Plant storage proteins – the main nourisching products – from biosynthesis to cellular storage depots

COMMENTARY ON THE LAW

Plant storage proteins – the main nourisching products – from biosynthesis to cellular storage depots

Agnieszka Chmielnicka 1 , Aneta Żabka 1 , Konrad Winnicki 1 , Justyna Teresa Polit 1

1. Katedra Cytofizjologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki

Published: 2017-06-19
DOI: 10.5604/01.3001.0010.3834
GICID: 01.3001.0010.3834
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 530-540

 

Abstract

Storage proteins of legumes are one of the main components of the human and animal diet. The substances collected in their seeds have the pro-health values, supporting the prevention of many civilization diseases. However, there are still many uncertainties about the mechanisms leading to the production of nutritious seeds. It is also difficult to identify which of their constituents and in what final form are responsible for the observed protective effects in vivo. In this work, on the background of different types of storage proteins, these deposited mainly in legumes were in the focus of interest. They were characterized on the example of pea (Pisum sativum) proteins. Mechanisms associated with their biosynthesis and transport to specific cellular compartments was presented. Ways of their post-translational processing, segregation and storage in the specific vacuoles were also discussed. Therefore, the paper presents the state-of-the-art knowledge concerning the processes making the accumulated protein deposits ready to use by plants, animals and humans.

