Structure of bacterial chromosome: An analysis of DNA-protein interactions in vivo

REVIEW ARTICLE

Structure of bacterial chromosome: An analysis of DNA-protein interactions in vivo

Joanna Hołówka 1 , Małgorzata Płachetka 2

1. Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda Polskiej Akademii Nauk we Wrocławiu,
2. Uniwersytet Wrocławski, Wydział Biotechnologii,

Published: 2017-12-08
DOI: 10.5604/01.3001.0010.6696
GICID: 01.3001.0010.6696
Available language versions: en pl
Issue: Postepy Hig Med Dosw 2017; 71 : 1005-1014

 

Abstract

According to recent reports, bacterial chromosomes exhibit a hierarchical organization. The number of proteins that bind DNA are responsible for local and global organization of the DNA ensuring proper chromosome compaction. Advanced molecular biology techniques combined with high-throughput DNA sequencing methods allow a precise analysis of bacterial chromosome structures on a local and global scale. Methods such as in vivo footprinting and ChIP-seq allow to map binding sites of analyzed proteins in certain chromosomal regions or along the whole chromosome while analysis of the spatial interactions on global scale could be performed by 3C techniques. Additional insight into complex structures created by chromosome-organizing proteins is provided by high-resolution fluorescence microscopy techniques.

