Participation of BMI-1 protein in cancer

REVIEW ARTICLE

Participation of BMI-1 protein in cancer

Agnieszka Zaczek 1 , Paweł Jóźwiak 1 , Anna Krześlak 1

1. Uniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska, Katedra Cytobiochemii, Łódź,

Published: 2017-09-20
DOI: 10.5604/01.3001.0010.4649
GICID: 01.3001.0010.4649
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 811-824

 

Abstract

BMI-1 (B-lymphoma Mo-MLV insertion region 1) protein is a constituent of Polycomb Repressive Complex 1 (PRC1) that via ubiquitination of histone H2A affects expression of many genes. BMI-1 is involved in cellular processes such as DNA repair, proliferation, growth, senescence and apoptosis. BMI-1 plays a key role in biology of stem cells including cancer stem cells by regulation of their self-renewal and differentiation. Accumulating evidence has revealed that overexpression of BMI-1 in many human cancers correlates with disease progression and therapy failure. The results of in vitro and in vivo studies confirm the involvement of BMI-1 in tumor initiation as well as invasion, metastasis and chemoresistance. Taking into account significant role of BMI1 in tumorigenesis, especially associated with cancer stem cells, it seems that this gene may be a promising target of anticancer therapies.

References

  • 1. Abd El Hafez A., El-Hadaad H.A.: Immunohistochemical expression and prognostic relevance of Bmi-1, a stem cell factor, in epithelial ovarian cancer. Ann. Diagn. Pathol., 2014; 18: 58-62
    Google Scholar
  • 2. Abdouh M., Facchino S., Chatoo W., Balasingam V., Ferreira J., Bernier G.: BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci., 2009; 29: 8884-8896
    Google Scholar
  • 3. Aranda S., Mas G., Di Croce L.: Regulation of gene transcription by Polycomb proteins. Sci. Adv., 2015; 1: e1500737
    Google Scholar
  • 4. Bandhavkar S.: Cancer stem cells: a metastasizing menace! Cancer Med., 2016; 5: 649-655
    Google Scholar
  • 5. Bhattacharya R., Nicoloso M., Arvizo R., Wang E., Cortez A., Rossi S., Calin G.A., Mukherjee P.: MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer. Cancer Res., 2009; 69: 9090-9095
    Google Scholar
  • 6. Biehs B., Hu J.K., Strauli N.B., Sangiorgi E., Jung H., Heber R.P., Ho S., Goodwin A.F., Dasen J.S., Capecchi M.R., Klein O.D.: BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat. Cell Biol., 2013; 15: 846-852
    Google Scholar
  • 7. Bommi P.V., Dimri M., Sahasrabuddhe A.A., Khandekar J., Dimri G.P.: The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. Cell Cycle, 2010; 9: 2663-2673
    Google Scholar
  • 8. Cao L., Bombard J., Cintron K., Sheedy J., Weetall M.L., Davis T.W.: BMI1 as a novel target for drug discovery in cancer. J. Cell. Biochem., 2011; 112: 2729-2741
    Google Scholar
  • 9. Chen T., Xu C., Chen J., Ding C., Xu Z., Li C., Zhao J.: MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non- -small cell lung cancer. Oncol. Lett., 2015; 9: 2639-2646
    Google Scholar
  • 10. Cheng Y., Yang X., Deng X., Zhang X., Li P., Tao J., Lu Q.: MicroRNA-218 inhibits bladder cancer cell proliferation, migration, and invasion by targeting BMI-1. Tumour Biol., 2015; 36: 8015-8023
    Google Scholar
  • 11. Chiba T., Seki A., Aoki R., Ichikawa H., Negishi M., Miyagi S., Oguro H., Saraya A., Kamiya A., Nakauchi H., Yokosuka O., Iwama A.: Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and – independent manners in mice. Hepatology, 2010; 52: 1111-1123