References

  • 1. Abirached-Darmency M., Dessaint F., Benlicha E., Schneider C.: Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds. BMC Res. Notes, 2012; 5: 409
    Google Scholar
  • 2. Ali M.H., Imperiali B.: Protein oligomerization: how and why. Bioorg. Med. Chem., 2005; 13: 5013-5020
    Google Scholar
  • 3. Anderson T.J., Lamsal B.P.: Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem., 2011; 88: 159-173
    Google Scholar
  • 4. Barac M., Cabrilo S., Pesic M., Stanojevic S., Zilic S., Macej O., Ristic N.: Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci., 2010; 11: 4973-4990
    Google Scholar
  • 5. Basińska A., Krzesłowska M., Woźny A.: Nowe fakty dotyczą- ce transportu pęcherzykowego w komórkach roślinnych. Kosmos, 2012; 61: 363-370
    Google Scholar
  • 6. Casey R., Christou P., Domoney C., Hedley C., Hitchin E., Parker M., Stoger E., Wang T., Zasiura C.: Expression of legumin and vicilin genes in pea mutants and the production of legumin in transgenic plants. Nahrung, 2001; 45: 385-387
    Google Scholar
  • 7. Clemente A., Marín-Manzano M.C., Jiménez E., Arqués M.C., Domoney C.: The anti-proliferative effect of TI1B, a major BowmanBirk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br. J. Nutr., 2012; 108 (Suppl. 1): S135-S144
    Google Scholar
  • 8. Czarnecka J., Koziołkiewicz M.: Albuminy 2S – roślinne białka zapasowe o właściwościach alergennych. Biotechnologia, 2007; 2: 114-127
    Google Scholar
  • 9. De Marchis F., Bellucci M., Pompa A.: Unconventional pathways of secretory plant proteins from the endoplasmic reticulum to the vacuole bypassing the Golgi complex. Plant Signal. Behav., 2013; 8: e25129
    Google Scholar
  • 10. Duranti M.: Grain legume proteins and nutraceutical properties. Fitoterapia, 2006; 77: 67-82
    Google Scholar
  • 11. Ebine K., Okatani Y., Uemura T., Goh T., Shoda K., Niihama M., Morita M.T., Spitzer C., Otegui M.S., Nakano A., Ueda T.: A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell, 2008; 20: 3006-3021
    Google Scholar
  • 12. Ebine K., Ueda T.: Unique mechanism of plant endocytic/vacuolar transport pathways. J. Plant Res., 2009; 122: 21-30
    Google Scholar
  • 13. Egea P.F., Stroud R.M., Walter P.: Targeting proteins to membranes: structure of the signal recognition particle. Curr. Opin. Struct. Biol., 2005; 15: 213-220
    Google Scholar
  • 14. Faso C., Boulaflous A., Brandizzi F.: The plant Golgi apparatus: last 10 years of answered and open questions. FEBS Lett., 2009; 583: 3752-3757
    Google Scholar
  • 15. Feeney M., Frigerio L., Kohalmi S.E., Cui Y., Menassa R.: Reprogramming cells to study vacuolar development. Front. Plant Sci., 2013; 4: 493
    Google Scholar
  • 16. Freitas R.L., Teixeira A.R., Ferreira R.B.: Vicilin-type globulins follow distinct patterns of degradation in different species of germinating legume seeds. Food Chem., 2007; 102: 323-329
    Google Scholar
  • 17. Frigerio L., Hinz G., Robinson D.G.: Multiple vacuoles in plant cells: rule or exception? Traffic, 2008; 9: 1564-1570
    Google Scholar
  • 18. Galili G.: ER-derived compartments are formed by highly regulated processes and have special functions in plants. Plant Physiol., 2004; 136: 3411-3413
    Google Scholar
  • 19. Gallardo K., Thompson R., Burstin J.: Reserve accumulation in legume seeds. C.R. Biol., 2008; 331: 755-762
    Google Scholar
  • 20. Gatehouse J.A., Croy R.R., Morton H., Tyler M., Boulter D.: Characterisation and subunit structures of the vicilin storage proteins of pea (Pisum sativum L.). Eur. J. Biochem., 1981; 118: 627-633
    Google Scholar
  • 21. Gatehouse J.A., Evans I.M., Bown D., Croy R.R., Boulter D.: Control of storage-protein synthesis during seed development in pea (Pisum sativum L.). Biochem. J., 1982; 208: 119-127
    Google Scholar
  • 22. Gattolin S., Sorieul M., Hunter P.R., Khonsari R.H., FrigerioL.: In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots. BMC Plant Biol., 2009; 9: 133
    Google Scholar
  • 23. Hanton S.L., Matheson L.A., Brandizzi F.: Seeking a way out: export of proteins from the plant endoplasmic reticulum. Trends Plant Sci., 2006; 11: 335-343
    Google Scholar
  • 24. Herman E.M., Larkins B.A.: Protein storage bodies and vacuoles. Plant Cell, 1999; 11: 601-613
    Google Scholar
  • 25. Hillmer S., Movafeghi A., Robinson D.G., Hinz G.: Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J. Cell Biol., 2001; 152: 41-50
    Google Scholar
  • 26. Hiss J.A., Schneider G.: Architecture, function and prediction of long signal peptides. Brief. Bioinform., 2009; 10: 569-578
    Google Scholar
  • 27. Hohl I., Robinson D.G., Chrispeels M.J., Hinz G.: Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J. Cell Sci., 1996; 109: 2539-2550
    Google Scholar
  • 28. Holding D.R., Larkins B.A.: The development and importance of zein protein bodies in maize endosperm. Maydica, 2006; 51: 243-254
    Google Scholar
  • 29. Isayenkov S., Isner J.C., Maathuis F.J.: Vacuolar ion channels: Roles in plant nutrition and signalling. FEBS Lett., 2010; 584: 1982- 1988
    Google Scholar
  • 30. Leterme P.: Recommendations by health organizations for pulse consumption. Br. J. Nutr., 2002; 88 (Suppl. 3): S239-S242
    Google Scholar
  • 31. Marti L., Fornaciari S., Renna L., Stefano G., Brandizzi F.: COPIImediated traffic in plants. Trends Plant Sci., 2010; 15: 522-528
    Google Scholar
  • 32. Martínez-Villaluenga C., Gulewicz P., Frias J., Gulewicz K., Vidal-Valverde C.: Assessment of protein fractions of three cultivars of Pisum sativum L.: Effect of germination. Eur. Food Res. Technol., 2008; 226:1465-1478
    Google Scholar
  • 33. Maruyama N., Mun L.C., Tatsuhara M., Sawada M., Ishimoto M., Utsumi S.: Multiple vacuolar sorting determinants exist in soybean 11S globulin. Plant Cell, 2006; 18: 1253-1273