References

  • 1. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A.: Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol., 1999; 181: 6361-6370
    Google Scholar
  • 2. Badrinarayanan A., Reyes-Lamothe R., Uphoff S., Leake M.C., Sherratt D.J.: In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science, 2012; 338: 528-531
    Google Scholar
  • 3. Bartek I.L., Woolhiser L.K., Baughn A.D., Basaraba R.J., Jacobs W.R.Jr., Lenaerts A.J., Voskuil M.I.: Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio, 2014; 5: e01106-e01114
    Google Scholar
  • 4. Belton J.M., McCord R.P., Gibcus J.H., Naumova N., Zhan Y., Dekker J.: Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 2012; 58: 268-276
    Google Scholar
  • 5. Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006; 313: 1642-1645
    Google Scholar
  • 6. Bowman G.R., Comolli L.R., Zhu J., Eckart M., Koenig M., Downing K.H., Moerner W.E., Earnest T., Shapiro L.: A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell, 2008; 134: 945-955
    Google Scholar
  • 7. Brewer A.C., Marsh P.J., Patient R.K.: A simplified method for in vivo footprinting using DMS. Nucleic Acids Res., 1990; 18: 5574
    Google Scholar
  • 8. Britton R.A., Lin D.C., Grossman A.D.: Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev., 1998; 12: 1254-1259
    Google Scholar
  • 9. Chung D., Park D., Myers K., Grass J., Kiley P., Landick R., Keleş S.: dPeak: high resolution identification of transcription factor binding sites from PET and SET ChIP-Seq data. PLoS Comput. Biol., 2013; 9: e1003246
    Google Scholar
  • 10. Cozzarelli N.R.: DNA gyrase and the supercoiling of DNA. Science, 1980; 207: 953-960
    Google Scholar
  • 11. Das P.M., Ramachandran K., vanWert J., Singal R.: Chromatin immunoprecipitation assay. Biotechniques, 2004; 37: 961-969
    Google Scholar
  • 12. de Laat W., Dekker J.: 3C-based technologies to study the shape of the genome. Methods, 2012; 58: 189-191
    Google Scholar
  • 13. Dekker J., Rippe K., Dekker M., Kleckner N.: Capturing chromosome conformation. Science, 2002; 295: 1306-1311
    Google Scholar
  • 14. Delius H., Worcel A.: Electron microscopic studies on the folded chromosome of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol., 1974; 38: 53-58
    Google Scholar
  • 15. Dillon S.C., Dorman C.J.: Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol., 2010; 8: 185-195
    Google Scholar
  • 16. Dixon J.R., Selvaraj S., Yue F., Kim A., Li Y., Shen Y., Hu M., Liu J.S., Ren B.: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 2012; 485: 376-380
    Google Scholar
  • 17. Dorman C.J., Corcoran C.P.: Bacterial DNA topology and infectious disease. Nucleic Acids Res., 2009; 37: 672-678
    Google Scholar
  • 18. Ebersbach G., Briegel A., Jensen G.J., Jacobs-Wagner C.: A selfassociating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell, 2008; 134: 956-968
    Google Scholar
  • 19. Einhauer A., Jungbauer A.: The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J. Biochem. Biophys. Methods, 2001; 49: 455-465
    Google Scholar
  • 20. Espeli O., Mercier R., Boccard F.: DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol. Microbiol., 2008; 68: 1418-1427
    Google Scholar
  • 21. Ferdows M.S., Barbour A.G.: Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA, 1989; 86: 5969-5973
    Google Scholar
  • 22. Fisher J.K., Bourniquel A., Witz G., Weiner B., Prentiss M., Kleckner N.: Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell, 2013; 153: 882-895
    Google Scholar
  • 23. Graham T.G., Wang X., Song D., Etson C.M., van Oijen A.M., Rudner D.Z., Loparo J.J.: ParB spreading requires DNA bridging. Genes Dev., 2014; 28: 1228-1238
    Google Scholar
  • 24. Graumann P.L.: SMC proteins in bacteria: condensation motors for chromosome segregation? Biochimie, 2001; 83: 53-59
    Google Scholar
  • 25. Johnson D.S., Mortazavi A., Myers R.M., Wold B.: Genome-wide mapping of in vivo protein-DNA interactions. Science, 2007; 316: 1497-1502
    Google Scholar
  • 26. Kieser H.M., Kieser T., Hopwood D.A.: A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome. J. Bacteriol., 1992; 174: 5496-5507
    Google Scholar
  • 27. Le T.B., Imakaev M.V., Mirny L.A., Laub M.T.: High-resolution mapping of the spatial organization of a bacterial chromosome. Science, 2013; 342: 731-734
    Google Scholar
  • 28. Li G., Fullwood M.J., Xu H., Mulawadi F.H., Velkov S., Vega V., Ariyaratne P.N., Mohamed Y.B., Ooi H.S., Tennakoon C., Wei C.L., Ruan Y., Sung W.K.: ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 2010; 11: R22
    Google Scholar
  • 29. Luijsterburg M.S., Noom M.C., Wuite G.J., Dame R.T.: The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol., 2006; 156: 262-272
    Google Scholar
  • 30. Macvanin M., Adhya S.: Architectural organization in E. coli nucleoid. Biochim. Biophys. Acta, 2012; 1819: 830-835
    Google Scholar
  • 31. Marasco R., Varcamonti M., La Cara F., Ricca E., De Felice M., Sacco M.: In vivo footprinting analysis of Lrp binding to the ilvIH promoter region of Escherichia coli. J. Bacteriol., 1994; 176: 5197-5201
    Google Scholar
  • 32. Mercier R., Petit M.A., Schbath S., Robin S., El Karoui M., Boccard F., Espéli O.: The MatP/matS site-specific system organizes the terminus region of the E. coli chromosome into a macrodomain. Cell, 2008; 135: 475-485
    Google Scholar
  • 33. Murphy L.D., Zimmerman S.B.: Condensation and cohesion of λ DNA in cell extracts and other media: implications for the structure and function of DNA in prokaryotes. Biophys. Chem., 1995; 57: 71-92
