Between biology and medicine: perspectives on the use of dendritic cells in anticancer therapy
Agnieszka Szczygieł 1 , Elżbieta Pajtasz-Piasecka 1Abstract
Dendritic cells (DCs), as a link between innate and adaptive immunity, play a pivotal role in maintaining homeostasis of the immune system. The DC population is characterized by heterogeneity; it consists of many subpopulations which, despite their phenotypic and localization differences, play an essential function – they are professional antigen presenting cells. Due to their role, DCs can be utilized in a new cancer treatment strategy. Their main purpose is to generate an anticancer response leading to the elimination of cancer cells. The tumor microenvironment, abundant in immunosuppressive factors (e.g. IL-10, TGF-β, Arg1, IDO), impairs the proper function of DCs. For this reason, various strategies are necessary for ex vivo preparation of DC-based vaccines and for the support of in vivo DCs to fight against tumors. DC-based vaccines are combined with other forms of immunotherapy (e.g. blockade of immune checkpoint molecules, e.g. PD-1 or CTLA-4) or conventional types of therapies (e.g. chemotherapy). Despite the enormous progress that has been made in anticancer therapy in the past two decades, there are still many unresolved issues regarding the effectiveness of the DCs usage. In this paper we described, in both a mouse and a human subject, a series of DC subpopulations, differentiating in normal conditions or under the influence of cancer microenvironment. We listed factors affecting the quality of the in vivo and ex vivo generations of antitumoral responses, significant from a therapeutic point of view. Moreover, the most important strategies for the use of DCs in anticancer therapies, as well as further developments on this field, have been discussed.
References
- 1. Ali O.A., Huebsch N., Cao L., Dranoff G., Mooney D.J.: Infection-mi‑ micking materials to program dendritic cells in situ. Nat. Mater., 2009; 8: 151-158
Google Scholar - 2. Allan R.S., Smith C.M., Belz G.T., van Lint A.L., Wakim L.M., Heath W.R., Carbone F.R.: Epidermal viral immunity induced by CD8α+ den‑ dritic cells but not by Langerhans cells. Science, 2003; 301: 1925-1928
Google Scholar - 3. Amin A., Dudek A.Z., Logan T.F., Lance R.S., Holzbeierlein J.M., Knox J.J., Master V.A., Pal S.K., Miller W.H.Jr., Karsh L.I., Tcherepanova I.Y., DeBenedette M.A., Williams W.L., Plessinger D.C., Nicolette C.A. i wsp.: Survival with AGS-003, an autologous dendritic cell-based immunothe‑ rapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results. J. Immu‑ nother. Cancer, 2015; 3: 14
Google Scholar - 4. Ardavín C., Martínez del Hoyo G., Martín P., Anjuère F., Arias C.F., Marín A.R., Ruiz S., Parrillas V., Hernández H.: Origin and differentiation of dendritic cells. Trends Immunol., 2001; 22: 691-700
Google Scholar - 5. Bachem A., Güttler S., Hartung E., Ebstein F., Schaefer M., Tannert A., Salama A., Movassaghi K., Opitz C., Mages H.W., Henn V., Kloetzel P.M., Gurka S., Kroczek R.A.: Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med., 2010; 207: 1273-1281
Google Scholar - 6. Banchereau J., Steinman R.M.: Dendritic cells and the control of im‑ munity. Nature, 1998; 392: 245-252