    Google Scholar
  • 34. Masclaux F.G., Galaud J.P., Pont-Lezica R.: The riddle of the plant vacuolar sorting receptors. Protoplasma, 2005; 226: 103-108
    Google Scholar
  • 35. Mertens C., Dehon L., Bourgeois A., Verhaeghe-Cartrysse C., Blecker C.: Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds. J. Sci. Food Agric., 2012; 92: 1591-1596
    Google Scholar
  • 36. Meusser B., Hirsch C., Jarosch E., Sommer T.: ERAD: the long road to destruction. Nat. Cell Biol., 2005; 7: 766-772
    Google Scholar
  • 37. Mori T., Saruta Y., Fukuda T., Prak K., Ishimoto M., Maruyama N., Utsumi S.: Vacuolar sorting behaviors of 11S globulins in plant cells. Biosci., Biotechnol. Biochem., 2009; 73: 53-60
    Google Scholar
  • 38. Müntz K.: Deposition of storage proteins. Plant Mol. Biol., 1998; 38: 77-99
    Google Scholar
  • 39. Müntz K.: Protein dynamics and proteolysis in plant vacuoles. J. Exp. Bot., 2007; 580: 2391-2407
    Google Scholar
  • 40. Nielsen H., Krogh A.: Prediction of signal peptides and signal anchors by a hidden Markov model. Proc. Int. Conf. Intell. Syst. Mol. Biol., 1998; 6: 122-130
    Google Scholar
  • 41. O’kane F.E., Happe R. P., Vereijken J. M., Gruppen H., van Boekel M.A.: Characterization of pea vicilin. 1. Denoting convicilin as the α-subunit of the Pisum vicilin family. J. Agric. Food Chem., 2004; 52: 3141-3148
    Google Scholar
  • 42. Olbrich A., Hillmer S., Hinz G., Oliviusson P., Robinson D.G.: Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol., 2007; 145: 1383-1394
    Google Scholar
  • 43. Onda Y.: Oxidative protein-folding systems in plant cells. Int. J. Cell Biol., 2013; 2013: 585431
    Google Scholar
  • 44. Park M., Kim S.J., Vitale A., Hwang I.: Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Plant Physiol., 2004; 134: 625-639
    Google Scholar
  • 45. Pedrosa C., De Felice F.G., Trisciuzzi C., Ferreira S.T.: Selective neoglycosylation increases the structural stability of vicilin, the 7S storage globulin from pea seeds. Arch. Biochem. Biophys., 2000; 382: 203-210
    Google Scholar
  • 46. Pereira C., Pereira S., Pissarra J.: Delivering of proteins to the plant vacuole – an update. Int. J. Mol. Sci., 2014; 15: 7611-7623
    Google Scholar
  • 47. Pimpl P., Taylor J.P., Snowden C., Hillmer S., Robinson D.G., Denecke J.: Golgi-mediated vacuolar sorting of the endoplasmic reticulum chaperone BiP may play an active role in quality control within the secretory pathway. Plant Cell, 2006; 18: 198-211
    Google Scholar
  • 48. Pool M.R., Stumm J., Fulga T.A., Sinning I., Dobberstein B.: Distinct modes of signal recognition particle interaction with the ribosome. Science, 2002; 297: 1345-1348
    Google Scholar
  • 49. Popoff V., Adolf F., Brügger B., Wieland F.: COPI budding within the Golgi stack. Cold Spring Harb. Perspect. Biol., 2011; 3: a005231
    Google Scholar
  • 50. Prandini A., Sigolo S., Morlacchini M., Cerioli C., Masoero F.: Pea (Pisum sativum) and faba bean (Vicia faba L.) seeds as protein sources in growing-finishing heavy pig diets: effect on growth performance, carcass characteristics and on fresh and seasoned Parma ham quality. Ital. J. Anim. Sci., 2011; 10: e45
    Google Scholar
  • 51. Raghavan V.: Molecular embryology of flowering plants. Cambridge University Press, 1997
    Google Scholar
  • 52. Robinson D.G., Oliviusson P., Hinz G.: Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic, 2005; 6: 615-625
    Google Scholar
  • 53. Rubio L.A., Pérez A., Ruiz R., Guzmán M.Á., Aranda-Olmedo A., Clemente A.: Characterization of pea (Pisum sativum) seed protein fractions. J. Sci. Food Agric., 2014; 94: 280-287
    Google Scholar
  • 54. Shewry P.R., Napier J.A., Tatham A.S.: Seed storage proteins: structures and biosynthesis. Plant Cell, 1995; 7: 945-956
    Google Scholar
  • 55. Strating J.R., Martens G.J.: The p24 family and selective transport processes at the ER-Golgi interface. Biol. Cell, 2009; 101: 495-509
    Google Scholar
  • 56. Tosi P., Parker M., Gritsch C.S., Carzaniga R., Martin B., Shewry P.R.: Trafficking of storage proteins in developing grain of wheat. J. Exp. Bot., 2009; 60: 979-991
    Google Scholar
  • 57. Törmäkangas K., Hadlington J.L., Pimpl P., Hillmer S., Brandizzi F., Teeri T.H., Denecke J.: A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell, 2001; 13: 2021-2032
    Google Scholar
  • 58. Tzitzikas E.N., Vincken J.P., de Groot J., Gruppen H., Visser R.G.: Genetic variation in pea seed globulin composition. J. Agric. Food Chem., 2006; 54: 425-433
    Google Scholar
  • 59. Viotti C.: ER and vacuoles: never been closer. Front. Plant Sci., 2014; 5: 20
    Google Scholar
  • 60. von Lüpke A., Schauermann G., Feussner I., Hinz G.: Peripheral membrane proteins mediate binding of vacuolar storage proteins to membranes of the secretory pathway of developing pea cotyledons. J. Exp. Bot., 2008; 59: 1327-1340
    Google Scholar
  • 61. Wang H., Rogers J.C., Jiang L.: Plant RMR proteins: unique vacuolar sorting receptors that couple ligand sorting with membrane internalization. FEBS J., 2011; 278: 59-68
    Google Scholar
  • 62. Woźny A., Jackowski G., Jarmuszkiewicz W., Ratajczak L., Szweykowska-Kulińska Z.: Sortowanie i transport białek. W: Biologia komórki roślinnej, t. 2, red.: P. Wojtaszek, A. Woźny, L. Ratajczak. Wydawnictwo Naukowe PWN SA, Warszawa 2007
    Google Scholar
  • 63. Xiang L., Etxeberria E., Van den Ende W.: Vacuolar protein sorting mechanisms in plants. FEBS J., 2013; 280: 979-993
    Google Scholar
  • 64. Zheng H., Staehelin L.A.: Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol., 2011; 155: 2023-2035
    Google Scholar

Full text

Skip to content