Epigenetic modifications: An important mechanism in diabetic disturbances

REVIEW ARTICLE

Epigenetic modifications: An important mechanism in diabetic disturbances

Anna Rorbach-Dolata 1 , Adriana Kubis 1 , Agnieszka Piwowar 2

1. Katedra i Zakład Toksykologii, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu,
2. Katedra i Zakład Toksykologii Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu Pracownia Markerów Nefrotoksyczności Środowiskowej,

Published: 2017-11-29
DOI: 10.5604/01.3001.0010.6156
GICID: 01.3001.0010.6156
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 960-974

 

Abstract

In the search for explanations of diabetes pathomechanisms, especially the development of its vascular complications (micro- and macrovascular ), although current, good metabolic control of diabetes, attention was drawn to the role of epigenetic inheritance associated with epigenetic modifications of histone proteins and DNA in hyperglycemia conditions. This study showed the significant role of DNA methylation and histone epigenetic modifications (a different nature and a different degree) in the transmission of information that is not connected with gene inheritance but concerns the persistent changes induced by hyperglycemia..Attention was paid to the role of DNA methylation of pancreatic cells in the pathogenesis of type 1 diabetes, but also type 2. The important role of DNA methylation changes in a so-called intrauterine growth restriction (IUGR) as reason of subsequent development of diabetes was particularly emphasized. In the pathogenesis of type 2 diabetes and its complications, especially microvascular complications, the greatest share and importance of epigenetic modifications on mitochondrial DNA metylation are the most important. The multidirectionality Complicaand complexity of epigenetic modifications of histone proteins indicate their importance in the development of diabetic disturbances. An especially important role is attributed to methylation and acetylation of histone proteins, in particular on arginine and lysine, whose changes occur most frequently. Moreover, epigenetic modifications of the enzymes, especially methylases, responsible for these processes are the underlying. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may be a useful prognostic biomarker of susceptibility to the disease development in the future. Moreover, they may become a potential target for future therapeutic interventions for clinical disorders in diabetes.