    Google Scholar
  • 12. Cho J.H., Dimri M., Dimri G.P.: MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem., 2015; 290: 10555-10567
    Google Scholar
  • 13. Chowdhury M., Mihara K., Yasunaga S., Ohtaki M., Takihara Y., Kimura A.: Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia, 2007; 21: 1116-1122
    Google Scholar
  • 14. Cohen K.J., Hanna J.S., Prescott J.E., Dang C.V.: Transformation by the Bmi-1 oncoprotein correlates with its subnuclear localization but not its transcriptional suppression activity. Mol. Cell. Biol., 1996; 16: 5527-5535
    Google Scholar
  • 15. Dawood S., Austin L., Cristofanilli M.: Cancer stem cells: implications for cancer therapy. Oncology, 2014; 28: 1101-1107
    Google Scholar
  • 16. Di Croce L., Helin K.: Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol., 2013; 20: 1147-1155
    Google Scholar
  • 17. Du J., Li Y., Li J., Zheng J.: Polycomb group protein Bmi1 expression in colon cancers predicts the survival. Med. Oncol., 2010; 27: 1273-1276
    Google Scholar
  • 18. Effendi K., Mori T., Komuta M., Masugi Y., Du W., Sakamoto M.: Bmi-1 gene is upregulated in early-stage hepatocellular carcinoma and correlates with ATP-binding cassette transporter B1 expression. Cancer Sci., 2010; 101: 666-672
    Google Scholar
  • 19. Engelsen I.B., Mannelqvist M., Stefansson I.M., Carter S.L., Beroukhim R., Øyan A.M., Otte A.P., Kalland K.H., Akslen L.A., Salvesen H.B.: Low BMI-1 expression is associated with an activated BMI- -1-driven signature, vascular invasion, and hormone receptor loss in endometrial carcinoma. Br. J. Cancer, 2008; 98: 1662-1669
    Google Scholar
  • 20. Facchino S., Abdouh M., Chatoo W., Bernier G.: BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J. Neurosci., 2010; 30: 10096-10111
    Google Scholar
  • 21. Fasano C.A., Dimos J.T., Ivanova N.B., Lowry N., Lemischka I.R., Temple S.: shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell, 2007; 1: 87-99
    Google Scholar
  • 22. Fu W.M., Tang L.P., Zhu X., Lu Y.F., Zhang Y.L., Lee W.Y., Wang H., Yu Y., Liang W.C., Ko C.H., Xu H.X., Kung H.F., Zhang J.F.: MiR- -218-targeting-Bmi-1 mediates the suppressive effect of 1,6,7-trihydroxyxanthone on liver cancer cells. Apoptosis, 2015; 20: 75-82
    Google Scholar
  • 23. Gieni R.S., Ismail I.H., Campbell S., Hendzel M.J.: Polycomb group proteins in the DNA damage response: a link between radiation resistance and “stemness”. Cell Cycle, 2011; 10: 883-894
    Google Scholar
  • 24. Ginjala V., Nacerddine K., Kulkarni A., Oza J., Hill S.J., Yao M., Citterio E., van Lohuizen M., Ganesan S.: BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol. Cell. Biol., 2011; 31: 1972-1982
    Google Scholar
  • 25. Grinstein E., Mahotka C.: Stem cell divisions controlled by the proto-oncogene BMI-1. J. Stem Cells, 2009; 4: 141-146
    Google Scholar
  • 26. Gui T., Bai H., Zeng J., Zhong Z., Cao D., Cui Q., Chen J., Yang J., Shen K.: Tumor heterogeneity in the recurrence of epithelial ovarian cancer demonstrated by polycomb group proteins. Onco. Targets Ther., 2014; 7: 1705-1716
    Google Scholar
  • 27. Guo B.H., Feng Y., Zhang R., Xu L.H., Li M.Z., Kung H.F., Song L.B., Zeng M.S.: Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol. Cancer, 2011; 10: 10
    Google Scholar
