3-Bromopyruvate as a potential pharmaceutical in the light of experimental data
Izabela Szczuka 1 , Andrzej Gamian 1 , Grzegorz Terlecki 1Abstract
3-Bromopyruvate (3-BrPA) is an halogenated analogue of pyruvic acid known for over four decades as an alkylating agent reacting with thiol groups of many proteins. It enters animal cells like a lactate: via monocarboxylic acid transporters. Increasing interest in this compound, in recent times, is mainly due to hopes associated with its anticancer action. It is based on the impairment of energy metabolism of tumor cells by inhibiting enzymes in the glycolysis pathway (hexokinase II, glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase) and the oxidative phosphorylation (succinate dehydrogenase). Two cases of clinical application of this compound in the treatment of advanced cancers were reported. By using 3-BrPA, rheumatoid arthritis in SKG mice has been reduced. This compound has also antiparasitic activity: lowers cell viability of Trypanosoma brucei, decreases intracellular proliferation of Toxoplasma gondii and reduces the metabolic activity of Schistosoma mansoni. It also has antifungal properties; particularly it acts strongly on Cryptococcus neoformans, as well as Saccharomyces cerevisiae. An inhibitory effect on bacterial enzymes was also described on: isocitrate lyase from Escherichia coli, Mycobacterium tuberculosis, Pseudomonas indigofera and 2-methylisocitrate lyase, succinate dehydrogenase and acetohydroxylic acid synthase from Escherichia coli. Wherever undesirable (cancer, parasitic) cells differ from normal by more intense glycolysis and higher energy needs, there is a good chance of successful 3-BrPA use. However, this compound acts on all cells and it, therefore, seems that its future as a pharmaceutical is dependent upon the development of appropriate methods for its effective and safe application.
References
- 1. Apfel M.A., Ikeda B.H., Speckhard D.C., Frey P.A.: Escherichia coli pyruvate dehydrogenase complex. Thiamin pyrophosphate-dependent inactivation by 3-bromopyruvate. J. Biol. Chem., 1984; 259: 2905-2909
Google Scholar - 2. Azevedo-Silva J., Queirós O., Baltazar F., Ułaszewski S., Goffeau A., Ko Y.H., Pedersen P.L., Preto A., Casal M.: The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J. Bioenerg. Biomembr., 2016; 48: 349-362
Google Scholar - 3. Baker J.P., Rabin B.R.: Effects of bromopyruvate on the control and catalytic properties of glutamate dehydrogenase. Eur. J. Biochem., 1969; 11: 154-159
Google Scholar - 4. Banas T., Gontero B., Drews V.L., Johnson S.L., Marcus F., Kemp R.G.: Reactivity of the thiol groups of Escherichia coli phosphofructo-1-kinase. Biochim. Biophys. Acta, 1988; 957: 178-184
Google Scholar - 5. Barnard J.P., Reynafarje B., Pedersen P.L.: Glucose catabolism in African trypanosomes. Evidence that the terminal step is catalyzed by a pyruvate transporter capable of facilitating uptake of toxic analogs. J. Biol. Chem., 1993; 268: 3654-3661
Google Scholar - 6. Birsoy K., Wang T., Possemato R., Yilmaz O.H., Koch C.E., Chen W.W., Hutchins A.W., Gultekin Y., Peterson T.R., Carette J.E., Brummelkamp T.R., Clish C.B., Sabatini D.M.: MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet, 2013; 45: 104-108
Google Scholar - 7. Bose I., Reese A.J., Ory J.J., Janbon G., Doering T.L.: A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot. Cell, 2003; 2: 655-663
Google Scholar - 8. Brown M.: Schistosomiasis. Clin. Med., 2011; 11: 479-482
Google Scholar - 9. Cannon R.D., Lamping E., Holmes A.R., Niimi K., Baret P.V., Keniya M.V., Tanabe K., Niimi M., Goffeau A., Monk B.C: Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev., 2009; 22: 291-321
Google Scholar - 10. Cardaci S., Desideri E., Ciriolo M.R.: Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J. Bioenerg. Biomembr., 2012; 44: 17-29
Google Scholar - 11. Chen Z., Lu W., Garcia-Prieto C., Huang P.: The Warburg effect and its cancer therapeutic implications. J. Bioenerg. Biomembr., 2007; 39: 267-274
Google Scholar - 12. Chen Z., Zhang H., Lu W., Huang P.: Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim. Biophys. Acta, 2009; 1787: 553-560
Google Scholar - 13. De Lima L.P., Seabra S.H., Carneiro H., Barbosa H.S.: Effect of 3-bromopyruvate and atovaquone on infection during in vitro interaction of Toxoplasma gondii and LLC-MK2 cells. Antimicrob. Agents Chemother., 2015; 59: 5239-5249