Google Scholar - 7. Beer T.M., Schellhammer P.F., Corman J.M., Glodé L.M., Hall S.J., Whit‑ more J.B., Frohlich M.W., Penson D.F.: Quality of life after sipuleucel-T therapy: results from a randomized, double-blind study in patients with androgen-dependent prostate cancer. Urology, 2013; 82: 410-415
Google Scholar - 8. Belladonna M.L., Volpi C., Bianchi R., Vacca C., Orabona C., Pallotta M.T., Boon L., Gizzi S., Fioretti M.C., Grohmann U., Puccetti P.: Cutting edge: Autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol., 2008; 181: 5194-5198
Google Scholar - 9. Bogunovic M., Ginhoux F., Helft J., Shang L., Hashimoto D., Greter M., Liu K., Jakubzick C., Ingersoll M.A., Leboeuf M., Stanley E.R., Nussenzwe‑ ig M., Lira S.A., Randolph G.J., Merad M.: Origin of the lamina propria dendritic cell network. Immunity, 2009; 31: 513-525
Google Scholar - 10. Boks M.A., Kager-Groenland J.R., Haasjes M.S., Zwaginga J.J., van Ham S.M., ten Brinke A.: IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction – a comparative stu‑ dy of human clinical-applicable DC. Clin. Immunol., 2012; 142: 332-342
Google Scholar - 11. Bol K.F., Schreibelt G., Gerritsen W.R., de Vries I.J., Figdor C.G.: Den‑ dritic cell-based immunotherapy: state of the art and beyond. Clin. Cancer Res., 2016; 22: 1897-1906
Google Scholar - 12. Bonifaz L., Bonnyay D., Mahnke K., Rivera M., Nussenzweig M.C., Steinman R.M.: Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med., 2002; 196: 1627-1638
Google Scholar - 13. Bronte V., Brandau S., Chen S.H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Ro‑ driguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I.: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun., 2016; 7: 12150
Google Scholar - 14. Butterfield L.H.: Dendritic cells in cancer immunotherapy clinical trials: are we making progress? Front. Immunol., 2013; 4: 454
Google Scholar - 15. Collin M., McGovern N., Haniffa M.: Human dendritic cell subsets. Immunology, 2013; 140: 22-30
Google Scholar - 16. Constantino J., Gomes C., Falcão A., Cruz M.T., Neves B.M.: Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl. Res., 2016; 168: 74-95
Google Scholar - 17. Curiel T.J., Wei S., Dong H., Alvarez X., Cheng P., Mottram P., Krzy‑ siek R., Knutson K.L., Daniel B., Zimmermann M.C., David O., Burow M., Gordon A., Dhurandhar N., Myers L. i wsp.: Blockade of B7-H1 impro‑ ves myeloid dendritic cell-mediated antitumor immunity. Nat. Med., 2003; 9: 562-567
Google Scholar - 18. ] Dudek A.M., Martin S., Garg A.D., Agostinis P.: Immature, semi-ma‑ ture, and fully mature dendritic cells: toward a DC-cancer cells interfa‑ ce that augments anticancer immunity. Front. Immunol., 2013; 4: 438
Google Scholar - 19. Dudziak D., Kamphorst A.O., Heidkamp G.F., Buchholz V.R., Trump‑ fheller C., Yamazaki S., Cheong C., Liu K., Lee H.W., Park C.G., Steinman R.M., Nussenzweig M.C.: Differential antigen processing by dendritic cell subsets in vivo. Science, 2007; 315: 107-111
Google Scholar - 20. Escudier B., Dorval T., Chaput N., André F., Caby M.P., Novault S., Flament C., Leboulaire C., Borg C., Amigorena S., Boccaccio C., Bonnerot C., Dhellin O., Movassagh M., Piperno S. i wsp.: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exoso‑ mes: results of the first phase I clinical trial. J. Transl. Med., 2005; 3: 10
Google Scholar - 21. Fan Y., Moon J.J.: Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines, 2015; 3: 662-685