  • 28. Guo J., Li W., Shi H., Xie X., Li L., Tang H., Wu M., Kong Y., Yang L., Gao J., Liu P., Wei W., Xie X.: Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a. Mol. Cell. Biochem., 2013; 382: 103-111
    Google Scholar
  • 29. Guo S., Xu X., Tang Y., Zhang C., Li J., Ouyang Y., Ju J., Bie P., Wang H.: miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression. Cancer Lett., 2014; 344: 40-46
    Google Scholar
  • 30. Guo W.J., Datta S., Band V., Dimri G.P.: Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol. Biol. Cell, 2007; 18: 536-546
    Google Scholar
  • 31. Haupt Y., Bath M.L., Harris A.W., Adams J.M.: bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene, 1993; 8: 3161-3164
    Google Scholar
  • 32. Häyry V., Mäkinen L.K., Atula T., Sariola H., Mäkitie A., Leivo I., Keski-Säntti H., Lundin J., Haglund C., Hagström J.: Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br. J. Cancer, 2010; 102: 892-897
    Google Scholar
  • 33. He X., Dong Y., Wu C.W., Zhao Z., Ng S.S., Chan F.K., Sung J.J., Yu J.: MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol. Med., 2013; 18: 1491-1498
    Google Scholar
  • 34. Hoenerhoff M.J., Chu I., Barkan D., Liu Z.Y., Datta S., Dimri G.P., Green JE.: BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene, 2009; 28: 3022-3032
    Google Scholar
  • 35. Huang R., Cheung N.K., Vider J., Cheung I.Y., Gerald W.L., Tickoo S.K., Holland E.C., Blasberg R.G.: MYCN and MYC regulate tumor proliferation and tumorigenesis directly through BMI1 in human neuroblastomas. FASEB J., 2011; 25: 4138-4149
    Google Scholar
  • 36. Ismail I.H., Andrin C., McDonald D., Hendzel M.J.: BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell. Biol., 2010; 191: 45-60
    Google Scholar
  • 37. Ismail I.H., Gagné J.P., Caron M.C., McDonald D., Xu Z., Masson J.Y., Poirier G.G., Hendzel M.J.: CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res., 2012; 40: 5497-5510
    Google Scholar
  • 38. Itahana K., Zou Y., Itahana Y., Martinez J.L., Beausejour C., Jacobs J.J., Van Lohuizen M., Band V., Campisi J., Dimri G.P.: Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell. Biol., 2003; 23: 389-401
    Google Scholar
  • 39. Jacobs J.J., Kieboom K., Marino S., DePinho R.A., van Lohuizen M.: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 1999; 397: 164-168
    Google Scholar
  • 40. Jiang L., Song L., Wu J., Yang Y., Zhu X., Hu B., Cheng S.Y., Li M.: Bmi-1 promotes glioma angiogenesis by activating NF-κB signaling. PLoS One, 2013; 8: e55527
    Google Scholar
  • 41. Jiang L., Wu J., Yang Y., Liu L., Song L., Li J., Li M.: Bmi-1 promotes the aggressiveness of glioma via activating the NF-kappaB/MMP-9 signaling pathway. BMC Cancer, 2012; 12: 406
    Google Scholar
  • 42. Jin M., Zhang T., Liu C., Badeaux M.A., Liu B., Liu R., Jeter C., Chen X., Vlassov A.V., Tang D.G.: miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res., 2014; 74: 4183-4195
    Google Scholar
  • 43. Joensuu K., Hagström J., Leidenius M., Haglund C., Andersson L.C., Sariola H., Heikkilä P.: Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases – elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch., 2011; 459: 31-39
    Google Scholar
  • 44. Jung J.W., Lee S., Seo M.S., Park S.B., Kurtz A., Kang S.K., Kang K.S.: Histone deacetylase controls adult stem cell aging by balancing the expression of polycomb genes and jumonji domain containing 3. Cell. Mol. Life Sci., 2010; 67: 1165-1176
    Google Scholar
