. Evans B.A, Sato M., Sarwar M., Hutchinson D.S., Summers R.J.:Ligand-directed signalling at β-adrenoceptors. Br. J. Pharmacol., 2010;159: 1022-1038
    Google Scholar
  • 20. Ferrara N.: Binding to the extracellular matrix and proteolytic processing:two key mechanisms regulating vascular endothelial growthfactor action. Mol. Biol. Cell, 2010; 21: 687-690
    Google Scholar
  • 21. Flint M.S., Baum A., Episcopo B., Knickelbein K.Z., Liegey DougallA.J., Chambers W.H., Jenkins F.J.: Chronic exposure to stress hormonespromotes transformation and tumorigenicity of 3T3 mouse fibroblasts.Stress, 2013; 16: 114-121
    Google Scholar
  • 22. Franchimont D.: Overview of the actions of glucocorticoids onthe immune response: a good model to characterize new pathwaysof immunosuppression for new treatment strategies. Ann. N. Y. Acad.Sci., 2004; 1024: 124-137
    Google Scholar
  • 23. Gacche R.N., Meshram R.J.: Angiogenic factors as potential drugtarget: efficacy and limitations of anti-angiogenic therapy. Biochim.Biophys. Acta, 2014; 1846: 161-179
    Google Scholar
  • 24. Ganguly S., Basu B., Shome S., Jadhav T., Roy S., Majumdar J., DasguptaP.S., Basu S.: Dopamine, by acting through its D2 receptor, inhibitsinsulin-like growth factor-I (IGF-I)-induced gastric cancer cellproliferation via up-regulation of Krüppel-like factor 4 through downregulationof IGF-IR and AKT phosphorylation. Am. J. Pathol., 2010;177: 2701-2707
    Google Scholar
  • 25. Guo K., Ma Q., Wang L., Hu H., Li J., Zhang D., Zhang M.: Norepinephrine-inducedinvasion by pancreatic cancer cells is inhibited bypropranolol. Oncol. Rep., 2009; 22: 825-830
    Google Scholar
  • 26. Hanahan D., Weinberg R.A.: Hallmarks of cancer: the next generation.Cell, 2011; 144: 646-674
    Google Scholar
  • 27. Higashiyama A., Watanabe H., Okumura K., Yagita H.: Involvementof tumor necrosis factor α and very late activation antigen 4/vascularcell adhesion molecule 1 interaction in surgical-stress-enhanced experimentalmetastasis. Cancer Immunol. Immunother., 1996; 42: 231-236
    Google Scholar
  • 28. Huang X.Y., Wang H.C., Yuan Z., Huang J., Zheng Q.: Norepinephrinestimulates pancreatic cancer cell proliferation, migration and invasionvia β-adrenergic receptor-dependent activation of P38/MAPK pathway.Hepatogastroenterology, 2012; 59: 889-893
    Google Scholar
  • 29. Ishiguro H., Kawahara T. Zheng Y., Kashiwagi E., Miyamoto H.:Differential regulation of bladder cancer growth by various glucocorticoids:corticosterone and prednisone inhibit cell invasion withoutpromoting cell proliferation or reducing cisplatin cytotoxicity. CancerChemother. Pharmacol., 2014; 74: 249-255
    Google Scholar
  • 30. Iwai A., Fujii Y., Kawakami S., Takazawa R., Kageyama Y., YoshidaM.A., Kihara K.: Down-regulation of vascular endothelial growth factorin renal cell carcinoma cells by glucocorticoids. Mol. Cell. Endocrinol.,2004; 226: 11-17
    Google Scholar
  • 31. Jenkins F.J., van Houten B., Bovbjerg D.H.: Effects on DNA damageand/or repair processes as biological mechanisms linking psychologicalstress to cancer risk. J. Appl. Biobehav. Res., 2014; 19: 3-23