Google Scholar - 22. Flanigan R.C., Polcari A.J., Shore N.D., Price T.H., Sims R.B., Maher J.C., Whitmore J.B., Corman J.M.: An analysis of leukapheresis and cen‑ tral venous catheter use in the randomized, placebo controlled, phase 3 IMPACT trial of Sipuleucel-T for metastatic castrate resistant prostate cancer. J. Urol., 2013; 189: 521-526
Google Scholar - 23. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V.: Coordinated regu‑ lation of myeloid cells by tumours. Nat. Rev. Immunol., 2012; 12: 253-268
Google Scholar - 24. Galluzzi L., Vacchelli E., Bravo-San Pedro J.M., Buqué A., Senovil‑ la L., Baracco E.E., Bloy N., Castoldi F., Abastado J.P., Agostinis P., Apte R.N., Aranda F., Ayyoub M., Beckhove P., Blay J.Y. i wsp.: Classification of current anticancer immunotherapies. Oncotarget, 2014; 5: 12472-12508
Google Scholar - 25. Ghiringhelli F., Puig P.E., Roux S., Parcellier A., Schmitt E., Solary E., Kroemer G., Martin F., Chauffert B., Zitvogel L.: Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J. Exp. Med., 2005; 202: 919-929
Google Scholar - 26. Gravitz L.: A fight for life that united a field. Nature, 2011; 478: 163-164
Google Scholar - 27. Guilliams M., Dutertre C.A., Scott C.L., McGovern N., Sichien D., Cha‑ karov S., Van Gassen S., Chen J., Poidinger M., De Prijck S., Tavernier S.J., Low I., Irac S.E., Mattar C.N., Sumatoh H.R. i wsp.: Unsupervised high‑ -dimensional analysis aligns dendritic cells across tissues and species. Immunity, 2016; 45: 669-684
Google Scholar - 28. Hackstein H., Thomson A.W.: Dendritic cells: emerging pharma‑ cological targets of immunosuppressive drugs. Nat. Rev. Immunol., 2004; 4: 24-34
Google Scholar - 29. Hanahan D., Weinberg R.A.: Hallmarks of cancer: the next generation. Cell, 2011; 144: 646-674
Google Scholar - 30. Haniffa M., Collin M., Ginhoux F.: Ontogeny and functional specia‑ lization of dendritic cells in human and mouse. Adv. Immunol., 2013; 120: 1-49
Google Scholar - 31. Haniffa M., Shin A., Bigley V., McGovern N., Teo P., See P., Wasan P.S., Wang X.N., Malinarich F., Malleret B., Larbi A., Tan P., Zhao H., Poidinger M., Pagan S. i wsp.: Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity, 2012; 37: 60-73
Google Scholar - 32. Hargadon K.M.: Tumor-altered dendritic cell function: implications for anti-tumor immunity. Front. Immunol., 2013; 4: 192
Google Scholar - 33. Hargadon K.M.: Dysregulation of TGFβ1 activity in cancer and its in‑ fluence on the quality of anti-tumor immunity. J. Clin. Med., 2016; 5: E76
Google Scholar - 34. Hashimoto D., Miller J., Merad M.: Dendritic cell and macrophage heterogeneity in vivo. Immunity, 2011; 35: 323-335
Google Scholar - 35. Hawiger D., Inaba K., Dorsett Y., Guo M., Mahnke K., Rivera M., Ravetch J.V., Steinman R.M., Nussenzweig M.C.: Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med., 2001; 194: 769-779
Google Scholar - 36. Higano C.S., Schellhammer P.F., Small E.J., Burch P.A., Nemunaitis J., Yuh L., Provost N., Frohlich M.W.: Integrated data from 2 randomi‑ zed, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer, 2009; 115: 3670-3679
Google Scholar - 37. Hoeffel G., Wang Y., Greter M., See P., Teo P., Malleret B., Leboeuf M., Low D., Oller G., Almeida F., Choy S.H., Grisotto M., Renia L., Conway S.J., Stanley E.R. i wsp.: Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac‑ -derived macrophages. J. Exp. Med., 2012; 209: 1167-1181