  • 45. Kuo S.Z., Blair K.J., Rahimy E., Kiang A., Abhold E., Fan J.B., Wang- -Rodriguez J., Altuna X., Ongkeko W.M.: Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer, 2012; 12: 556
    Google Scholar
  • 46. Lessard J., Sauvageau G.: Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003; 423: 255-260
    Google Scholar
  • 47. Li J., Gong L.Y., Song L.B., Jiang L.L., Liu L.P., Wu J., Yuan J., Cai J.C., He M., Wang L., Zeng M., Cheng S.Y., Li M.: Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-κB pathway. Am. J. Pathol., 2010; 176: 699-709
    Google Scholar
  • 48. Li S.K., Smith D.K., Leung W.Y., Cheung A.M., Lam E.W., Dimri G.P., Yao K.M.: FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J. Biol. Chem., 2008; 283: 16545-16553
    Google Scholar
  • 49. Li W., Li Y., Tan Y., Ma K., Cui J.: Bmi-1 is critical for the proliferation and invasiveness of gastric carcinoma cells. J. Gastroenterol. Hepatol., 2010; 25: 568-575
    Google Scholar
  • 50. Li X., Yang Z., Song W., Zhou L., Li Q., Tao K., Zhou J., Wang X., Zheng Z., You N., Dou K., Li H.: Overexpression of Bmi-1 contributes to the invasion and metastasis of hepatocellular carcinoma by increasing the expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor via the PTEN/PI3K/ Akt pathway. Int. J. Oncol., 2013; 43: 793-802
    Google Scholar
  • 51. Li Z., Cao R., Wang M., Myers M.P., Zhang Y., Xu R.M.: Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J. Biol. Chem., 2006; 281: 20643-20649
    Google Scholar
  • 52. Li Z., Wang Y., Yuan C., Zhu Y., Qiu J., Zhang W., Qi B., Wu H., Ye J., Jiang H., Yang J., Cheng J.: Oncogenic roles of Bmi1 and its therapeutic inhibition by histone deacetylase inhibitor in tongue cancer. Lab. Invest., 2014; 94: 1431-1445
    Google Scholar
  • 53. Liang W., Zhu D., Cui X., Su J., Liu H., Han J., Zhao F., Xie W.: Knockdown BMI1 expression inhibits proliferation and invasion in human bladder cancer T24 cells. Mol. Cell. Biochem., 2013; 382: 283-291
    Google Scholar
  • 54. Lin X., Ojo D., Wei F., Wong N., Gu Y., Tang D.: A novel aspect of tumorigenesis-BMI1 functions in regulating DNA damage response. Biomolecules, 2015; 5: 3396-3415
    Google Scholar
  • 55. Liu J., Cao L., Chen J., Song S., Lee I.H., Quijano C., Liu H., Keyvanfar K., Chen H., Cao L.Y. , Ahn B.H., Kumar N.G., Rovira I.I., Xu X.L., van Lohuizen M., Motoyama N., Deng C.X., Finkel T.: Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature, 2009; 459: 387-392
    Google Scholar
  • 56. Liu S., Dontu G., Mantle I.D., Patel S., Ahn N.S., Jackson K.W., Suri P., Wicha M.S.: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res., 2006; 66: 6063-6071
    Google Scholar
  • 57. Liu S., Tetzlaff M.T., Cui R., Xu X.: miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Am. J. Pathol., 2012; 181: 1823-1835
    Google Scholar
  • 58. Liu Y., Liu F., Yu H., Zhao X., Sashida G., Deblasio A., Harr M., She Q.B., Chen Z., Lin H.K., Di Giandomenico S., Elf S.E., Yang Y., Miyata Y., Huang G. i wsp.: Akt phosphorylates the transcriptional repressor Bmi1 to block its effects on the tumor-suppressing Ink4a-Arf locus. Sci. Signal., 2012; 5: ra77
    Google Scholar
  • 59. Lo W.L., Yu C.C., Chiou G.Y., Chen Y.W., Huang P.I., Chien C.S., Tseng L.M., Chu P.Y., Lu K.H., Chang K.W., Kao S.Y., Chiou S.H.: MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J. Pathol., 2011; 223: 482-495
    Google Scholar