Google Scholar - 14. Dell’Antone P.: Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Med. Hypotheses, 2012; 79: 388-392
Google Scholar - 15. Deng Y., Lu J.: Targeting hexokinase 2 in castration-resistant prostate cancer. Mol. Cell. Oncol., 2015; 2: e974465
Google Scholar - 16. Dyląg M.: Etiologiczne czynniki kryptokokozy – co warunkuje ich patogenność? Med. Dośw. Mikrobiol., 2015; 67: 221-231
Google Scholar - 17. Dyląg M., Lis P., Niedźwiecka K., Ko Y.H., Pedersen P.L., Goffeau A., Ułaszewski S.: 3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans. Biochem. Biophys. Res. Commun., 2013; 434: 322-327
Google Scholar - 18. El Sayed S.M., Mohamed W.G., Seddik M.A., Ahmed A.S., Mahmoud A.G., Amer W.H., Nabo M.M., Hamed A.R., Ahmed N.S., Abd-Allah A.A.: Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study. Chin. J. Cancer, 2014; 33: 356-364
Google Scholar - 19. Fischer G., Sieber M., Schellenberger A.: The carbonyl reactivity of 3-bromopyruvate and related compounds. Bioorg. Chem., 1982; 11: 478-484
Google Scholar - 20. Fonda M.L.: Bromopyruvate inactivation of glutamate apodecarboxylase. Kinetics and specificity. J. Biol. Chem., 1976; 251: 229-235
Google Scholar - 21. Ganapathy-Kanniappan S., Geschwind J.F., Kunjithapatham R., Buijs M., Vossen J.A., Tchernyshyov I., Cole R.N., Syed L.H., Rao P.P., Ota S., Vali M.: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res., 2009; 29: 4909-4918
Google Scholar - 22. Ganapathy-Kanniappan S., Kunjithapatham R., Geschwind J.F.: Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting. Anticancer Res., 2013; 33: 13-20
Google Scholar - 23. Gandham S.K., Talekar M., Singh A., Amiji M.M.: Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis. Int. J. Nanomedicine, 2015; 10: 4405-4423
Google Scholar - 24. Glick M., Biddle P., Jantzi J., Weaver S., Schirch D.: The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions. Biochem. Biophys. Res. Commun., 2014; 452: 170-173
Google Scholar - 25. Grimm C., Evers A., Brock M., Maerker C., Klebe G., Buckel W., Reuter K.: Crystal structure of 2-methylisocitrate lyase (PrpB) from Escherichia coli and modelling of its ligand bound active centre. J. Mol. Biol., 2003; 328: 609-621
Google Scholar - 26. Huston S.M., Mody C.H.: Cryptococcosis: an emerging respiratory mycosis. Clin. Chest Med., 2009; 30: 253-264
Google Scholar - 27. Jones A.R., Gillan L., Milmlow D.: The anti-glycolytic activity of 3-bromopyruvate on mature boar spermatozoa in vitro. Contraception, 1995; 52: 317-320
Google Scholar - 28. Kim J.S., Ahn K.J., Kim J.A., Kim H.M., Lee J.D., Lee J.M., Kim S.J., Park J.H.: Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J. Bioenerg. Biomembr., 2008; 40: 607-618
Google Scholar - 29. Ko Y.H., McFadden B.A.: Alkylation of isocitrate lyase from Escherichia coli by 3-bromopyruvate. Arch. Biochem. Biophys., 1990; 278: 373-380
Google Scholar - 30. Ko Y.H., Smith B.L., Wang Y., Pomper M.G., Rini D.A., Torbenson M.S., Hullihen J., Pedersen P.L.: Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun., 2004; 324: 269-275
Google Scholar - 31. Ko Y.H., Verhoeven H.A., Lee M.J., Corbin D.J., Vogl T.J., Pedersen P.L.: A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J. Bioenerg. Biomembr., 2012; 44: 163-170
Google Scholar - 32. Lis P., Jurkiewicz P., Cal-Bąkowska M., Ko Y.H., Pedersen P.L., Goffeau A., Ułaszewski S.: Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget, 2016; 7: 10153-10173
Google Scholar - 33. Lis P., Zarzycki M., Ko Y.H., Casal M., Pedersen P.L., Goffeau A., Ułaszewski S.: Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae. J. Bioenerg. Biomembr., 2012; 44: 155-161
Google Scholar - 34. Manneck T., Keiser J., Müller J.: Mefloquine interferes with glycolysis in schistosomula of Schistosoma mansoni via inhibition of enolase. Parasitology, 2012; 139: 497-505
Google Scholar - 35. Meloche H.P., Monti C.T., Hogue-Angeletti R.A.: Identification of the bromopyruvate-sensitive glutamate within the active site of 2-keto-3-deoxygluconate-6-P aldolase. Biochem. Biophys. Res. Commun., 1978; 84: 589-594
Google Scholar - 36. Mikuriya K., Kuramitsu Y., Ryozawa S., Fujimoto M., Mori S., Oka M., Hamano K., Okita K., Sakaida I., Nakamura K.: Expression of glycolytic enzymes is increased in pancreatic cancerous tissues as evidenced by proteomic profiling by two-dimensional electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry. Int. J. Oncol., 2007; 30: 849-855