Google Scholar - 38. Hradilova N., Sadilkova L., Palata O., Mysikova D., Mrazkova H., Li‑ schke R., Spisek R., Adkins I.: Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immu‑ notherapy. PLoS One, 2017; 12: e0171539
Google Scholar - 39. Hubo M., Trinschek B., Kryczanowsky F., Tuettenberg A., Steinbrink K., Jonuleit H.: Costimulatory molecules on immunogenic versus tole‑ rogenic human dendritic cells. Front. Immunol., 2013; 4: 82
Google Scholar - 40. Igyártó B.Z., Haley K., Ortner D., Bobr A., Gerami-Nejad M., Edel‑ son B.T., Zurawski S.M., Malissen B., Zurawski G., Berman J., Kaplan D.H.: Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity, 2011; 35: 260-272
Google Scholar - 41. Javed A., Sato S., Sato T.: Autologous melanoma cell vaccine using monocyte-derived dendritic cells (NBS20/eltrapuldencel-T). Future Oncol., 2016; 12: 751-762
Google Scholar - 42. Kalbasi A., June C.H., Haas N., Vapiwala N.: Radiation and immuno‑ therapy: a synergistic combination. J. Clin. Invest., 2013; 123: 2756-2763
Google Scholar - 43. Kantoff P.W., Higano C.S., Shore N.D., Berger E.R., Small E.J., Pen‑ son D.F., Redfern C.H., Ferrari A.C., Dreicer R., Sims R.B., Xu Y., Frohlich M.W., Schellhammer P.F., IMPACT Study Investigators: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010; 363: 411-422
Google Scholar - 44. Kaplan D.H., Jenison M.C., Saeland S., Shlomchik W.D., Shlomchik M.J.: Epidermal Langerhans cell-deficient mice develop enhanced con‑ tact hypersensitivity. Immunity, 2005; 23: 611-620
Google Scholar - 45. Kicielińska J., Pajtasz-Piasecka E.: Rola IL-10 w modulowaniu odpo‑ wiedzi odpornościowej w warunkach prawidłowych oraz w środowisku nowotworu. Postȩpy Hig. Med. Dośw., 2014; 68: 879-892
Google Scholar - 46. Klechevsky E.: Human dendritic cells – stars in the skin. Eur. J. Im‑ munol., 2013; 43: 3147-3155
Google Scholar - 47. Klechevsky E., Banchereau J.: Human dendritic cells subsets as targets and vectors for therapy. Ann. N. Y. Acad. Sci., 2013; 1284: 24-30
Google Scholar - 48. Klechevsky E., Liu M., Morita R., Banchereau R., Thompson-Snipes L., Palucka A.K., Ueno H., Banchereau J.: Understanding human myeloid dendritic cell subsets for the rational design of novel vaccines. Hum. Immunol., 2009; 70: 281-288
Google Scholar - 49. Kocián P., Šedivcová M., Drgáč J., Cerná K., Hoch J., Kodet R., Bar‑ tůňková J., Špíšek R., Fialová A.: Tumor-infiltrating lymphocytes and dendritic cells in human colorectal cancer: their relationship to KRAS mutational status and disease recurrence. Hum. Immunol., 2011; 72: 1022-1028
Google Scholar - 50. Krempski J., Karyampudi L., Behrens M.D., Erskine C.L., Hartmann L., Dong H., Goode E.L., Kalli K.R., Knutson K.L.: Tumor-infiltrating pro‑ grammed death receptor-1+ dendritic cells mediate immune suppres‑ sion in ovarian cancer. J. Immunol., 2011; 186: 6905-6913
Google Scholar - 51. Kumar V., Patel S., Tcyganov E., Gabrilovich D.I.: The nature of my‑ eloid-derived suppressor cells in the tumor microenvironment. Trends Immunol., 2016; 37: 208-220
Google Scholar - 52. Kunigelis K.E., Graner M.W.: The dichotomy of tumor exosomes (TEX) in cancer immunity: is it all in the ConTEXt? Vaccines, 2015; 3: 1019-1051
Google Scholar - 53. Li Y., Liu M., Yang S.T.: Dendritic cells derived from pluripotent stem cells: potential of large scale production. World J. Stem Cells, 2014; 6: 1-10