  • 60. Lukacs R.U., Memarzadeh S., Wu H., Witte O.N.: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell, 2010; 7: 682-693
    Google Scholar
  • 61. Ma J., Lanza D.G., Guest I., Uk-Lim C., Glinskii A., Glinsky G., Sell S.: Characterization of mammary cancer stem cells in the MMTV- -PyMT mouse model. Tumour Biol., 2012; 33: 1983-1996
    Google Scholar
  • 62. Madathan Kandy S., Ishwara Bhat D., Choppavarapu L., Suvatha A., Ghati Kasturirangan C.: Overexpression and lack of copy number variation in the BMI-1 gene in human glioma. Oncol. Lett., 2015; 10: 3318-3322
    Google Scholar
  • 63. Martinez-Fernández M., Dueñas M., Feber A., Segovia C., García-Escudero R., Rubio C., López-Calderón F.F., Díaz-García C., Villacampa F., Duarte J., Gómez-Rodriguez M.J., Castellano D., Rodriguez- -Peralto J.L., de la Rosa F., Beck S., Paramio J.M.: A Polycomb-mir200 loop regulates clinical outcome in bladder cancer. Oncotarget, 2015; 6: 42258-42275
    Google Scholar
  • 64. Meng X., Wang Y., Zheng X., Liu C., Su B., Nie H., Zhao B., Zhao X., Yang H.: shRNA-mediated knockdown of Bmi-1 inhibit lung adenocarcinoma cell migration and metastasis. Lung Cancer, 2012; 77: 24-30
    Google Scholar
  • 65. Mohty M., Yong A.S., Szydlo R.M., Apperley J.F., Melo J.V.: The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood, 2007; 110: 380-383
    Google Scholar
  • 66. Molofsky A.V., He S., Bydon M., Morrison S.J., Pardal R.: Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev., 2005; 19: 1432-1437
    Google Scholar
  • 67. Nacerddine K., Beaudry J.B., Ginjala V., Westerman B., Mattiroli F., Song J.Y., van der Poel H., Ponz O.B., Pritchard C., Cornelissen- -Steijger P., Zevenhoven J., Tanger E., Sixma T.K., Ganesan S., van Lohuizen M.: Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. J. Clin. Invest., 2012; 122: 1920-1932
    Google Scholar
  • 68. Nanta R., Kumar D., Meeker D., Rodova M., Van Veldhuizen P.J., Shankar S., Srivastava R.K.: NVP-LDE-225 (Erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating Bmi-1 and microRNA-128. Oncogenesis, 2013; 2: e42
    Google Scholar
  • 69. Naujokat C., Steinhart R.: Salinomycin as a drug for targeting human cancer stem cells. J. Biomed. Biotechnol., 2012; 2012: 950658
    Google Scholar
  • 70. Nishida Y., Maeda A., Chachad D., Ishizawa J., Qiu Y.H., Kornblau S.M., Kimura S., Andreeff M., Kojima K.: Preclinical activity of the novel B‐cell‐specific Moloney murine leukemia virus integration site 1 inhibitor PTC‐209 in acute myeloid leukemia: Implications for leukemia therapy. Cancer Sci., 2015; 106: 1705-1713
    Google Scholar
  • 71. Nör C., Zhang Z., Warner K.A., Bernardi L., Visioli F., Helman J.I., Roesler R., Nör J.E.: Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia, 2014; 16: 137-146
    Google Scholar
  • 72. Nowak K., Kerl K., Fehr D., Kramps C., Gessner C., Killmer K., Samans B., Berwanger B., Christiansen H., Lutz W.: BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res., 2006; 34: 1745-1754
    Google Scholar
  • 73. Paranjape A.N., Balaji S.A., Mandal T., Krushik E.V., Nagaraj P., Mukherjee G., Rangarajan A.: Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer, 2014; 14: 785
    Google Scholar
  • 74. Polytarchou C., Iliopoulos D., Struhl K.: An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc. Natl. Acad. Sci. USA, 2012; 109: 14470-14475
    Google Scholar