References

  • 1. Aronson D.: Hyperglycemia and the pathobiology of diabetic complications. Adv. Cardiol., 2008; 45: 1-16
    Google Scholar
  • 2. Barrès R., Osler M.E., Yan J., Rune A., Fritz T., Caidahl K., Krook A., Zierath J.R.: Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell. Metab., 2009; 10: 189- 198
    Google Scholar
  • 3. Barrès R., Zierath J.R.: The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat. Rev. Endocrinol., 2016; 12: 441-451
    Google Scholar
  • 4. Bell C.G., Teschendorff A.E., Rakyan V.K., Maxwell A.P., Beck S., Savage D.A.: Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med. Genomics, 2010; 3: 33-42
    Google Scholar
  • 5. Berry D., Melkus G.D.: Epidemiologic perspectives of risk for developing diabetes and diabetes complications. Nurs. Clin. North. Am., 2006; 41: 487-498
    Google Scholar
  • 6. Bhaumik S.R., Smith E., Shilatifard A.: Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol., 2007; 14: 1008-1016
    Google Scholar
  • 7. Blaak E.E., Antoine J.M., Benton D., Björck I., Bozzetto L., Brouns F., Diamant M., Dye L., Hulshof T., Holst J.J., Lamport D.J., Laville M., Lawton C.L., Meheust A., Nilson A. i wsp.: Impact of postprandial glycaemia on health and prevention of disease. Obes. Rev., 2012; 13: 923-984
    Google Scholar
  • 8. Bloomgarden Z.T.: The future of diabetes. Can. J. Diabetes, 2015; 39: 204-205
    Google Scholar
  • 9. Brasacchio D., Okabe J., Tikellis C., Balcerczyk A., George P., Baker E.K., Calkin A.C., Brownlee M., Cooper M.E., El-Osta A.: Hyperglycemia induces a dynamic cooper ativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 2009; 58: 1229-1236
    Google Scholar
  • 10. Brownlee M.: The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005; 54: 1615-1625
    Google Scholar
  • 11. Brunet A., Berger S.L.: Epigenetics of aging and aging-related disease. J. Gerontol. A. Biol. Sci. Med. Sci., 2014; 69: S17-S20
    Google Scholar
  • 12. Ceriello A.: The emerging challenge in diabetes: the «metabolic memory». Vascul. Pharmacol., 2012; 57: 133-138
    Google Scholar
  • 13. Chen S., Feng B., George B., Chakrabarti R., Chen M., Chakrabarti S.: Transcriptional coactivator p300 regulates glucose-induced gene expression in the endothelial cells. Am. J. Physiol. Endocrinol. Metab., 2010; 298: E127-E137
    Google Scholar
  • 14. Colagiuri R.: Diabetes: a pandemic, a development issue or both? Expert. Rev. Cardiovasc. Ther., 2010; 8: 305-309
    Google Scholar
  • 15. Costa F.F.: Non-coding RNA-s, epigenetics and complexity. Gene, 2008; 410: 9-17
    Google Scholar
  • 16. Dang M.N., Buzzetti R., Pozzilli P.: Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab. Res. Rev., 2013; 29: 8-18
    Google Scholar
  • 17. Deering T.G., Ogihara T., Trace A.P., Maier B., Mirmira R.G.: Methyltransferase Set 7/9 maintains transcription and euchromatin structure at islet-enriched genes. Diabetes, 2009; 58: 185-193
    Google Scholar
  • 18. DeFronzo R.A.: Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009; 58: 773-795
    Google Scholar
  • 19. Dembińska-Kieć A.: „Pamięć metaboliczna” – epigenetyczne modyfikacje materiału jądrowego jako przyczyna powikłań cukrzycy. Diagnostyka Lab., 2011; 47: 263-268
    Google Scholar
  • 20. Dmitrzak-Węglarz M., Hauser J.: Mechanizmy epigenetyczne w chorobach psychicznych i zaburzeniach funkcji poznawczych. Psychiatria, 2009; 6: 51-60
    Google Scholar
  • 21. Drong A.W., Lindgren C.M., McCarthy M.I.: The genetic and epigenetic basis of type 2 diabetes and obesity. Clin. Pharmacol. Ther., 2012; 92: 707-715
    Google Scholar
  • 22. Einstein F., Thompson R.F., Bhagat T.D., Fazzari M.J., Verma A., Barzilai N., Greally J.M.: Cythosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One, 2010; 5: e8887
    Google Scholar
  • 23. Ekström T.J., Stenvinkel P.: The epigenetic conductor: a genomic orchestrator in chronic kidney disease complications? J. Nephrol., 2009; 22: 442-449
    Google Scholar
  • 24. El-Osta A., Brasacchio D., Yao D., Pocai A., Jones P.L., Roeder R.G., Cooper M.E., Brownlee M.: Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med., 2008; 205: 2409-2417
    Google Scholar
  • 25. Estève P.O., Chang Y., Samaranayake M., Upadhyay A.K., Horton J.R., Feehery G.R., Cheng X., Pradhan S.: A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat. Struct. Mol. Biol., 2011; 18: 42-48
    Google Scholar