Google Scholar - 54. Liu Q., Zhang C., Sun A., Zheng Y., Wang L., Cao X.: Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response thro‑ ugh arginase I. J. Immunol., 2009; 182: 6207-6216
Google Scholar - 55. Liu Y., Xiao L., Joo K.I., Hu B., Fang J., Wang P.: In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vac‑ cines in mice. Biomacromolecules, 2014; 15: 3836-3845
Google Scholar - 56. López M.N., Pereda C., Segal G., Muñoz L., Aguilera R., González F.E., Escobar A., Ginesta A., Reyes D., González R., Mendoza-Naranjo A., Lar‑ rondo M., Compán A., Ferrada C., Salazar-Onfray F.: Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor‑ -specific delayed type IV hypersensitivity response and reduction of tu‑ mor growth factor β-expressing T cells. J. Clin. Oncol., 2009; 27: 945-952
Google Scholar - 57. Ma Y., Shurin G.V., Gutkin D.W., Shurin M.R.: Tumor associated re‑ gulatory dendritic cells. Semin. Cancer Biol., 2012; 22: 298-306
Google Scholar - 58. Ma Y., Shurin G.V., Peiyuan Z., Shurin M.R.: Dendritic cells in the cancer microenvironment. J. Cancer, 2013; 4: 36-44
Google Scholar - 59. Marvel D., Gabrilovich D.I.: Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J. Clin. Invest., 2015; 125: 3356-3364
Google Scholar - 60. Mathan T.S., Figdor C.G., Buschow S.I.: Human plasmacytoid den‑ dritic cells: from molecules to intercellular communication network. Front. Immunol., 2013; 4: 372
Google Scholar - 61. Mellman I.: Dendritic cells: master regulators of the immune re‑ sponse. Cancer Immunol. Res., 2013; 1: 145-149
Google Scholar - 62. Merad M., Hoffmann P., Ranheim E., Slaymaker S., Manz M.G., Lira S.A., Charo I., Cook D.N., Weissman I.L., Strober S., Engleman E.G.: De‑ pletion of host Langerhans cells before transplantation of donor al‑ loreactive T cells prevents skin graft-versus-host disease. Nat. Med., 2004; 10: 510-517
Google Scholar - 63. Merad M., Sathe P., Helft J., Miller J., Mortha A.: The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol., 2013; 31: 563-604
Google Scholar - 64. Morse M.A., Garst J., Osada T., Khan S., Hobeika A., Clay T.M., Va‑ lente N., Shreeniwas R., Sutton M.A., Delcayre A., Hsu D.H., Le Pecq J.B., Lyerly H.K.: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med., 2005; 3: 9
Google Scholar - 65. Nagy L., Szanto A., Szatmari I., Széles L.: Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environ‑ ment and shape their immune response. Physiol. Rev., 2012; 92: 739-789
Google Scholar - 66. Norian L.A., Rodriguez P.C., O’Mara L.A., Zabaleta J., Ochoa A.C., Cella M., Allen P.M.: Tumor-infiltrating regulatory dendritic cells inhi‑ bit CD8+ T cell function via L -arginine metabolism. Cancer Res., 2009; 69: 3086-3094
Google Scholar - 67. O’Keeffe M., Mok W.H., Radford K.J.: Human dendritic cell sub‑ sets and function in health and disease. Cell. Mol. Life Sci., 2015; 72: 4309-4325
Google Scholar - 68. Osorio F., Fuentes C., López M.N., Salazar-Onfray F., González F.E.: Role of dendritic cells in the induction of lymphocyte tolerance. Front. Immunol., 2015; 6: 535
Google Scholar - 69. Ostrand-Rosenberg S., Sinha P., Beury D.W., Clements V.K.: Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin. Cancer Biol., 2012; 22: 275-281
Google Scholar - 70. Pajtasz-Piasecka E., Indrová M.: Dendritic cell-based vaccines for the therapy of experimental tumors. Immunotherapy, 2010; 2: 257-268