  • 75. Qin Z.K., Yang J.A., Ye Y.L., Zhang X., Xu L.H., Zhou F.J., Han H., Liu Z.W., Song L.B., Zeng M.S.: Expression of Bmi-1 is a prognostic marker in bladder cancer. BMC Cancer, 2009; 9: 61
    Google Scholar
  • 76. Raaphorst F.M.: Deregulated expression of Polycomb-group oncogenes in human malignant lymphomas and epithelial tumors. Hum. Mol. Genet., 2005; 14 (Suppl.): R93-R100
    Google Scholar
  • 77. Sahasrabuddhe A.A.: BMI1: a biomarker of hematologic malignancies. Biomark. Cancer, 2016; 8: 65-75
    Google Scholar
  • 78. Sahasrabuddhe A.A., Dimri M., Bommi P.V., Dimri G.P.: βTrCP regulates BMI1 protein turnover via ubiquitination and degradation. Cell Cycle, 2011; 10: 1322-1330
    Google Scholar
  • 79. Saudy N.S., Fawzy I.M., Azmy E., Goda E.F., Eneen A., Abdul Salam E.M.: BMI1 gene expression in myeloid leukemias and its impact on prognosis. Blood Cells Mol. Dis., 2014; 53: 194-198
    Google Scholar
  • 80. Sauvageau M., Sauvageau G.: Polycomb group proteins: multi- -faceted regulators of somatic stem cells and cancer. Cell Stem Cell, 2010; 7: 299-313
    Google Scholar
  • 81. Siddique H.R., Saleem M.: Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells, 2012; 30: 372-378
    Google Scholar
  • 82. Song L.B., Li J., Liao W.T., Feng Y., Yu C.P., Hu L.J., Kong Q.L., Xu L.H., Zhang X., Liu W.L., Li M.Z., Zhang L., Kang T.B., Fu L.W., Huang W.L. i wsp.: The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest., 2009; 119: 3626-3636
    Google Scholar
  • 83. Song L.B., Zeng M.S., Liao W.T., Zhang L., Mo H.Y., Liu W.L., Shao J.Y., Wu Q.L., Li M.Z., Xia Y.F., Fu L.W., Huang W.L., Dimri G.P., Band V., Zeng Y.X.: Bmi-1 is a novel molecular marker of nasopharyngeal carcinoma progression and immortalizes primary human nasopharyngeal epithelial cells. Cancer Res., 2006; 66: 6225-6232
    Google Scholar
  • 84. Song S.J., Poliseno L., Song M.S., Ala U., Webster K., Ng C., Beringer G., Brikbak N.J., Yuan X., Cantley L.C., Richardson A.L., Pandolfi P.P.: MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 2013; 154: 311-324
    Google Scholar
  • 85. Song W., Tao K., Li H., Jin C., Song Z., Li J., Shi H., Li X., Dang Z., Dou K.: Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci., 2010; 101: 1754-1760
    Google Scholar
  • 86. Sugihara H., Ishimoto T., Watanabe M., Sawayama H., Iwatsuki M., Baba Y., Komohara Y., Takeya M., Baba H.: Identification of miR- -30e* regulation of Bmi1 expression mediated by tumor-associated macrophages in gastrointestinal cancer. PLoS One, 2013; 8: e81839
    Google Scholar
  • 87. Sun P., Mu Y., Zhang S.: A novel NF-κB/MMP-3 signal pathway involves in the aggressivity of glioma promoted by Bmi-1. Tumour Biol., 2014; 35: 12721-12727
    Google Scholar
  • 88. Tu Y., Gao X., Li G., Fu H., Cui D., Liu H., Jin W., Zhang Y.: MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res., 2013; 73: 6046-6055
    Google Scholar
  • 89. van Leenders G.J., Dukers D., Hessels D., van den Kieboom S.W., Hulsbergen C.A., Witjes J.A., Otte A.P., Meijer C.J., Raaphorst F.M.: Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur. Urol., 2007; 52: 455-463
    Google Scholar
  • 90. Voncken J.W., Niessen H., Neufeld B., Rennefahrt U., Dahlmans V., Kubben N., Holzer B., Ludwig S., Rapp U.R.: MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J. Biol. Chem., 2005; 280: 5178-5187
    Google Scholar