    Google Scholar
  • 32. Jiang J.L., Peng Y.P., Qiu Y.H., Wang J.J.: Effect of endogenous catecholamineson apoptosis of Con A-activated lymphocytes of rats. J.Neuroimmunol., 2007; 192: 79-88
    Google Scholar
  • 33. Kalinichenko V.V., Mokyr M.B., Graf L.H. Jr., Cohen R.L., ChambersD.A.: Norepinephrine-mediated inhibition of antitumor cytotoxic Tlymphocyte generation involves a β-adrenergic receptor mechanismand decreased TNF-α gene expression. J. Immunol., 1999; 163: 2492-2499
    Google Scholar
  • 34. Kang Y., Nagaraja A.S., Armaiz-Pena G.N., Dorniak P.L., Hu W., RupaimooleR., Liu T., Gharpure K.M., Previs R.A., Hansen J.M., RodriguezAguayoC., Ivan C., Ram P., Sehgal V., Lopez-Berestein G. i wsp.: Adrenergicstimulation of DUSP1 impairs chemotherapy response in ovariancancer. Clin. Cancer Res., 2016; 22: 1713-1724
    Google Scholar
  • 35. Kanno J., Wakikawa A., Utsuyama M., Hirokawa K.: Effect of restraintstress on immune system and experimental B16 melanomametastasis in aged mice. Mech. Ageing Dev., 1997; 93: 107-117
    Google Scholar
  • 36. Landen C.N. Jr., Lin Y.G., Armaiz Pena G.N., Das P.D., Arevalo J.M.,Kamat A.A., Han L.Y., Jennings N.B., Spannuth W.A., Thaker P.H., LutgendorfS.K., Savary C.A., Sanguino A.M., Lopez-Berestein G., ColeS.W., Sood A.K.: Neuroendocrine modulation of signal transducer andactivator of transcription-3 in ovarian cancer. Cancer Res., 2007; 67:10389-10396
    Google Scholar
  • 37. Lee J.W., Shahzad M.M., Lin Y.G., Armaiz-Pena G., Mangala L.S., HanH.D., Kim H.S., Nam E.J., Jennings N.B., Halder J., Nick A.M., Stone R.L.,Lu C., Lutgendorf S.K., Cole S.W. i wsp.: Surgical stress promotes tumorgrowth in ovarian carcinoma. Clin. Cancer Res., 2009; 15: 2695-2702
    Google Scholar
  • 38. Liu B., Li Z., Mahesh S.P., Pantanelli S., Hwang F.S., Siu W.O., NussenblattR.B.: Glucocorticoid-induced tumor necrosis factor receptornegatively regulates activation of human primary natural killer (NK)cells by blocking proliferative signals and increasing NK cell apoptosis.J. Biol. Chem., 2008; 283: 8202-8210
    Google Scholar
  • 39. Liu F., Gore A.J., Wilson J.L., Korc M.: DUSP1 is a novel target forenhancing pancreatic cancer cell sensitivity to gemcitabine. PLoS One,2014; 9: e84982
    Google Scholar
  • 40. Liu X., Wu W.K., Yu L., Sung J.J., Srivastava G., Zhang S.T., ChoC.H.: Epinephrine stimulates esophageal squamous-cell carcinomacell proliferation via β-adrenoceptor-dependent transactivation ofextracellular signal-regulated kinase/cyclooxygenase-2 pathway. J.Cell. Biochem., 2008; 105: 53-60
    Google Scholar
  • 41. Livingstone E., Hollestein L.M., van Herk-Sukel M.P., van de PollFranseL., Nijsten T., Schadendorf D., de Vries E.: β-Blocker use and allcausemortality of melanoma patients: results from a population-basedDutch cohort study. Eur. J. Cancer, 2013; 49: 3863-3871
    Google Scholar
  • 42. Lodewyks C., Rodriguez J.F., Yan J., Lerner B., Sun D., Rempel J.D.,Uhanova J., Labine M., Minuk G.Y.: Activation of β-adrenergic receptorsincreases the in vitro migration of malignant hepatocytes. Hepatol.Res., 2011; 41: 1000-1008