Google Scholar - 71. Pajtasz-Piasecka E., Rossowska J., Szyda A., Krawczenko A., Duś D.: Generation of anti-tumor response by JAWS II mouse dendritic cells transduced with murine interleukin 12 genes. Oncol. Rep., 2007; 17: 1249-1257
Google Scholar - 72. Palucka K., Banchereau J.: Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer, 2012; 12: 265-277
Google Scholar - 73. Palucka K., Banchereau J.: Human dendritic cell subsets in vaccina‑ tion. Curr. Opin. Immunol., 2013; 25: 396-402
Google Scholar - 74. Palucka K., Banchereau J.: Dendritic-cell-based therapeutic cancer vaccines. Immunity, 2013; 39: 38-48
Google Scholar - 75. Phuphanich S., Wheeler C.J., Rudnick J.D., Mazer M., Wang H., Nuño M.A., Richardson J.E., Fan X., Ji J., Chu R.M., Bender J.G., Hawkins E.S., Patil C.G., Black K.L., Yu J.S.: Phase I trial of a multi-epitope-pulsed den‑ dritic cell vaccine for patients with newly diagnosed glioblastoma. Can‑ cer Immunol. Immunother., 2013; 62: 125-135
Google Scholar - 76. Platt A.M., Randolph G.J.: Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv. Immunol., 2013; 120: 51-68
Google Scholar - 77. Podrazil M., Horvath R., Becht E., Rozkova D., Bilkova P., Sochorova K., Hromadkova H., Kayserova J., Vavrova K., Lastovicka J., Vrabcova P., Kubackova K., Gasova Z., Jarolim L., Babjuk M. i wsp.: Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget, 2015; 6: 18192-18205
Google Scholar - 78. Poschke I., Mao Y., Adamson L., Salazar-Onfray F., Masucci G., Kies‑ sling R.: Myeloid-derived suppressor cells impair the quality of den‑ dritic cell vaccines. Cancer Immunol. Immunother., 2012; 61: 827-838
Google Scholar - 79. Reizis B., Bunin A., Ghosh H.S., Lewis K.L., Sisirak V.: Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immu‑ nol., 2011; 29: 163-183
Google Scholar - 80. Romagnoli G.G., Zelante B.B., Toniolo P.A., Migliori I.K., Barbuto J.A.: Dendritic cell-derived exosomes may be a tool for cancer immu‑ notherapy by converting tumor cells into immunogenic targets. Front. Immunol., 2015; 5: 692
Google Scholar - 81. Romani N., Brunner P.M., Stingl G.: Changing views of the role of Langerhans cells. J. Invest. Dermatol., 2012; 132: 872-881
Google Scholar - 82. Rossowska J., Anger N., Kicielińska J., Pajtasz-Piasecka E., Bielaw‑ ska-Pohl A., Wojas-Turek J., Duś D.: Temporary elimination of IL-10 enhanced the effectiveness of cyclophosphamide and BMDC-based therapy by decrease of the suppressor activity of MDSCs and activation of antitumour immune response. Immunobiology, 2015; 220: 389-398
Google Scholar - 83. Rossowska J., Pajtasz-Piasecka E.: Zastosowanie komórek dendry‑ tycznych w immunologii nowotworów – osiągnięcia i perspektywy. Postępy Hig. Med. Dośw., 2003; 57: 501-518
Google Scholar - 84. Rossowska J., Pajtasz-Piasecka E., Anger N., Wojas-Turek J., Kicie‑ lińska J., Piasecki E., Duś D.: Cyclophosphamide and IL-12-transduced DCs enhance the antitumor activity of tumor antigen-stimulated DCs and reduce Tregs and MDSCs number. J. Immunother., 2014; 37: 427-439
Google Scholar - 85. Rossowska J., Pajtasz-Piasecka E., Ryśnik O., Wojas J., Krawczenko A., Szyda A., Duś D.: Generation of antitumor response by IL-2-transduced JAWS II dendritic cells. Immunobiology, 2011; 216: 1074-1084