  • 91. Wang E., Bhattacharyya S., Szabolcs A., Rodriguez-Aguayo C., Jennings N.B., Lopez-Berestein G., Mukherjee P., Sood A.K., Bhattacharya R.: Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS One, 2011; 6: e17918
    Google Scholar
  • 92. Wang H.B., Liu G.H., Zhang H., Xing S., Hu L.J., Zhao W.F., Xie B., Li M.Z., Zeng B.H., Li Y., Zeng M.S.: Sp1 and c-Myc regulate transcription of BMI1 in nasopharyngeal carcinoma. FEBS J., 2013; 280: 2929-2944
    Google Scholar
  • 93. Wang L., Liu J.L., Yu L., Liu X.X., Wu H.M., Lei F.Y., Wu S., Wang X.: Downregulated miR-495 inhibits the G1-S phase transition by targeting Bmi-1 in breast cancer. Medicine, 2015; 94: e718
    Google Scholar
  • 94. Wang M.C., Jiao M., Wu T., Jing L., Cui J., Guo H., Tian T., Ruan Z.P., Wei Y.C., Jiang L.L., Sun H.F., Huang L.X., Nan K.J., Li C.L.: Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study. Oncotarget, 2016; 7: 9586-9599
    Google Scholar
  • 95. Wang X., Venugopal C., Manoranjan B., McFarlane N., O’Farrell E., Nolte S., Gunnarsson T., Hollenberg R., Kwiecien J., Northcott P., Taylor M.D., Hawkins C., Singh S.K.: Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene, 2012; 31: 187-199
    Google Scholar
  • 96. Wei F., Ojo D., Lin X., Wong N., He L., Yan J., Xu S., Major P., Tang D.: BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation. Oncogene, 2015; 34: 3063-3075
    Google Scholar
  • 97. Wei X., He J., Wang J., Yang X., Ma B.: Bmi-1 is essential for the oncogenic potential in CD133+ human laryngeal cancer cells. Tumour Biol., 2015; 36: 8931-8942
    Google Scholar
  • 98. Wei Y., Du Y., Chen X., Li P., Wang Y., Zang W., Zhao L., Li Z., Zhao G.: Expression patterns of microRNA-218 and its potential functions by targeting CIP2A and BMI1 genes in melanoma. Tumour Biol., 2014; 35: 8007-8015
    Google Scholar
  • 99. Wu C., Zheng X., Li X., Fesler A., Hu W., Chen L., Xu B., Wang Q., Tong A., Burke S., Ju J., Jiang J.: Reduction of gastric cancer proliferation and invasion by miR-15a mediated suppression of Bmi-1 translation. Oncotarget, 2016; 7: 14522-14536
    Google Scholar
  • 100. Wu C.Y., Kang H.Y., Yang W.L., Wu J., Jeong Y.S., Wang J., Chan C.H., Lee S.W., Zhang X., Lamothe B., Campos A.D., Darnay B.G., Lin H.K.: Critical role of monoubiquitination of histone H2AX protein in histone H2AX phosphorylation and DNA damage response. J. Biol. Chem., 2011; 286: 30806-30815
    Google Scholar
  • 101. Wu J., Hu D., Yang G., Zhou J., Yang C., Gao Y., Zhu Z.: Down- -regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells. J. Cell. Biochem., 2011; 112: 1938-1948
    Google Scholar
  • 102. Wu K.J., Yang M.H.: Epithelial-mesenchymal transition and cancer stemness: the Twist1-Bmi1 connection. Biosci. Rep., 2011; 31: 449-455
    Google Scholar
  • 103. Xie X., Piao L., Cavey G.S., Old M., Teknos T.N., Mapp A.K., Pan Q.: Phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. Oncogene, 2014; 33: 2040-2052
    Google Scholar
  • 104. Xu L., Li Y., Yan D., He J., Liu D.: MicroRNA-183 inhibits gastric cancer proliferation and invasion via directly targeting Bmi-1. Oncol. Lett., 2014; 8: 2345-2351
    Google Scholar
  • 105. Xu X., Liu Y., Su J., Li D., Hu J., Huang Q., Lu M., Liu X., Ren J., Chen W., Sun L.: Downregulation of Bmi-1 is associated with suppressed tumorigenesis and induced apoptosis in CD44⁺ nasopharyngeal carcinoma cancer stem-like cells. Oncol. Rep., 2016; 35: 923-931
    Google Scholar