    Google Scholar
  • 43. Lorton D., Bellinger D.L.: Molecular mechanisms underlyingβ-adrenergic receptor-mediated cross-talk between sympathetic neuronsand immune cells. Int. J. Mol. Sci., 2015; 16: 5635-5665
    Google Scholar
  • 44. Lutgendorf S.K., Cole S., Costanzo E., Bradley S., Coffin J., Jabbari S.,Rainwater K., Ritchie J.M., Yang M., Sood A.K.: Stress-related mediatorsstimulate vascular endothelial growth factor secretion by two ovariancancer cell lines. Clin. Cancer Res., 2003; 9: 4514-4521
    Google Scholar
  • 45. Lutgendorf S.K., DeGeest K., Dahmoush L., Farley D., Penedo F.,Bender D., Goodheart M., Buekers T.E., Mendez L., Krueger G., ClevengerL., Lubaroff D.M., Sood A.K., Cole S.W.: Social isolation is associated withelevated tumor norepinephrine in ovarian carcinoma patients. BrainBehav. Immun., 2011; 25: 250-255
    Google Scholar
  • 46. Lutgendorf S.K., Lamkin D.M., Jennings N.B., Arevalo J.M., PenedoF., DeGeest K., Langley R.R., Lucci J.A.3rd, Cole S.W., Lubaroff D.M., SoodA.K.: Biobehavioral influences on matrix metalloproteinase expressionin ovarian carcinoma. Clin. Cancer Res., 2008; 14: 6839-6846
    Google Scholar
  • 47. Lutgendorf S.K., Sood A.K.: Biobehavioral factors and cancer progression:physiological pathways and mechanisms. Psychosom. Med.,2011; 73: 724-730
    Google Scholar
  • 48. Moreno-Smith M., Lee S.J., Lu C., Nagaraja A.S., He G., RupaimooleR., Han H.D., Jennings N.B., Roh J.W., Nishimura M., Kang Y., Allen J.K.,Armaiz G.N., Matsuo K., Shahzad M.M. i wsp.: Biologic effects of dopamineon tumor vasculature in ovarian carcinoma. Neoplasia, 2013;15: 502-510
    Google Scholar
  • 49. Moreno-Smith M., Lu C., Shahzad M.M., Pena G.N., Allen J.K., StoneR.L., Mangala L.S., Han H.D., Kim H.S., Farley D., Berestein G.L., Cole S.W.,Lutgendorf S.K., Sood A.K.: Dopamine blocks stress-mediated ovariancarcinoma growth. Clin. Cancer Res., 2011; 17: 3649-3659
    Google Scholar
  • 50. Moreno-Smith M., Lutgendorf S.K., Sood A.K.: Impact of stress on cancer metastasis. Future Oncol., 2010; 6: 1863-1881
    Google Scholar
  • 51. Moretti S., Massi D., Farini V., Baroni G., Parri M., Innocenti S., CecchiR., Chiarugi P.: β-adrenoceptors are upregulated in human melanomaand their activation releases pro-tumorigenic cytokines and metalloproteinasesin melanoma cell lines. Lab. Invest., 2013; 93: 279-290
    Google Scholar
  • 52. Nilsson M.B., Armaiz-Pena G., Takahashi R., Lin Y.G., Trevino J., LiY., Jennings N., Arevalo J., Lutgendorf S.K., Gallick G.E., Sanguino A.M.,Lopez-Berestein G., Cole S.W., Sood A.K.: Stress hormones regulateinterleukin-6 expression by human ovarian carcinoma cells througha Src-dependent mechanism. J. Biol. Chem., 2007; 282: 29919-29926
    Google Scholar
  • 53. Paoli P., Giannoni E, Chiarugi P.: Anoikis molecular pathways andits role in cancer progression. Biochim. Biophys. Acta, 2013; 1833: 3481-3498
    Google Scholar
