The pathophysiological basis of the protective effects of metformin in heart failure
Aleksandra Dziubak 1 , Grażyna Wójcicka 1Abstract
Metformin, currently recommended as the drug of first choice in type 2 diabetes mellitus (T2DM), is one of the few antihiperglycemic drugs to reduce cardiovascular risk. Nonetheless, due to the risk of lactic acidosis during metformin therapy, its usage in patients with diabetes and heart failure (HF) is still a matter of debate. The aim of this review is to present data supporting the possibility of using metformin in the treatment of diabetic patients with concomitant heart failure. In the failing heart, metformin through the mechanism related to AMP-activated protein kinase (AMPK) activity, improves free fatty acids (FFA) and glucose metabolism, mitochondrial biogenesis, as well as nitric oxide (NO)-NO synthase pathway. Metformin can also inhibit the generation and accumulation of advanced glycation end products (AGEs) and thereby prevents the development of the adverse structural and functional changes in myocardium.In summary, experimental and clinical data indicate the ability of metformin to prevent the development of the structural and functional changes in myocardium, although further basic research and clinical studies assessing benefits and safety of metformin therapy in patients with HF are required.
References
- 1. Aguilar D., Chan W., Bozkurt B., Ramasubbu K., Deswal A.: Metforminuse and mortality in ambulatory patients with diabetes andheart failure. Circ. Heart Fail., 2011; 4: 53-58 2 An D., Kewalramani G., Chan J.K., Qi D., Ghosh S., Pulinilkunnil T.,Abrahani A., Innis S.M., Rodrigues B.: Metformin influences cardiomyocytecell death by pathways that are dependent and independentof caspase-3. Diabetologia, 2006; 49: 2174-2184
Google Scholar - 2. diabetes (UKPDS 35): prospective observational study. Br. Med. J.,2000; 321: 405-412
Google Scholar - 3. Balcıoğlu A.S., Müderrisoğlu H.: Diabetes and cardiac autonomicneuropathy: clinical manifestations, cardiovascular consequences,diagnosis and treatment. World J. Diabetes, 2015; 6: 80-91
Google Scholar - 4. Bayeva M., Sawicki K.T., Ardehali H.: Taking diabetes to heart –deregulation of myocardial lipid metabolism in diabetic cardiomyopathy.J. Am. Heart Assoc., 2013; 2: e000433
Google Scholar - 5. Beisswenger P.J., Howell S.K., Touchette A.D., Lal S., SzwergoldB.S.: Metformin reduces systemic methylglyoxal levels in type 2diabetes. Diabetes, 1999; 48: 198-202
Google Scholar - 6. Benes J., Kazdova L., Drahota Z., Houstek J., Medrikova D., KopeckyJ., Kovarova N., Vrbacky M., Sedmera D., Strnad H., Kolar M., PetrakJ., Benada O., Skaroupkova P., Cervenka L.: Effect of metformin therapyon cardiac function and survival in a volume-overload modelof heart failure in rats. Clin. Sci., 2011; 121: 29-41
Google Scholar - 7. Bertrand L., Ginion A., Beauloye C., Hebert A.D., Guigas B., HueL., Vanoverschelde J.L.: AMPK activation restores the stimulation ofglucose uptake in an in vitro model of insulin-resistant cardiomyocytesvia the activation of protein kinase B. Am. J. Physiol. HeartCirc. Physiol., 2006; 291: H239-H250
Google Scholar - 8. Boudina S., Abel E.D.: Diabetic cardiomyopathy revisited. Circulation,2007; 115: 3213-3223
Google Scholar - 9. Brown B.E., Mahroof F.M., Cook N.L., van Reyk D.M., Davies M.J.:Hydrazine compounds inhibit glycation of low-density lipoproteinsand prevent the in vitro formation of model foam cells fromglycolaldehyde-modified low-density lipoproteins. Diabetologia,2006; 49: 775-783
Google Scholar - 10. Bułdak Ł., Łabuzek K., Bułdak R.J., Kozłowski M., Machnik G.,Liber S., Suchy D., Duława-Bułdak A., Okopień B.: Metformin affectsmacrophages› phenotype and improves the activity of glutathioneperoxidase, superoxide dismutase, catalase and decreases malondialdehydeconcentration in a partially AMPK-independent manner inLPS-stimulated human monocytes/macrophages. Pharmacol. Rep.,2014; 66: 418-429