  • 26. Feng B., Chen S., McArthur K., Wu Y., Sen S., Ding Q., Feldman R.D., Chakrabarti S.: miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes, 2011; 60: 2975-2984
    Google Scholar
  • 27. Fernández-García J.C., Cardona F., Tinahones F.J.: Inflammation, oxidative stress and metabolic syndrome: dietary modulation. Curr. Vasc. Pharmacol., 2013; 11: 906-919
    Google Scholar
  • 28. Fu Q., Yu X., Callaway C.W., Lane R.H., McKnight R.A.: Epigenetics: intrauterine growth retardation (IUGR) modifies the histone code along the rat hepatic IGF-1 gene. FASEB J., 2009; 23: 2438-2449
    Google Scholar
  • 29. Fujimaki K., Ogihara T., Morris D.L., Oda H., Iida H., Fujitani Y., Mirmira R.G., Evans-Molina C., Watada H.: SET7/9 enzyme regulates cytokine-induced expression of inducible nitric-oxide synthase through methylation of lysine 4 at histone 3 in the islet β cell. J. Biol. Chem., 2015; 290: 16607-16618
    Google Scholar
  • 30. Gao D., Bailey C.J., Griffiths H.R.: Metabolic memory effect of the saturated fatty acid, palmitate, in monocytes. Biochem. Biophys. Res. Commun., 2009; 388: 278-282
    Google Scholar
  • 31. Giaccari A., Sorice G., Muscogiuri G.: Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes – mechanisms and potentials for treatment. Nutr. Metab. Cardiovasc. Dis., 2009; 19: 365-377
    Google Scholar
  • 32. Giacco F., Brownlee M.: Oxidative stress and diabetic complications. Circ. Res., 2010; 107: 1058-1070
    Google Scholar
  • 33. Gilbert E.R., Liu D.: Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics, 2012; 7: 841-852
    Google Scholar
  • 34. Gregg E.W., Ali M.K., Moore B.A., Pavkov M., Devlin H.M., Garfield S., Mangione C.M.: The importance of natural experiments in diabetes prevention and control and the need for better health policy research. Prev. Chronic Dis., 2013; 10: E14
    Google Scholar
  • 35. Greißel A., Culmes M., Napieralski R., Wagner E., Gebhard H., Schmitt M., Zimmermann A., Eckstein H.H., Zernecke A., Pelisek J.: Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb. Haemost., 2015; 114: 390-402
    Google Scholar
  • 36. Gruber B.M.: Epigenetyka a etiologia chorób neurodegeneracyjnych. Postępy Hig. Med. Dośw., 2011; 65: 542-551
    Google Scholar
  • 37. Haberland M., Montgomery T.L., Olson E.N.: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet., 2009; 10: 32-42
    Google Scholar
  • 38. Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom P.E., Lumey L.H.: Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA, 2008; 105: 17046-17049
    Google Scholar
  • 39. Hu F.B.: Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care, 2011; 34: 1249-1257
    Google Scholar
  • 40. Ihnat M.A., Thorpe J.E., Kamat C.D., Szabó C., Green D.E., Warnke L.A., Lacza Z., Cselenyák A., Ross K., Shakir S., Piconi L., Kaltreider R.C., Ceriello A.: Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signaling. Diabetologia, 2007; 50: 1523-1531
    Google Scholar
  • 41. Jagielski A.K., Piesiewicz A.: Cukrzyca wyzwaniem dla medycyny XXI wieku – wnioski z badań klinicznych i biochemicznych. Postępy Biochemii, 2011; 57: 191-199
    Google Scholar
  • 42. Jiang M., Zhang Y., Liu M., Lan M.S., Fei J., Fan W., Gao X., Lu D.: Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet induced obese rats. Endocrinology, 2011; 152: 1284-1289
    Google Scholar
  • 43. Josselyn S., Frankland P.W.: Another twist in the histone memory code. Cell Res., 2015; 25: 151-152
    Google Scholar
  • 44. Kalozoumi G., Tzimas C., Sanoudou D.: The expanding role of epigenetics. Glob. Cardiol. Sci. Pract., 2012; 2012: 7
    Google Scholar
  • 45. Kaneto H.: Pancreatic β-cell glucose toxicity in type 2 diabetes mellitus. Curr. Diabetes Rev., 2015; 11: 2-6
    Google Scholar
  • 46. Ke X., Schober M.E., McKnight R.A., O’Grady S., Caprau D., Yu X., Callaway C.W., Lane R.H.: Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene. Physiol. Genomics, 2010; 42: 177-189
    Google Scholar
  • 47. Keating S.T., El-Osta A.: Epigenetic changes in diabetes. Clin. Genet., 2013; 84: 1-10
    Google Scholar
  • 48. Kieć-Klimczak M., Kieć-Wilk B., Polus A., Siedlecka D., Jamrozik P., Chudy A., Stępień E., Wybrańska I., Malczewska-Malec M.: Hiperglikemia, „pamięć metaboliczna” i rozwój naczyniowych powikłań cukrzycy. Czynniki Ryzyka, 2011; 2: 47-51
    Google Scholar