  • 54. Pifl C., Zezula J., Spittler A., Kattinger A., Reither H., Caron M.G.,Hornykiewicz O.: Antiproliferative action of dopamine and norepinephrinein neuroblastoma cells expressing the human dopaminetransporter. FASEB J., 2001; 15: 1607-1609
    Google Scholar
  • 55. Pu J., Bai D., Yang X., Lu X., Xu L., Lu J.: Adrenaline promotes cellproliferation and increases chemoresistance in colon cancer HT29cells through induction of miR-155. Biochem. Biophys. Res. Commun.,2012; 428: 210-215
    Google Scholar
  • 56. Rangarajan S., Enserink J.M., Kuiperij H.B., de Rooij J., Price L.S.,Schwede F., Bos J.L.: Cyclic AMP induces integrin-mediated cell adhesionthrough Epac and Rap1 upon stimulation of the β2-adrenergicreceptor. J. Cell. Biol., 2003; 160: 487-493
    Google Scholar
  • 57. Rydlova M., Holubec L. Jr., Ludvikova M. Jr., Kalfert D., Franekova J.,Povysil C., Ludvikova M. Jr.: Biological activity and clinical implicationsof the matrix metalloproteinases. Anticancer Res., 2008; 28: 1389-1397
    Google Scholar
  • 58. Saha B., Mondal A.C., Basu S., Dasgupta P.S.: Circulating dopaminelevel, in lung carcinoma patients, inhibits proliferation and cytotoxicityof CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitroanalysis. Int. Immunopharmacol., 2001; 1: 1363-1374
    Google Scholar
  • 59. Sanzo M., Colucci R., Arunachalam M., Berti S., Moretti S.: Stressas a possible mechanism in melanoma progression. Dermatol. Res.Pract., 2010; 2010: 1-5
    Google Scholar
  • 60. Sassone-Corsi P.: The cyclic AMP pathway. Cold Spring Harb. Perspect.Biol., 2012; 4: a011148
    Google Scholar
  • 61. Sastry K.S., Karpova Y., Prokopovich S., Smith A.J., Essau B., GersappeA., Carson J.P., Weber M.J., Register T.C., Chen Y.Q., Penn R.B.,Kulik G.: Epinephrine protects cancer cells from apoptosis via activationof cAMP-dependent protein kinase and BAD phosphorylation. J.Biol. Chem., 2007; 282: 14094-14100
    Google Scholar
  • 62. Scarparo A.C., Sumida D.H., Patrão M.T., Avellar M.C., ViscontiM.A., de Lauro Castrucci A.M.: Catecholamine effects on human melanomacells evoked by α1-adrenoreceptors. Arch. Dermatol. Res., 2004;296: 112-119
    Google Scholar
  • 63. Scarparo A.C., Visconti M.A., de Lauro Castrucci A.M.: Signallingpathways evoked by α1-adrenoreceptors in human melanoma cells.Cell Biochem. Funct., 2006; 24: 119-129
    Google Scholar
  • 64. Schallreuter K.U., Wood J.M., Lemke R., LePoole C., Das P., WesterhofW., Pittelkow M.R., Thody A.J.: Production of catecholamines in thehuman epidermis. Biochem. Biophys. Res. Commun., 1992; 189: 72-78
    Google Scholar
  • 65. Schedlowski M., Falk A., Rohne A., Wagner T.O., Jacobs R., TewesU., Schmidt R.E.: Catecholamines induce alterations of distributionand activity of human natural killer (NK) cells. J. Clin. Immunol., 1993;13: 344-351
    Google Scholar
  • 66. Schneiderman N., Ironson G., Siegel S.D.: Stress and health: psychological,behavioral, and biological determinants. Ann. Rev. Clin.Psychol., 2005; 1: 607-628
    Google Scholar
  • 67. Schuller H.M., Al-Wadei H.A., Ullah M.F., Plummer H.K. 3rd: Regulationof pancreatic cancer by neuropsychological stress responses: anovel target for intervention. Carcinogenesis, 2012; 33: 191-196