Google Scholar - 86. Rossowska J., Pajtasz-Piasecka E., Szyda A., Krawczenko A., Zietara N., Duś D.: Tumour antigen-loaded mouse dendritic cells maturing in the presence of inflammatory cytokines are potent activators of im‑ mune response in vitro but not in vivo. Oncol. Rep., 2009; 21: 1539-1549
Google Scholar - 87. Ruffell B., Chang-Strachan D., Chan V., Rosenbusch A., Ho C.M., Pryer N., Daniel D., Hwang E.S., Rugo H.S., Coussens L.M.: Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by sup‑ pressing IL-12 expression in intratumoral dendritic cells. Cancer Cell, 2014; 26: 623-637
Google Scholar - 88. Sabado R.L., Balan S., Bhardwaj N.: Dendritic cell-based immuno‑ therapy. Cell Res., 2017; 27: 74-95
Google Scholar - 89. Sachamitr P., Hackett S., Fairchild P.J.: Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy. Front. Immunol., 2014; 5: 176
Google Scholar - 90. Salmon H., Idoyaga J., Rahman A., Leboeuf M., Remark R., Jordan S., Casanova-Acebes M., Khudoynazarova M., Agudo J., Tung N., Chakarov S., Rivera C., Hogstad B., Bosenberg M., Hashimoto D. i wsp.: Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016; 44: 924-938
Google Scholar - 91. Sandel M.H., Dadabayev A.R., Menon A.G., Morreau H., Melief C.J., Offringa R., van der Burg S.H., Janssen-van Rhijn C.M., Ensink N.G., Tol‑ lenaar R.A., van de Velde C.J., Kuppen P.J.: Prognostic value of tumor-in‑ filtrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin. Cancer Res., 2005; 11: 2576-2582
Google Scholar - 92. Schmidt S.V., Nino-Castro A.C., Schultze J.L.: Regulatory dendri‑ tic cells: there is more than just immune activation. Front. Immunol., 2012; 3: 274
Google Scholar - 93. Scholz M., Yep S., Chancey M., Kelly C., Chau K., Turner J., Lam R., Drake C.G.: Phase I clinical trial of sipuleucel-T combined with escala‑ ting doses of ipilimumab in progressive metastatic castrate-resistant prostate cancer. Immunotargets Ther., 2017; 6: 11-16
Google Scholar - 94. Segura E., Amigorena S.: Cross-presentation by human dendritic cell subsets. Immunol. Lett., 2014; 158: 73-78
Google Scholar - 95. Shortman K., Heath W.R.: The CD8+ dendritic cell subset. Immunol. Rev., 2010; 234: 18-31
Google Scholar - 96. Shortman K., Sathe P., Vremec D., Naik S., O’Keeffe M.: Plasmacytoid dendritic cell development. Adv. Immunol., 2013; 120: 105-126
Google Scholar - 97. Shurin M.R.: Cancer as an immune-mediated disease. Immunotar‑ gets Ther., 2012; 1: 1-6
Google Scholar - 98. Shurin M.R., Naiditch H., Zhong H., Shurin G.V.: Regulatory den‑ dritic cells: new targets for cancer immunotherapy. Cancer Biol. Ther., 2011; 11: 988-992
Google Scholar - 99. Silk K.M., Silk J.D., Ichiryu N., Davies T.J., Nolan K.F., Leishman A.J., Carpenter L., Watt S.M., Cerundolo V., Fairchild P.J.: Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141+ XCR1+ dendritic cells. Gene Ther., 2012; 19: 1035-1040
Google Scholar - 100. Small E.J., Higano C.S., Kantoff P.W., Whitmore J.B., Frohlich M.W., Petrylak D.P.: Time to disease-related pain and first opioid use in pa‑ tients with metastatic castration-resistant prostate cancer treated with sipuleucel-T. Prostate Cancer Prostatic Dis., 2014; 17: 259-264
Google Scholar - 101. Small E.J., Schellhammer P.F., Higano C.S., Redfern C.H., Nemunaitis J.J., Valone F.H., Verjee S.S., Jones L.A., Hershberg R.M.: Placebo-control‑ led phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol., 2006; 24: 3089-3094
Google Scholar - 102. Steinman R.M.: Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol., 2012; 30: 1-22