    Google Scholar
  • 34. Murtin C., Engelhorn M., Geiselmann J., Boccard F.: A quantitative UV laser footprinting analysis of the interaction of IHF with specific binding sites: re-evaluation of the effective concentration of IHF in the cell. J. Mol. Biol., 1998; 284: 949-961
    Google Scholar
  • 35. Myers K.S., Park D.M., Beauchene N.A., Kiley P.J.: Defining bacterial regulons using ChIP-seq. Methods, 2015; 86: 80-88
    Google Scholar
  • 36. Nolivos S., Upton A.L., Badrinarayanan A., Müller J., Zawadzka K., Wiktor J., Gill A., Arciszewska L., Nicolas E., Sherratt D.: MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat. Commun., 2016; 7: 10466
    Google Scholar
  • 37. Nora E.P., Lajoie B.R., Schulz E.G., Giorgetti L., Okamoto I., Servant N., Piolot T., van Berkum N.L., Meisig J., Sedat J., Gribnau J., Barillot E., Blüthgen N., Dekker J., Heard E.: Spatial partitioning of the regulatory landscape of the X-inactivation center. Nature, 2012; 485: 381-385
    Google Scholar
  • 38. Postow L., Hardy C.D., Arsuaga J., Cozzarelli N.R.: Topological domain structure of the Escherichia coli chromosome. Genes Dev., 2004; 18: 1766-1779
    Google Scholar
  • 39. Prieto A.I., Kahramanoglou C., Ali R.M., Fraser G.M., Seshasayee A.S., Luscombe N.M.: Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res., 2012; 40: 3524-3537
    Google Scholar
  • 40. Rice P.A., Yang S., Mizuuchi K., Nash H.A.: Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell, 1996; 87: 1295-1306
    Google Scholar
  • 41. Schneiker S., Perlova O., Kaiser O., Gerth K., Alici A., Altmeyer M.O., Bartels D., Bekel T., Beyer S., Bode E., Bode H.B., Bolten C.J., Choudhuri J.V., Doss S., Elnakady Y.A. i wsp.: Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol., 2007; 25: 1281-1289
    Google Scholar
  • 42. Sherratt D.J.: Bacterial chromosome dynamics. Science, 2003; 301: 780-785
    Google Scholar
  • 43. Simonis M., Kooren J., de Laat W.: An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods, 2007; 4: 895-901
    Google Scholar
  • 44. Song D., Loparo J.J.: Building bridges within the bacterial chromosome. Trends Genet., 2015; 31: 164-173
    Google Scholar
  • 45. Stavans J., Oppenheim A.: DNA-protein interactions and bacterial chromosome architecture. Phys. Biol., 2006; 3: R1-R10
    Google Scholar
  • 46. Su C.J., Baseman J.B.: Genome size of Mycoplasma genitalium. J. Bacteriol., 1990; 172: 4705-4707
    Google Scholar
  • 47. Sullivan N.L., Marquis K.A., Rudner D.Z.: Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell, 2009; 137: 697-707
    Google Scholar
  • 48. Szafran M., Zakrzewska-Czerwińska J., Jakimowicz D.: Bakteryjne topoizomerazy typu I – rola biologiczna i zastosowanie jako potencjalnych celów dla antybiotyków. Postȩpy Hig. Med. Dośw., 2013; 67: 130-142
    Google Scholar
  • 49. Trucksis M., Michalski J., Deng Y.K., Kaper J.B.: The Vibrio cholerae genome contains two unique circular chromosomes. Proc. Natl. Acad. Sci. USA, 1998; 95: 14464-14469
    Google Scholar
  • 50. Tse-Dinh Y.C., Beran-Steed R.K.: Escherichia coli DNA topoisomerase I is a zinc metalloprotein with three repetitive zinc-binding domains. J. Biol. Chem., 1988; 263: 15857-15859
    Google Scholar
  • 51. Umbarger M.A., Toro E., Wright M.A., Porreca G.J., Bau D., Hong S.H., Fero M.J., Zhu L.J., Marti-Renom M.A., McAdams H.H., Shapiro L., Dekker J., Church G.M.: The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell, 2011; 44: 252-264
    Google Scholar
  • 52. Valens M., Penaud S., Rossignol M., Cornet F., Boccard F.: Macrodomain organization of the Escherichia coli chromosome. EMBO J., 2004; 23: 4330-4341
    Google Scholar
  • 53. Valls M., Buckle M., de Lorenzo V.: In vivo UV laser footprinting of the Pseudomonas putida σ54 Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J. Biol. Chem., 2002; 277: 2169-2175
    Google Scholar
  • 54. van den Ent F., Lockhart A., Kendrick-Jones J., Löwe J.: Crystal structure of the N-terminal domain of MukB: a protein involved in chromosome partitioning. Structure, 1999; 7: 1181-1187
    Google Scholar
  • 55. Vora T., Hottes A.K., Tavazoie S.: Protein occupancy landscape of a bacterial genome. Mol. Cell, 2009; 35: 247-253
    Google Scholar
  • 56. Wang G., Lo L.F., Maier R.J.: A histone-like protein of Helicobacter pylori protects DNA from stress damage and aids host colonization. DNA Repair, 2012; 11: 733-740
    Google Scholar
  • 57. Wang J.C.: DNA topoisomerases: why so many? J. Biol. Chem., 1991; 266: 6659-6662
    Google Scholar
  • 58. Wang X., Liu X., Possoz C., Sherratt D.J.: The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev., 2006; 20: 1727-1731
    Google Scholar
  • 59. Wang X., Montero Llopis P., Rudner D.Z.: Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc. Natl. Acad. Sci. USA, 2014; 111: 12877-12882
    Google Scholar
  • 60. Wang X., Reyes-Lamothe R., Sherratt D.J.: Visualizing genetic loci and molecular machines in living bacteria. Biochem. Soc. Trans., 2008; 36: 749-753
    Google Scholar
  • 61. Wang X., Rudner D.Z.: Spatial organization of bacterial chromosomes. Curr. Opin. Microbiol., 2014; 22: 66-72
    Google Scholar
  • 62. Yamaichi Y., Bruckner R., Ringgaard S., Möll A., Cameron D.E., Briegel A., Jensen G.J., Davis B.M., Waldor M.K.: A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes Dev., 2012; 26: 2348-2360
    Google Scholar

Full text

Skip to content