    Google Scholar
  • 68. Shah S.M., Carey I.M., Owen C.G., Harris T., DeWilde S., Cook D.G.:Does β-adrenoceptor blocker therapy improve cancer survival? Findingsfrom a population-based retrospective cohort study. Br. J. Clin.Pharmacol., 2011; 72: 157-161
    Google Scholar
  • 69. Shahzad M.M., Arevalo J.M., Armaiz-Pena G.N., Lu C., Stone R.L.,Moreno-Smith M., Nishimura M., Lee J.W., Jennings N.B., Bottsford–Miller J., Vivas-Mejia P., Lutgendorf S.K., Lopez-Berestein G., Bar-EliM., Cole S.W., Sood A.K..: Stress effects on FosB- and interleukin-8 (IL8)–driven ovarian cancer growth and metastasis. J. Biol. Chem., 2010;285: 35462-35470
    Google Scholar
  • 70. Shan T., Ma J., Ma Q., Guo K., Guo J., Li X., Li W., Liu J., Huang C.,Wang F., Wu E.: β2-AR-HIF-1α: a novel regulatory axis for stress-inducedpancreatic tumor growth and angiogenesis. Curr. Mol. Med.,2013; 13: 1023-1034
    Google Scholar
  • 71. Sharma A., Greenman J., Sharp D.M., Walker L.G., Monson J.R.: Vascularendothelial growth factor and psychosocial factors in colorectalcancer. Psychooncology, 2008; 17: 66-73
    Google Scholar
  • 72. Shi M., Liu D., Duan H., Han C., Wei B., Qian L., Chen C., Guo L.,Hu M., Yu M., Song L., Shen B., Guo N.: Catecholamine up-regulatesMMP-7 expression by activating AP-1 and STAT3 in gastric cancer.Mol. Cancer, 2010; 9: 269
    Google Scholar
  • 73. Shi M., Liu D., Yang Z., Guo N.: Central and peripheral nervoussystems: master controllers in cancer metastasis. Cancer MetastasisRev., 2013; 32: 603-621
    Google Scholar
  • 74. Sood A.K., Armaiz-Pena G.N., Halder J., Nick A.M., Stone R.L., Hu W.,Carroll A.R., Spannuth W.A., Deavers M.T., Allen J.K., Han L.Y., KamatA.A., Shahzad M.M., McIntyre B.W., Diaz-Montero C.M. i wsp.: Adrenergicmodulation of focal adhesion kinase protects human ovarian cancercells from anoikis. J. Clin. Invest., 2010; 120: 1515-1523
    Google Scholar
  • 75. Sood A.K., Bhatty R., Kamat A.A., Landen C.N., Han L., Thaker P.H.,Li Y., Gershenson D.M., Lutgendorf S., Cole S.W.: Stress hormone-mediatedinvasion of ovarian cancer cells. Clin. Cancer Res., 2006; 12: 369-375
    Google Scholar
  • 76. Strell C., Niggemann B., Voss M.J., Powe D.G., Zänker K.S., EntschladenF.: Norepinephrine promotes the β1-integrin-mediated adhesionof MDA-MB-231 cells to vascular endothelium by the induction of aGROα release. Mol. Cancer Res., 2012; 10: 197-207
    Google Scholar
  • 77. Stringer-Reasor E.M., Baker G.M., Skor M.N., Kocherginsky M.,Lengyel E., Fleming G.F., Conzen S.D.: Glucocorticoid receptor activationinhibits chemotherapy-induced cell death in high-grade serousovarian carcinoma. Gynecol. Oncol., 2015; 138: 656-662
    Google Scholar
  • 78. Swanson, M.A., Lee, W.T., Sanders V.M.: IFNg production by Th1cells generated from naive CD4+ T cells exposed to norepinephrine. J.Immunol., 2001; 166: 232-240
    Google Scholar
  • 79. Takahashi M., Dillon T.J., Liu C., Kariya Y., Wang Z., Stork P.J.: Proteinkinase A-dependent phosphorylation of Rap1 regulates its membranelocalization and cell migration. J. Biol. Chem., 2013; 288: 27712-27723