Google Scholar - 11. Carugo S., Giannattasio C., Calchera I., Paleari F., GorgoglioneM.G., Grappiolo A., Gamba P., Rovaris G., Failla M., Mancia G.: Progressionof functional and structural cardiac alterations in youngnormotensive uncomplicated patients with type 1 diabetes mellitus.J. Hypertens., 2001; 19: 1675-1680
Google Scholar - 12. Chan A.Y., Soltys C.L., Young M.E., Proud C.G., Dyck J.R.: Activationof AMP-activated protein kinase inhibits protein synthesisassociated with hypertrophy in the cardiac myocyte. J. Biol. Chem.,2004; 279: 32771-32779
Google Scholar - 13. Czech M.P., Tencerova M., Pedersen D.J., Aouadi M.: Insulin signallingmechanisms for triacylglycerol storage. Diabetologia, 2013;56: 949-964
Google Scholar - 14. DeFronzo, R.A., Goodman A.M., Multicenter Metformin StudyGroup: Efficacy of metformin in patients with non-insulin-dependentdiabetes mellitus. N. Engl. J. Med., 1995; 333: 541-549
Google Scholar - 15. Dei Cas A., Spigoni V., Ridolfi V., Metra M.: Diabetes and chronicheart failure: from diabetic cardiomyopathy to therapeutic approach.Endocr., Metab. Immune Disord. – Drug Targets, 2013; 13: 38-50
Google Scholar - 16. Dowling R.J., Goodwin P.J., Stambolic V.: Understanding the benefitof metformin use in cancer treatment. BMC Med., 2011; 9: 33
Google Scholar - 17. Eurich D.T., Majumdar S.R., McAlister F.A., Tsuyuki R.T., JohnsonJ.A.: Improved clinical outcomes associated with metformin inpatients with diabetes and heart failure. Diabetes Care, 2005; 28:2345-2351
Google Scholar - 18. Eurich D.T., Weir D.L., Majumdar S.R., Tsuyuki R.T., Johnson J.A.,Tjosvold L., Vanderloo S.E., McAlister F.A.: Comparative safety andeffectiveness of metformin in patients with diabetes mellitus andheart failure. Systematic review of observational studies involving 34 000 patients. Circ. Heart Fail., 2013; 6: 395-402
Google Scholar - 19. Falcão-Pires I., Leite-Moreira A.F.: Diabetic cardiomyopathy: understandingthe molecular and cellular basis to progress in diagnosisand treatment. Heart Fail. Rev., 2012; 17: 325-344
Google Scholar - 20. Fitchett D., Zinman B., Wanner C., Lachin J.M., Hantel S., Salsali A.,Johansen O.E.,Woerle H.J., Broedl U.C., Inzucchi S.E., EMPA-REG OUTCOME®trial investigators: Heart failure outcomes with empagliflozinin patients with type 2 diabetes at high cardiovascular risk: resultsof the EMPA-REG OUTCOME® trial. Eur. Heart J., 2016; 37: 1526-1534
Google Scholar - 21. Foster M.T., Pagliassotti M.J.: Metabolic alterations followingvisceral fat removal and expansion. Beyond anatomic location. Adipocyte,2012; 1: 192-199
Google Scholar - 22. Förstermann U., Kleinert H.: Nitric oxide synthase: expressionand expressional control of the three isoforms. Naunyn. SchmiedebergsArch. Pharmacol., 1995; 352: 351-364
Google Scholar - 23. Gilbert R.E., Krum H.: Heart failure in diabetes: effects of anti–hyperglycaemic drug therapy. Lancet, 2015; 385: 2107-2117
Google Scholar - 24. Grzybowska M., Bober J., Olszewska M.: Metformina – mechanizmydziałania i zastosowanie w terapii cukrzycy typu 2. PostępyHig. Med. Dośw., 2011; 65: 277-285
Google Scholar - 25. Gu S., Shi J., Tang Z., Sawhney M., Hu H., Shi L., Fonseca V., DongH.: Comparison of glucose lowering effect of metformin and acarbosein type 2 diabetes mellitus: a meta-analysis. PLoS One, 2015;10: e0126704
Google Scholar - 26. Gundewar S., Calvert J.W., Jha S., Toedt-Pingel I., Ji S.Y., NunezD., Ramachandran A., Anaya-Cisneros M., Tian R., Lefer D.J.: Activationof AMP-activated protein kinase by metformin improves leftventricular function and survival in heart failure. Circ. Res., 2009;104: 403-411