  • 106. Xu X.H., Liu X.Y., Su J., Li D.J., Huang Q., Lu M.Q., Yi F., Ren J.H., Chen W.H.: ShRNA targeting Bmi-1 sensitizes CD44⁺ nasopharyngeal cancer stem-like cells to radiotherapy. Oncol. Rep., 2014; 32: 764-770
    Google Scholar
  • 107. Xu X.H., Liu Y., Li D.J., Hu J., Su J., Huang Q., Lu M.Q., Yi F., Bao D., Fu Y.Z.: Effect of shRNA-mediated gene silencing of Bmi-1 expression on chemosensitivity of CD44+ nasopharyngeal carcinoma cancer stem-like cells. Technol. Cancer Res. Treat., 2016; 15: NP27-NP39
    Google Scholar
  • 108. Yadav A.K., Sahasrabuddhe A.A., Dimri M., Bommi P.V., Sainger R., Dimri G.P.: Deletion analysis of BMI1 oncoprotein identifies its negative regulatory domain. Mol. Cancer, 2010; 9: 158
    Google Scholar
  • 109. Yang J., Chai L., Liu F., Fink L.M., Lin P., Silberstein L.E., Amin H.M., Ward D.C., Ma Y.: Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc. Natl. Acad. Sci. USA, 2007; 104: 10494-10499
    Google Scholar
  • 110. Yin T., Wei H., Leng Z., Yang Z., Gou S., Wu H., Zhao G., Hu X., Wang C.: Bmi-1 promotes the chemoresistance, invasion and tumorigenesis of pancreatic cancer cells. Chemotherapy, 2011; 57: 488-496
    Google Scholar
  • 111. Yu J., Lu Y., Cui D., Li E., Zhu Y., Zhao Y., Zhao F., Xia S.: miR- -200b suppresses cell proliferation, migration and enhances chemosensitivity in prostate cancer by regulating Bmi-1. Oncol. Rep., 2014; 31: 910-918
    Google Scholar
  • 112. Yu T., Chen X., Zhang W., Colon D., Shi J., Napier D., Rychahou P., Lu W., Lee E.Y., Weiss H.L., Evers B.M., Liu C.: Regulation of the potential marker for intestinal cells, Bmi1, by β-catenin and the zinc finger protein KLF4: implications for colon cancer. J. Biol. Chem., 2012; 287: 3760-3768
    Google Scholar
  • 113. Yuan J., Takeuchi M., Negishi M., Oguro H., Ichikawa H., Iwama A.: Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia, 2011; 25: 1335-1343
    Google Scholar
  • 114. Zakrzewska M., Zakrzewski K., Grešner S.M., Piaskowski S., Zalewska-Szewczyk B., Liberski P.P.: Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma. Childs Nerv. Syst., 2011; 27: 79-86
    Google Scholar
  • 115. Zhang S., Balch C., Chan M.W., Lai H.C., Matei D., Schilder J.M., Yan P.S., Huang T.H., Nephew K.P.: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res., 2008; 68: 4311-4320
    Google Scholar
  • 116. Zhang X., Guo W., Wang X., Liu X., Huang M., Gan L., Cheng Y., Li J.: Antitumor activity and inhibitory effects on cancer stem cell- -like properties of Adeno-associated virus (AAV) – mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer. Oncotarget, 2016; 7: 22733-22745
    Google Scholar
  • 117. Zhang X., Sun J., Wang H., Lou Y., Zhang Y., Sha H., Feng J., Han B.: IGF-1R and Bmi-1 expressions in lung adenocarcinoma and their clinicopathologic and prognostic significance. Tumour Biol., 2014; 35: 739-745
    Google Scholar
  • 118. Zhou L., Zhang W.G., Wang D.S., Tao K.S., Song W.J., Dou K.F.: MicroRNA-183 is involved in cell proliferation, survival and poor prognosis in pancreatic ductal adenocarcinoma by regulating Bmi- 1. Oncol. Rep., 2014; 32: 1734-1740
    Google Scholar
  • 119. Zhu G., Wang Y., Mijiti M., Wang Z., Wu P.F., Jiafu D.: Upregulation of miR-130b enhances stem cell-like phenotype in glioblastoma by inactivating the Hippo signaling pathway. Biochem. Biophys. Res. Commun., 2015; 465: 194-199
    Google Scholar

Full text

Skip to content