    Google Scholar
  • 80. Tang J., Li Z., Lu L., Cho C.H.: β-Adrenergic system, a backstagemanipulator regulating tumour progression and drug target in cancertherapy. Semin. Cancer Biol., 2013; 23: 533-542
    Google Scholar
  • 81. Thaker P.H., Han L.Y., Kamat A.A., Arevalo J.M., Takahashi R., Lu C.,Jennings N.B., Armaiz-Pena G., Bankson J.A., Ravoori M., Merritt W.M.,Lin Y.G., Mangala L.S., Kim T.J., Coleman R.L. i wsp.: Chronic stress promotestumor growth and angiogenesis in a mouse model of ovariancarcinoma. Nat. Med., 2006; 12: 939-944
    Google Scholar
  • 82. Thornton L.M., Andersen B.L., Schuler T.A., Carson W.E.3rd: A psychologicalintervention reduces inflammatory markers by alleviatingdepressive symptoms: secondary analysis of a randomized controlledtrial. Psychosom. Med., 2009; 71: 715-724
    Google Scholar
  • 83. Tilan J., Kitlinska J.: Sympathetic neurotransmitters and tumorangiogenesis – link between stress and cancer progression. J. Oncol.,2010; 2010: 539706
    Google Scholar
  • 84. Valles S.L., Benlloch M., Rodriguez M.L., Mena S., Pellicer J.A., AsensiM., Obrador E., Estrela J.M.: Stress hormones promote growth ofB16-F10 melanoma metastases: an interleukin 6- and glutathione-dependentmechanism. J. Transl. Med., 2013; 11: 72
    Google Scholar
  • 85. Volden P.A., Conzen S.D.: The influence of glucocorticoid signalingon tumor progression. Brain Behav. Immun., 2013; 30: S26-S31
    Google Scholar
  • 86. Wong H.P., Ho J.W., Koo M.W., Yu L., Wu W.K., Lam E.K., Tai E.K., KoJ.K., Shin V.Y., Chu K.M., Cho C.H.: Effects of adrenaline in human colonadenocarcinoma HT-29 cells. Life Sci., 2011: 88: 1108-1112
    Google Scholar
  • 87. Yang E.V., Donovan E.L., Benson D.M., Glaser R.: VEGF is differentiallyregulated in multiple myeloma-derived cell lines by norepinephrine.Brain Behav. Immun., 2008; 22: 318-323
    Google Scholar
  • 88. Yang E.V., Kim S.J., Donovan E.L., Chen M., Gross A.C., Webster MarketonJ.I., Barsky S.H., Glaser R.: Norepinephrine upregulates VEGF, IL-8,and IL-6 expression in human melanoma tumor cell lines: implicationsfor stress-related enhacement of tumor progression. Brain Behav. Immun.,2009; 23: 267-275
    Google Scholar
  • 89. Yang E.V., Sood A.K., Chen M., Li Y., Eubank T.D., Marsh C.B., JewellS., Flavahan N.A., Morrison C., Yeh P.E., Lemeshow S., Glaser R.:Norepinephrine up-regulates the expression of vascular endothelialgrowth factor, matrix metalloproteinase (MMP)-2 and MMP-9 in nasopharyngealcarcinoma tumor cells. Cancer Res., 2006; 66: 10357-10364
    Google Scholar
  • 90. Yang R., Lin Q., Gao H.B., Zhang P.: Stress-related hormone norepinephrineinduces interleukin-6 expression in GES-1 cells. Braz. J. Med.Biol. Res., 2014; 47: 101-109
    Google Scholar
  • 91. Yano A., Fujii Y., Iwai A., Kageyama Y., Kihara K.: Glucocorticoidssuppress tumor angiogenesis and in vivo growth of prostate cancercells. Clin. Cancer Res., 2006; 12: 3003-3009
    Google Scholar

Full text

Skip to content