Google Scholar - 27. Gunton J.E., Delhanty P.J., Takahashi S., Baxter R.C.: Metforminrapidly increases insulin receptor activation in human liver andsignals preferentially through insulin-receptor substrate-2. J. Clin.Endocrinol. Metab., 2003; 88: 1323-1332
Google Scholar - 28. Holstein A., Stumvoll M.: Contraindications can damage your health– is metformin a case in point? Diabetologia, 2005; 48: 2454-2459
Google Scholar - 29. Joffe I.I., Travers K.E., Perreault-Micale C.L., Hampton T., KatzS.E., Morgan J.P., Douglas P.S.: Abnormal cardiac function in thestreptozotocin-induced non-insulin-dependent diabetic rat: noninvasiveassessment with doppler echocardiography and contributionof the nitric oxide pathway. J. Am. Coll. Cardiol., 1999; 34:2111-2119
Google Scholar - 30. Jyothirmayi G.N., Soni B.J., Masurekar M., Lyons M., Regan T.J.:Effects of metformin on collagen glycation and diastolic dysfunctionin diabetic myocardium. J. Cardiovasc. Pharmacol. Ther., 1998;3: 319-326
Google Scholar - 31. Kandula V., Kosuru R., Li H., Yan D., Zhu Q., Lian Q., Ge R.S., Xia Z.,Irwin M.G.: Forkhead box transcription factor 1: role in the pathogenesisof diabetic cardiomyopathy. Cardiovasc. Diabetol., 2016; 15: 44
Google Scholar - 32. Kappel B.A., Marx N., Federici M.: Oral hypoglycemic agents andthe heart failure conundrum: lessons from and for outcome trials.Nutr. Metab. Cardiovasc. Dis., 2015; 25: 697-705
Google Scholar - 33. Kim T.T., Dyck J.R.: Is AMPK the savior of the failing heart?Trends Endocrinol. Metab., 2015; 26: 40-48
Google Scholar - 34. Kosmalski M., Drozdowska A., Śliwińska A., Drzewoski J.: Inappropriatemetformin prescribing in elderly type 2 diabetes mellitus(T2DM) patients. Adv. Med. Sci., 2012; 57: 65-70
Google Scholar - 35. Kristensen J.M., Treebak J.T., Schjerling P., Goodyear L., WojtaszewskiJ.F.: Two weeks of metformin treatment induces AMPK–dependent enhancement of insulin-stimulated glucose uptake inmouse soleus muscle. Am. J. Physiol. Endocrinol. Metab., 2014; 306:E1099-E1109
Google Scholar - 36. Lim M.Y, Roach J.: Metabolizm białek. W: Metabolizm i żywienie,red.: D. Horton-Szar, M. Dominiczak. Elsevier Urban & Partner,Wrocław 2012, 85-111
Google Scholar - 37. MacDonald M.R., Eurich D.T., Majumdar S.R., Lewsey J.D., BhagraS., Jhund P.S., Petrie M.C., McMurray J.J., Petrie J.R., McAlister F.A.:Treatment of type 2 diabetes and outcomes in patients with heartfailure: a nested case-control study from the U.K. General PracticeResearch Database. Diabetes Care, 2010; 33: 1213-1218
Google Scholar - 38. Machado A.P., Pinto R.S., Moysés Z.P., Nakandakare E.R., QuintãoE.C., Passarelli M.: Aminoguanidine and metformin prevent the reducedrate of HDL-mediated cell cholesterol efflux induced by formationof advanced glycation end products. Int. J. Biochem. CellBiol., 2006; 38: 392-403
Google Scholar - 39. Mannucci E., Ognibene A., Cremasco F., Bardini G., Mencucci A.,Pierazzuoli E., Ciani S., Messeri G., Rotella C.M.: Effect of metforminon glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabeticsubjects. Diabetes Care, 2001; 24: 489-494
Google Scholar - 40. McAlister F.A., Eurich D.T., Majumdar S.R., Johnson J.A.: The riskof heart failure in patients with type 2 diabetes treated with oralagent monotherapy. Eur. J. Heart Fail., 2008; 10: 703-708
Google Scholar - 41. McCreight L.J., Bailey C.J., Pearson E.R.: Metformin and the gastrointestinaltract. Diabetologia, 2016; 59: 426-435
Google Scholar - 42. McGavock J.M., Lingvay I., Zib I., Tillery T., Salas N., Unger R.,Levine B.D., Raskin P., Victor R.G., Szczepaniak L.S.: Cardiac steatosisin diabetes mellitus: a 1H-magnetic resonance spectroscopy study.Circulation, 2007; 116: 1170-1175
Google Scholar - 43. Nabrdalik K., Cichocka E., Gumprecht J.: Metformina a kinazabiałkowa aktywowana przez AMP (AMPK) i procesy energetycznew cukrzycy typu 2. Diabetol.Klin., 2013; 2: 125-130