  • 49. Kim M., Long T.I., Arakawa K., Wang R., Yu M.C., Laird P.W.: DNA methylation as a biomarker for cardiovascular disease risk. PLoS One, 2010; 5: e9692
    Google Scholar
  • 50. Kowluru R.A., Santos J.M., Mishra M.: Epigenetic modifications and diabetic retinopathy. Biomed. Res. Int., 2013; 2013: 635284
    Google Scholar
  • 51. Kulczycka A., Bednarek I., Dzierżewicz Z.: Modyfikacje epigenetyczne jako potencjalne cele terapii antynowotworowych. Ann. Acad. Med. Siles., 2013; 67: 201-208
    Google Scholar
  • 52. Li X.X., Liu Y.M., Li Y.J., Xie N., Yan Y.F., Chi Y.L., Zhou L., Xie S.Y., Wang P.Y.: High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98. J. Cell. Mol. Med., 2016; 20: 1159-1169
    Google Scholar
  • 53. Li Y., Reddy M.A., Miao F., Shanmugam N., Yee J.K., Hawkins D., Ren B., Natarajan R.: Role of the histone H3 lysine 4 methyltransferase, SET 7/9, in the regulation of NFκB – dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem., 2008; 283: 26771-26781
    Google Scholar
  • 54. Ling C., Del Guerra S., Lupi R., Rönn T., Granhall C., Luthman H., Masiello P., Marchetti P., Groop L., Del Prato S.: Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia, 2008; 51: 615-622
    Google Scholar
  • 55. Ling C., Groop L.: Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes, 2009; 58: 2718-2725
    Google Scholar
  • 56. Liu X., Fortin K., Mourelatos Z.: MicroRNAs: biogenesis and molecular functions. Brain Pathol., 2008; 18: 113-121
    Google Scholar
  • 57. Łukasik M., Karmalska J., Szutowski M.M., Łukaszkiewicz J.: Wpływ metylacji DNA na funkcjonowanie genomu. Biul. Wydz. Farm. WUM, 2009; 2: 13-18
    Google Scholar
  • 58. Madsen-Bouterse S.A., Mohammad G., Kanwar M., Kowluru R.A.: Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid. Redox Signal., 2010; 13: 797-805
    Google Scholar
  • 59. Maganti A.V., Maier B., Tersey S.A., Sampley M.L., Mosley A.L., Özcan S., Pachaiyappan B., Woster P.M., Hunter C.S., Stein R., Mirmira R.G.: Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J. Biol. Chem., 2015; 290: 9812-9822
    Google Scholar
  • 60. Miao F., Gonzalo I.G., Lanting L., Natarajan R.: In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem., 2004; 279: 18091-18097
    Google Scholar
  • 61. Miao F., Wu X., Zhang L., Yuan Y.C., Riggs A.D., Natarajan R.: Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem., 2007; 282: 13854-13863
    Google Scholar
  • 62. Mishra M., Kowluru R.A.: Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Invest. Ophthalmol. Vis. Sci., 2014; 55: 6960-6967
    Google Scholar
  • 63. Mishra M., Zhong Q., Kowluru R.A.: Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression. Free Radic. Biol. Med., 2014; 75: 129-139
    Google Scholar
  • 64. Okabe J., Orlowski C., Balcerczyk A., Tikellis C., Thomas M.C., Cooper M.E., El-Osta A.: Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ. Res., 2012; 110: 1067-1076
    Google Scholar
  • 65. Paneni F., Mocharla P., Akhmedov A., Costantino S., Osto E., Volpe M., Lüscher T.F., Cosentino F.: Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ. Res., 2012; 111: 278-289
    Google Scholar
  • 66. Park J.H., Stoffers D.A., Nicholls R.D., Simmons R.A.: Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest., 2008; 118: 2316-2324
    Google Scholar
  • 67. Petronis A., Gottesman I.I., Kan P., Kennedy J.L., Basile V.S., Paterson A.D., Popendikyte V.: Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull., 2003; 29: 169-178
    Google Scholar
  • 68. Picascia A., Grimaldi V., Pignalosa O., De Pascale M.R., Schiano C., Napoli C.: Epigenetic control of autoimmune diseases: from bench to bedside. Clin. Immunol., 2015; 157: 1-15
    Google Scholar
  • 69. Poirier L.A., Brown A.T., Fink L.M., Wise C.K., Randolph C.J., Delongchamp R.R., Fonseca V.A.: Blood S-adenosylmethionine concentrations and lymphocyte methylenotetrahydrofolate reductase activity in diabetes mellitus and diabetic nephropathy. Metabolism, 2001; 50: 1014-1018
    Google Scholar
  • 70. Pokrywka M., Kieć-Wilk B., Polus A., Wybrańska I.: Metylacja DNA a otyłość prosta. Postępy Hig. Med. Dośw., 2014; 68: 1383-1391
    Google Scholar
  • 71. Pradhan S., Chin H.G., Estève P.O., Jacobsen S.E.: SET7/9 mediated methylation of nonhistone proteins in mammalian cells. Epigenetics, 2009; 4: 383-387
    Google Scholar
  • 72. Prattichizzo F., Giuliani A., Ceka A., Rippo M.R., Bonfigli A.R., Testa R., Procopio A.D., Olivieri F.: Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics, 2015; 7: 56
