Predation among microorganisms: A huge potential of interspecies dependencies

REVIEW ARTICLE

Predation among microorganisms: A huge potential of interspecies dependencies

Justyna Kowalska 1 , Marcin Włodarczyk 1

1. Katedra Immunologii i Biologii Infekcyjnej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki,

Published: 2017-11-03
DOI: 10.5604/01.3001.0010.5608
GICID: 01.3001.0010.5608
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 906-914

 

Abstract

There are many interactions between species (including bacteria) in the environment. One of them is predation, which always leads to the death of a prey. Described in this review Bdellovibrio bacteriovorus (Deltaproteobacteria) and Micavibrio aeruginosavorus (Alfaproteobacteria) are uniflagellate, rod shaped and curved obligate predators of Gram-negative bacteria. Both species belong to the group of BALOs (Bdellovibrio and like organisms). B. bacteriovorus use periplasmic predatory strategy and M. aeruginosavorus are epibiotic hunters. BALOs have found application in both medicine in combating microorganisms responsible for food poisoning and outside of medicine (agriculture and food) as plant protection products and as measures used to prevent the spoiling of food. As a result of searching for effective therapies in the treatment of infections caused by drug-resistant strains of bacteria, it has been shown that predators feed on pathogenic bacteria without showing immunogenicity to humans. Predatory bacteria are able to destroy the multi – and single-species biofilms. Recent studies have indicated the possibility of B. bacteriovorus to destroy the biofilm formed by Staphylococcus aureus. It is postulated that a double predatory strategy of B. bacteriovorus and harmless BALOs towards mammalian cells could be used to treat infections in vivo, particularly in those cases when standard therapy fails.

References

  • 1. Atterbury R.J., Hobley L., Till R., Lambert C., Capeness M.J., Lerner T.R., Fenton A.K., Barrow P., Sockett R.E.: Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl. Environ. Microbiol., 2011; 77: 5794-57803
    Google Scholar
  • 2. Boileau M.J., Clinkenbeard K.D., Iandolo J.J.: Assessment of Bdellovibrio bacteriovorus 109J killing of Moraxella bovis in an in vitro model of infectious bovine keratoconjunctivitis. Can. J. Vet. Res., 2011; 75: 285-291
    Google Scholar
  • 3. Dashiff A., Junka R.A., Libera M., Kadouri D.E.: Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol., 2011; 110: 431-444
    Google Scholar
  • 4. Dashiff A., Keeling T.G., Kadouri D.E.: Inhibition of predation by Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus via host cell metabolic activity in the presence of carbohydrates. Appl. Environ. Microbiol., 2011; 77: 2224-2231
    Google Scholar
  • 5. Dwidar M., Monnappa A.K., Mitchell R.J.: The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep., 2012; 45: 71-78
    Google Scholar
  • 6. Fenton A.K., Kanna M., Woods R.D., Aizawa S.I., Sockett R.E.: Shadowing the actions of a predator: backlit fluorescent microscopy reveals synchronous nonbinary septation of predatory Bdellovibrio inside prey and exit through discrete bdelloplast pores. J. Bacteriol., 2010; 192: 6329-6335
    Google Scholar
  • 7. Ferguson M.A., Núñez M.E., Kim H.J., Goffredi S., Shamskhou E., Faudree L., Chang E., Landry R.M., Ma A., Choi D.E., Thomas N., Schmitt J., Spain E.M.: Spatially organized films from Bdellovibrio bacteriovorus prey lysates. Appl. Environ. Microbiol., 2014; 80: 7405-7414
    Google Scholar
  • 8. Harini K., Ajila V., Hegde S.: Bdellovibrio bacteriovorus: A future antimicrobial agent? J. Indian. Soc. Periodontol., 2013; 17: 823-825
    Google Scholar
  • 9. Iebba V., Totino V., Santangelo F., Gagliardi A., Ciotoli L., Virga A., Ambrosi C., Pompili M., De Biase R.V., Selan L., Artini M., Pantanella F., Mura F., Passariello C., Nicoletti M., i wsp.: Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front. Microbiol., 2014; 5: 280
    Google Scholar
  • 10. Jurkievitch E.: Predatory behaviours in bacteria – diversity and transitions. Microbe, 2007; 2: 67-73
    Google Scholar
  • 11. Kadouri D.E., To K., Shanks R.M., Doi Y.: Predatory bacteria: A potential ally against multidrug-resistant Gram-negative pathogens. PLoS One, 2013; 8: e63397
    Google Scholar
  • 12. Kadouri D., Venzon N.C., O’Toole G.A.: Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Environ. Microbiol., 2007; 73: 605-614
    Google Scholar
  • 13. Loozen G., Boon N., Pauwels M., Slomka V., Rodrigues Herrero E., Quirynen M., Teughels W.: Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe, 2015; 35: 45-53
    Google Scholar
  • 14. Monnappa A.K., Dwidar M., Seo J.K., Hur J.H., Mitchell R.J.: Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci. Rep., 2014; 4: 3811
    Google Scholar
  • 15. NCBI. Taxonomy Browser. http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi (27.06.2016)
    Google Scholar
  • 16. Pasternak Z., Njagi M., Shani Y., Chanyi R., Rotem O., Lurie-Weinberger M.N., Koval S., Pietrokovski S., Gophna U., Jurkevitch E.: In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J., 2014; 8: 625-635
    Google Scholar
  • 17. Shanks R.M., Davra V.R., Romanowski E.G., Brothers K.M., Stella N.A., Godboley D., Kadouri D.E.: An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. PLoS One, 2013; 8: e66723
    Google Scholar
  • 18. Shanks R.M., Kadouri D.E.: Predatory prokaryotes wage war against eye infections. Future Microbiol., 2014; 9: 429-432
    Google Scholar
  • 19. Shatzkes K., Chae R., Tang C., Ramirez G.C., Mukherjee S., Tsenova L., Connell N.D., Kadouri D.E.: Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci. Rep., 2015; 5: 12899
    Google Scholar
  • 20. Sinha A., Hurakadli M., Ravindra S., Agarwal A.: Bdellovibrio like organisms: the predatory assassin. IOSR J. Dent. Med. Sci., 2014; 13: 32-36
    Google Scholar
  • 21. Strauch E., Schwudke D., Linscheid M.: Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol., 2007; 2: 63-73
    Google Scholar
  • 22. Wang Z., Kadouri D.E., Wu M.: Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13. BMC Genomics, 2011; 12: 453
    Google Scholar
  • 23. Welsh R.M., Thurber R.V.: Bacterial predators in host microbiomes. Microbe, 2016; 11: 61-67
    Google Scholar
  • 24. Williams H.N., Pineiro S.: Ecology of the predatory Bdellovibrio and like organisms. W: Predatory prokaryotes. Biology, Ecology and Evolution. Microbiology Monographs, red.: Jurkevitch E. Springer-Verlag Berlin Heidelberg 2007; 4: 213-248
    Google Scholar

Full text

Skip to content