Google Scholar - 44. Nascimben L., Ingwall J.S., Lorell B.H., Pinz I., Schultz V., Tornheim K., Tian R.: Mechanisms for increased glycolysis in the hypertrophiedrat heart. Hypertension, 2004; 44: 662-667
Google Scholar - 45. Nobécourt E., Zeng J., Davies M.J., Brown B.E., Yadav S., BarterP.J., Rye K.A.: Effects of cross-link breakers, glycation inhibitors andinsulin sensitisers on HDL function and the non-enzymatic glycationof apolipoprotein A-I. Diabetologia, 2008; 51: 1008-1017
Google Scholar - 46. Pietkiewicz J., Seweryn E., Bartyś A., Gamian A.: Receptory koń-cowych produktów zaawansowanej glikacji – znaczenie fizjologicznei kliniczne. Postępy Hig. Med. Dośw., 2008; 62: 511-523
Google Scholar - 47. Preis S.R., Massaro J.M., Robins S.J., Hoffmann U., Vasan R.S.,Irlbeck T., Meigs J.B., Sutherland P., D’Agostino R.B.Sr., O’DonnellC.J., Fox C.S.: Abdominal subcutaneous and visceral adipose tissueand insulin resistance in the Framingham Heart Study. Obesity, 2010;18: 2191-2198
Google Scholar - 48. Pryor R., Cabreiro F.: Repurposing metformin: an old drug withnew tricks in its binding pockets. Biochem. J., 2015; 471: 307-322
Google Scholar - 49. Rahbar S., Natarajan R., Yerneni K., Scott S., Gonzales N., NadlerJ.L.: Evidence that pioglitazone, metformin and pentoxifylline areinhibitors of glycation. Clin. Chim. Acta, 2000; 301: 65-77
Google Scholar - 50. Rojas L.B., Gomes M.B.: Metformin: an old but still the best treatmentfor type 2 diabetes. Diabetol. Metab. Syndr., 2013; 5: 6
Google Scholar - 51. Saha A.K., Vavvas D., Kurowski T.G., Apazidis A., Witters L.A.,Shafrir E., Ruderman N.B.: Malonyl-CoA regulation in skeletal muscle:its link to cell citrate and the glucose-fatty acid cycle. Am. J.Physiol., 1997; 272: E641-E648
Google Scholar - 52. Saito T., Hu F., Tayara L., Fahas L., Shennib H., Giaid A.: Inhibitionof NOS II prevents cardiac dysfunction in myocardial infarction andcongestive heart failure. Am. J. Physiol. Heart Circ. Physiol., 2002;283: H339-H345
Google Scholar - 53. Sasaki H., Asanuma H., Fujita M., Takahama H., Wakeno M., ItoS., Ogai A., Asakura M., Kim J., Minamino T., Takashima S., Sanada S.,Sugimachi M., Komamura K., Mochizuki N., Kitakaze M.: Metforminprevents progression of heart failure in dogs: role of AMP-activatedprotein kinase. Circulation, 2009; 119: 2568-2577
Google Scholar - 54. Scarpello J.H., Howlett H.C.: Metformin therapy and clinicaluses. Diab. Vasc. Dis. Res., 2008; 5: 157-167
Google Scholar - 55. Shah D.D., Fonarow G.C., Horwich T.B.: Metformin therapy andoutcomes in patients with advanced systolic heart failure and diabetes.J. Card. Fail., 2010; 16: 200-206
Google Scholar - 56. Skrha J., Prázný M., Hilgertová J., Kvasnicka J., Kalousová M.,Zima T.: Oxidative stress and endothelium influenced by metforminin type 2 diabetes mellitus. Eur. J. Clin. Pharmacol., 2007; 63:1107-1114
Google Scholar - 57. Soraya H., Khorrami A., Garjani A., Maleki-Dizaji N., Garjani A.:Acute treatment with metformin improves cardiac function followingisoproterenol induced myocardial infarction in rats. Pharmacol.Rep., 2012; 64: 1476-1484
Google Scholar - 58. Standl E., Schnell O., McGuire D.K.: Heart failure considerationsof antihyperglycemic medications for type 2 diabetes. Circ. Res.,2016; 118: 1830-1843
Google Scholar - 59. Stratton I.M., Adler A.I., Neil H.A., Matthews D.R., Manley S.E.,Cull C.A., Hadden D., Turner R.C., Holman R.R.: Association of glycaemiawith macrovascular and microvascular complications of type
Google Scholar - 60. Stumvoll M., Nurjhan N., Perriello G., Dailey G., Gerich J.E.: Metaboliceffects of metformin in non-insulin-dependent diabetes mellitus.N. Engl. J. Med., 1995; 333: 550-554