    Google Scholar
  • 73. Qiao Y., Zhao Y., Liu Y., Ma N., Wang C., Zou J., Liu Z., Zhou Z., Han D., He J., Sun Q., Liu Y., Xu C., Du Z., Huang H.: miR-483-3p regulates hyperglycaemia-induced cardiomyocyte apoptosis in transgenic mice. Biochem. Biophys. Res. Commun., 2016; 477: 541-547
    Google Scholar
  • 74. Reddy M.A., Zhang E., Natarajan R.: Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015; 58: 443-455
    Google Scholar
  • 75. Rönn T., Ling C.: DNA methylation as a diagnostic and therapeutic target in the battle against type 2 diabetes. Epigenomics, 2015; 7: 451-460
    Google Scholar
  • 76. Salem S.D., Saif-Ali R., Ismail I.S., Al-Hamodi Z., Muniandy S.: Contribution of SLC30A8 variants to the risk of type 2 diabetes in a multi-ethnic population: a case control study. BMC Endocr. Disord., 2014; 14: 2
    Google Scholar
  • 77. Sapienza C., Lee J., Powell J., Erinle O., Yafai F., Reichert J., Siraj E.S., Madaio M.: DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics, 2011; 6: 20-28
    Google Scholar
  • 78. Seman N.A., Mohamud W.N., Östenson C.G., Brismar K., Gu H.F.: Increased DNA methylation of the SLC30A8 gene promoter is associated with type 2 diabetes in a Malay population. Clin. Epigenetics, 2015; 7: 30
    Google Scholar
  • 79. Stankov K., Benc D., Draskovic D.: Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics, 2013; 132: 1112-1122
    Google Scholar
  • 80. Stenvinkel P., Karimi M., Johansson S., Axelsson J., Suliman M., Lindholm B., Heimbürger O., Barany P., Alvestrand A., Nordfors L., Qureshi A.R., Ekström T.J., Schalling M.: Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J. Intern. Med., 2007; 261: 488-499
    Google Scholar
  • 81. Takizawa F., Mizutani S., Ogawa Y., Sawada N.: Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory. Biochem. Biophys. Res. Commun., 2013; 433: 66-72
    Google Scholar
  • 82. Tan Q., Christiansen L., von Bornemann Hjelmborg J., Christensen K.: Twin methodology in epigenetic studies. J. Exp. Biol., 2015; 218: 134-139
    Google Scholar
  • 83. Tang Z.H., Fang Z., Zhou L.: Human genetics of diabetic vascular complications. J. Genet., 2013; 92: 677-694
    Google Scholar
  • 84. Tewari S., Zhong Q., Santos J.M., Kowluru R.A.: Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2012; 53: 4881-4888
    Google Scholar
  • 85. Thompson R.F., Fazzari M.J., Niu H., Barzilai N., Simmons R.A., Greally J.M.: Experimental intrauterine growth restriction induces alterations in DNA methylation and gene expression in pancreatic islets of rats. J. Biol. Chem., 2010; 285: 15111-15118
    Google Scholar
  • 86. Tobi E.W., Lumey L.H., Talens R.P., Kremer D., Putter H., Stein A.D., Slagboom P.E., Heijmans B.T.: DNA methylation differences after exposure to prenatal famine are common and timing- and sexspecific. Hum. Mol. Genet., 2009; 18: 4046-4053
    Google Scholar
  • 87. VanderJagt T.A., Neugebauer M.H., Morgan M., Bowden D.W., Shah V.O.: Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J. Diabetes, 2015; 6: 1113-1121
    Google Scholar
  • 88. Varga Z.V., Giricz Z., Liaudet L., Haskó G., Ferdinandy P., Pacher P.: Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim. Biophys. Acta, 2015; 1852: 232-242
    Google Scholar
  • 89. Villeneuve L.M., Reddy M.A., Natarajan R.: Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol., 2011; 38: 451-459
    Google Scholar
  • 90. Wegner M., Pioruńska-Stolzmann M., Jagodziński P.P.: Wpływ modyfikacji struktury chromatyny na rozwój przewlekłych powikłań cukrzycowych. Postępy Hig. Med. Dośw., 2015; 69: 964-968
    Google Scholar
  • 91. Wright E. Jr., Scism-Bacon J.L., Glass L.C. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int. J. Clin. Pract., 2006; 60: 308-314
    Google Scholar
  • 92. Yu X.Y., Geng Y.J., Liang J.L., Zhang S., Lei H.P., Zhong S.L., Lin Q.X., Shan Z.X., Lin S.G., Li Y.: High levels of glucose induce „metabolic memory” in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol. Biol. Rep., 2012; 39: 8891-8898
    Google Scholar
  • 93. Yun J.M., Jialal I., Devaraj S.: Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutr. Biochem., 2011; 22: 450-458
    Google Scholar
  • 94. Zhong Q., Kowluru R.A.: Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation. Invest. Ophthalmol. Vis. Sci., 2013; 54: 244-250
    Google Scholar

Full text

Skip to content