Google Scholar - 103. Steinman R.M., Cohn Z.A.: Identification of a novel cell type in pe‑ ripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med., 1973; 137: 1142-1162
Google Scholar - 104. Steinman R.M., Idoyaga J.: Features of the dendritic cell lineage. Immunol. Rev., 2010; 234: 5-17
Google Scholar - 105. Świst K., Pajtasz-Piasecka E.: Wpływ czynników transkrypcyj‑ nych na różnicowanie limfocytów T CD4+ . Postępy Hig. Med. Dośw., 2011; 65: 414-426
Google Scholar - 106. Tacken P.J., Figdor C.G.: Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin. Immunol., 2011; 23: 12-20
Google Scholar - 107. Tran Janco J.M., Lamichhane P., Karyampudi L., Knutson K.L.: Tu‑ mor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol., 2015; 194: 2985-2991
Google Scholar - 108. Ueno H., Schmitt N., Palucka A.K., Banchereau J.: Dendritic cells and humoral immunity in humans. Immunol. Cell Biol., 2010; 88: 376-380
Google Scholar - 109. Urbanova L., Hradilova N., Moserova I., Vosahlikova S., Sadilkova L., Hensler M., Spisek R., Adkins I.: High hydrostatic pressure affects an‑ tigenic pool in tumor cells: Implication for dendritic cell-based cancer immunotherapy. Immunol. Lett., 2017; 187: 27-34
Google Scholar - 110. Van Brussel I., Berneman Z.N., Cools N.: Optimizing dendritic cell‑ -based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm., 2012; 2012: 690643
Google Scholar - 111. Van den Bergh J., Willemen Y., Lion E., Van Acker H., De Reu H., Anguille S., Goossens H., Berneman Z., Van Tendeloo V., Smits E.: Trans‑ presentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered hu‑ man dendritic cells boosts antitumoral natural killer cell activity. On‑ cotarget, 2015; 6: 44123-44133
Google Scholar - 112. Varol C., Vallon-Eberhard A., Elinav E., Aychek T., Shapira Y., Lu‑ che H., Fehling H.J., Hardt W.D., Shakhar G., Jung S.: Intestinal lamina propria dendritic cell subsets have different origin and functions. Im‑ munity, 2009; 31: 502-512
Google Scholar - 113. Veglia F., Gabrilovich D.I.: Dendritic cells in cancer: the role revi‑ sited. Curr. Opin. Immunol., 2017; 45: 43-51
Google Scholar - 114. Wada J., Yamasaki A., Nagai S., Yanai K., Fuchino K., Kameda C., Tanaka H., Koga K., Nakashima H., Nakamura M., Tanaka M., Katano M., Morisaki T.: Regulatory T-cells are possible effect prediction mar‑ kers of immunotherapy for cancer patients. Anticancer Res., 2008; 28: 2401-2408
Google Scholar - 115. Wojas-Turek J., Szczygieł A., Kicielińska J., Rossowska J., Piasecki E., Pajtasz-Piasecka E.: Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4+ T cell response against MC38 colon carcinoma. Int. J. Oncol., 2016; 48: 493-505
Google Scholar - 116. Zheng X., Koropatnick J., Chen D., Velenosi T., Ling H., Zhang X., Jiang N., Navarro B., Ichim T.E., Urquhart B., Min W.: Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int. J. Cancer, 2013; 132: 967-977
Google Scholar - 117. Zitvogel L., Regnault A., Lozier A., Wolfers J., Flament C., Tenza D., Ricciardi-Castagnoli P., Raposo G., Amigorena S.: Eradication of esta‑ blished murine tumors using a novel cell-free vaccine: dendritic cell‑ -derived exosomes. Nat. Med., 1998; 4: 594-600
Google Scholar - 118. Zyzak J., Matuszyk J., Siednienko J.: Multilevel maturation of Toll‑ -like receptor 9. Postȩpy Hig. Med. Dośw., 2013; 67: 1034-1046
Google Scholar