Google Scholar - 61. Sliwinska A., Drzewoski J.: Molecular action of metformin in hepatocytes:an updated insight. Curr. Diabetes Rev., 2015; 11: 175-181
Google Scholar - 62. Tanaka Y., Uchino H., Shimizu T., Yoshii H., Niwa M., OhmuraC., Mitsuhashi N., Onuma T., Kawamori R.: Effect of metformin on advanced glycation endproduct formation and peripheral nervefunction in streptozotocin-induced diabetic rats. Eur. J. Pharmacol.,1999; 376: 17-22
Google Scholar - 63. Towler M.C., Hardie D.G.: AMP-activated protein kinase in metaboliccontrol and insulin signaling. Circ. Res., 2007; 100: 328-341
Google Scholar - 64. Tsujino M., Hirata Y., Imai T., Kanno K., Eguchi S., Ito H., MarumoF.: Induction of nitric oxide synthase gene by interleukin-1 beta incultured rat cardiocytes. Circulation, 1994; 90: 375-383
Google Scholar - 65. UK Prospective Diabetes Study (UKPDS) Group: Effect of intensiveblood-glucose control with metformin on complicationsin overweight patients with type 2 diabetes (UKPDS 34). Lancet,1998; 352: 854-865
Google Scholar - 66. Vilar L., Canadas V., Arruda M.J., Arahata C., Agra R., Pontes L.,Montenegro L., Vilar C.F., Silva L.M., Albuquerque J.L., Gusmão A.:Comparison of metformin, gliclazide MR and rosiglitazone in monotherapyand in combination for type 2 diabetes. Arq. Bras. Endocrinol.Metabol., 2010; 54: 311-318
Google Scholar - 67. Viollet B., Guigas B., Leclerc J., Hébrard S., Lantier L., Mounier R.,Andreelli F., Foretz M.: AMP-activated protein kinase in the regulationof hepatic energy metabolism: from physiology to therapeuticperspectives. Acta Physiol., 2009; 196: 81-98
Google Scholar - 68. Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., AndreelliF.: Cellular and molecular mechanisms of metformin: an overview.Clin. Sci., 2012; 122: 253-270
Google Scholar - 69. Wajchenberg B.L.: Subcutaneous and visceral adipose tissue: theirrelation to the metabolic syndrome. Endocr. Rev., 2000; 21: 697-738
Google Scholar - 70. Warwas M., Piwowar A., Kopiec G.: Zaawansowane produktyglikacji (AGE) w organizmie – powstawanie, losy, interakcja z receptoramii jej następstwa. Farm. Pol., 2010; 66: 585-590
Google Scholar - 71. Witters L.A.: The blooming of the French lilac. J. Clin. Invest.,2001; 108: 1105-1107
Google Scholar - 72. Xiao H., Ma X., Feng W., Fu Y., Lu Z., Xu M., Shen Q., Zhu Y.,Zhang Y.: Metformin attenuates cardiac fibrosis by inhibiting theTGFβ1-Smad3 signalling pathway. Cardiovasc. Res., 2010; 87: 504-513
Google Scholar - 73. Yang B., Larson D.F., Watson R.R.: Modulation of iNOS activity inage-related cardiac dysfunction. Life Sci., 2004; 75: 655-667
Google Scholar - 74. Young M.E., McNulty P., Taegtmeyer H.: Adaptation and maladaptationof the heart in diabetes. Part II. Potential mechanisms.Circulation, 2002; 105: 1861-1870
Google Scholar - 75. Zheng J., Woo S.L., Hu X., Botchlett R., Chen L., Huo Y., Wu C.:Metformin and metabolic diseases: a focus on hepatic aspects. Front.Med., 2015; 9: 173-186
Google Scholar - 76. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., WuM., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., GoodyearL.J., Moller D.E.: Role of AMP-activated protein kinase in mechanismof metformin action. J. Clin. Invest., 2001; 108: 1167-1174
Google Scholar - 77. Zhou Y.T., Grayburn P., Karim A., Shimabukuro M., Higa M., BaetensD., Orci L., Unger R.H.: Lipotoxic heart disease in obese rats:implications for human obesity. Proc. Natl. Acad. Sci. USA, 2000;97: 1784-1789
Google Scholar - 78. Zlobine I., Gopal K., Ussher J.R.: Lipotoxicity in obesity and diabetes-relatedcardiac dysfunction. Biochim. Biophys. Acta, 2016;1861: 1555-1568
Google Scholar - 79. Zou M.H., Wu Y.: AMP-activated protein kinase activation asa strategy for protecting vascular endothelial function. Clin. Exp.Pharmacol. Physiol., 2008; 35: 535-545
Google Scholar