Google Scholar - 37. Montoya J.G., Liesenfeld O.: Toxoplasmosis. Lancet, 2004; 363: 1965-1976
Google Scholar - 38. Nakashima R.A., Mangan P.S., Colombini M., Pedersen P.L.: Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N’-dicyclohexlycarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry, 1986; 25: 1015-1021
Google Scholar - 39. Okano T., Saegusa J., Nishimura K., Takahashi S., Sendo S., Ueda Y., Morinobu, A.: 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci. Rep., 2017; 7: 42412
Google Scholar - 40. Oronsky B.T., Reid T., Knox S.J., Scicinski J.J.: The scarlet letter of alkylation: a mini review of selective alkylating agents. Transl. Oncol., 2012; 5: 226-229
Google Scholar - 41. Pedersen P.L.: 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J. Bioenerg. Biomembr., 2012; 44: 1-6
Google Scholar - 42. Pereira da Silva A.P., El-Bacha T., Kyaw N., dos Santos R.S., da-Silva W.S., Almeida F.C., Da Poian A.T., Galina, A.: Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J., 2009; 417: 717-726
Google Scholar - 43. Posteraro B., Sanguinetti M., D’Amore G., Masucci L., Morace G., Fadda G.: Molecular and epidemiological characterization of vaginal Saccharomyces cerevisiae isolates. J. Clin. Microbiol., 1999; 37: 2230-2235
Google Scholar - 44. Pue N., Guddat L.W.: Acetohydroxyacid synthase: a target for antimicrobial drug discovery. Curr. Pharm. Des., 2014; 20: 740-753
Google Scholar - 45. Rempel A., Mathupala S.P., Griffin C.A., Hawkins A.L., Pedersen P.L.: Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res., 1996; 56: 2468-2471
Google Scholar - 46. Roberts D.J., Miyamoto S.: Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ., 2015; 22: 248-257
Google Scholar - 47. Roche T.E., McFadden B.A., Williams J.O.: Modification of the active site of isocitrate lyase from Pseudomonas indigofera. Arch. Biochem. Biophys., 1971; 147: 192-200
Google Scholar - 48. Rondinelli R.H., Epner D.E., Tricoli J.V.: Increased glyceraldehyde-3-phosphate dehydrogenase gene expression in late pathological stage human prostate cancer. Prostate Cancer Prostatic Dis., 1997; 1: 66-72
Google Scholar - 49. Sanborn B.M., Felberg N.T., Hollocher T.C.: The inactivation of succinate dehydrogenase by bromopyruvate. Biochim. Biophys. Acta, 1971; 227: 219-231
Google Scholar - 50. Sharma V., Sharma S., zu Bentrup K., McKinney J.D., Russell D.G., Jacobs W.R.Jr., Sacchettini J.C.: Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Biol., 2000; 7: 663-668
Google Scholar - 51. Shoshan M.C.: 3-Bromopyruvate: targets and outcomes. J. Bioenerg. Biomembr., 2012; 44: 7-15
Google Scholar - 52. Silverman P.M., Eoyang L.: Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis. J. Bacteriol., 1987; 169: 2494-2499
Google Scholar - 53. Tang Z., Yuan S., Hu Y., Zhang H., Wu W., Zeng Z., Yang J., Yun J., Xu R., Huang P.: Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester. J. Bioenerg. Biomembr., 2012; 44: 117-125
Google Scholar - 54. Tokunaga K., Nakamura Y., Sakata K., Fujimori K., Ohkubo M., Sawada K., Sakiyama S.: Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res., 1987; 47: 5616-5619
Google Scholar - 55. Tsai H.J., Wilson J.E.: Functional organization of mammalian hexokinases: both N-and C-terminal halves of the rat type II isozyme possess catalytic sites. Arch. Biochem. Biophys., 1996; 329: 17-23
Google Scholar - 56. Upton A.M., McKinney J.D.: Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Microbiology, 2007; 153: 3973-3982
Google Scholar - 57. Vanderheyden N., Wong J., Docampo R.: A pyruvate–proton symport and an H+-ATPase regulate the intracellular pH of Trypanosoma brucei at different stages of its life cycle. Biochem. J., 2000; 346: 53-62
Google Scholar - 58. Warburg O.: On the origin of cancer cells. Science, 1956; 123: 309-314
Google Scholar - 59. Xu R.H., Pelicano H., Zhou Y., Carew J.S., Feng L., Bhalla K.N., Keating M.J., Huang P.: Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res., 2005; 65: 613-621
Google Scholar - 60. Zhang Q., Zhang Y., Zhang P., Chao Z., Xia F., Jiang C., Zhang X., Liu H.: Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells. Genes Cancer, 2014; 5: 100-112
Google Scholar